首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The study was done to observe the effects of soil compaction on field bean and soybean growth in greenhouse. Plastic cylindrical tubes of 58 cm height and 12 cm diameter were filled with silty loam soil with three bulk densities i.e., low (1.25 g/cm3), medium (1.45 g/cm3) and high (1.65 g/cm3) either separately or in combination of low/medium (level 1), low/high (level 2) and medium/high (level 3) as top and sub-soil densities.
General effect of compaction was a reduction in shoot and root growth and in yield of both the legumes; probable reason seemed to be mechanical impedance. At homogeneous compaction throughout the soil profile high bulk density decreased the root dry matter from 6 to 32 % and total root length from 30 to 57% but total root volume was not much affected due to thickening of the roots. From 4 to 31% reductions were also observed in shoot dry matter. Increase in only subsoil density from medium to high (level 2) decreased shoot and root dry matters (8 to 36% and 16 to 39%, respectively) but not the total root length. Plant growth was more hampered when both top and subsoil densities were increased (level 3) but the total root length was not highly affected in the upper (0 to 20 cm) and middle (20 to 40 cm) layer.  相似文献   

2.
Root development of sugar beet plants on a sandy loess site with regard to nitrogen nutrition.
Root development of sugar beet plants in a sandy loess soil (Haplic Phaeozem) was observed from the early seedling stage up to harvest by measuring at first the greatest vertical and lateral extension of the root systems of single plants and later the rooting density of the whole plant stands (auger method, profile wall method).
During the seedling stage not only the subsoil, but also large parts of the topsoil between the plants remained unoccupied by the root systems. In this phase the greatest lateral extension of single roots reaches nearly the length of the greatest leaf of the plant. With the closure of the canopy the rooting density in the topsoil accounts to 1–2 cm cm−3.
In summer roots penetrate to a depth of 100–150 cm with rooting densities of 0.1 to 1 cm - cm−3. Thus, the plants gain not only access to water reserves, but sometimes meet remarkable amounts of nitrate which under the relatively dry conditions of the region tends to accumulate in 60–120 cm depth and – when taken up by the beet plants in the late stage of growth – affects crop quality negatively.  相似文献   

3.
Although a high biomass yield is obtained from established Miscanthus crops, previous studies have shown that fertilizer requirements are relatively low. As little information on the role of the Miscanthus roots in nutrient acquisition is available, a study was conducted to gather data on the Miscanthus root system and root nutrient content. Therefore in 1992, the root distribution pattern of an established Miscanthus crop was measured in field trials using the trench profile and the auger methods. Also, in 1994/1995, seasonal changes in root length density (RLD) and root nutrient content were monitored three times during the vegetation period.

The trench profile method showed that roots were present to the maximum depth measured of 250 cm. The top soil (0–30 cm) contained 28% of root biomass, while nearly half of the total roots were present in soil layers deeper than 90 cm. Using the auger method, we found that RLD values in the topsoil decreased with increasing distance from the centre of the plants. Below 30 cm, RLD decreased markedly, and differences in root length in the soil between plants were less pronounced. The total root dry weight down to 180 cm tended to increase from May 1994 (10.6 t ha−1) to November 1994 (13.9 t ha−1) and then decreased again until March 1995 (11.5 t ha−1). Nutrient concentrations in the roots decreased with increasing depth. The concentrations of N (0.7–1.4%) and K (0.6–1.2%) were clearly higher than those of P (0.06–0.17%). The mean values for N, P and K contents of the roots of all three sampling dates in 1994/1995 were 109.2 kg N ha−1, 10.6 kg P ha−1 and 92.5 kg K ha−1.

Although our results showed that RLD values for Miscanthus in the topsoil are lower than for annual crops, the greater rooting depth and the higher RLD of Miscanthus in the subsoil mean that nutrient uptake from the subsoil is potentially greater. This enables Miscanthus crops to overcome periods of low nutrient (and water) availability especially during periods of rapid above-ground biomass growth.  相似文献   


4.
In a field experiment conducted during 1992–95 at Lucknow, India, sugarcane was planted in rows 60 and 90 cm apart in three crop rotations (rice-sugarcane-ratoon, Sesbania aculeata for green manure-sugarcane-ratoon, and cowpea-sugarcane-ratoon) with 0, 150 and 300 kg N ha−1 as urea either with or without farmyard manure (FYM) at 10 t ha−1. Sugarcane yields were significantly greater in the Sesbania rotation than in the other because of a larger N uptake. N uptake of the crop was significantly affected by soil organic carbon, and available N and K contents. Ratoon yields, however, were largest in the cowpea sequence followed by the rice rotation, probably due to a prolonged residual effect of cowpea and rice root residues. The residual effect of a Sesbania green manure was negligible as demonstrated by the low NO3-N content of the soil profile after sugarcane harvest compared to the other two crop sequences. The total cane productivity (main sugarcane plus ratoon) was greater (156 t ha−1) in the cowpea rotation than the Sesbania (152 t ha−1) and rice (140 t ha−1) rotations.  相似文献   

5.
The elongation rate of seminal root axes for two wheat ( Triticum aestivum L.) genotypes (one gene dwarf Sonalika RR-21 and three gene dwarf UP 301 ) grown in pots under three fluctuating soil water tension regimes of 0.3 to 0.8, 2.0 to 2.5 and 4.0 to 4.5 bars was measured throughout the growing period.
Two distinct peaks were observed for both genotypes. The first peak of highest elongation rate (25.0 to 35.5 mm day−1) for both genotypes occurred during 22–28 days after planting which corresponds to the crown root initiation stage of the crop. The second lower peak (11.2 to 14.5 mm day−1) occurred during 49–60 days after planting for Sonalika RR-21 but 60–72 days for UP 301. The time of occurrence of second peak corresponds to the stem elongation stage.
The elongation rate of root axes differed significantly for different stages and genotypes but when considered over the whole growing season, soil water tension regimes showed no effect. Over a period of 72 days from planting, average elongation rate ranged from 11.3 to 12.7 mm day−1. The elongation rate of root axes bore no consistent relationship with either mean air or soil temperature at 5 and 15 cm depths that prevailed during crop growth period.  相似文献   

6.
Brasisca Juncea , cv. Pusa Bold, and B. campestris , cv. Pusa Kalyani, were raised under field conditions with varying levels of N supply from 0–120 kg ha-1. The production profile of branches and pods thereon was measured, per unit area basis, throughout the crop ontogeny. At maturity, data on the yield contributing characters, viz. pod dry weight, pod number, seed number per pod, 1000 seed weight, seed wall ratio and seed yield in different order branches, was recorded.
The branching pattern and the number of pods produced on different order branches, in the two species, was favourably modified by the increasing levels of N supply. Primary and secondary branches contributed to the seed yield to an extent of 80 % of the total yield. Nitrogen treatment had no significant effect on 1000 seed weight. B. juncea exhibited significantly higher yield over B. campestris. N supply up to 120 kg ha -1 linearly increased seed yield in both the species. However, it exerted a negative effect too partitioning of assimilates from pod wall to seed. The study indicated that rapeseed-mustard, grown under short winter-season environment with adequate soil moisture, has the potential for higher N-fertilizer optima exceeding 120 kg ha -1.  相似文献   

7.
Pulses such as chickpea, faba bean and lentil have hypogeal emergence and their cotyledons remain where the seed is sown, while only the shoot emerges from the soil surface. The effect of three sowing depths (2.5, 5 and 10 cm) on the growth and yield of these pulses was studied at three locations across three seasons in the cropping regions of south-western Australia, with a Mediterranean-type environment. There was no effect of sowing depth on crop phenology, nodulation or dry matter production for any species. Mean seed yields across sites ranged from 810 to 2073 kg ha−1 for chickpea, 817–3381 kg ha−1 for faba bean, and 1173–2024 kg ha−1 for lentil. In general, deep sowing did not reduce seed yields, and in some instances, seed yield was greater at the deeper sowings for chickpea and faba bean. We conclude that the optimum sowing depth for chickpea and faba bean is 5–8 cm, and for lentil 4–6 cm. Sowing at depth may also improve crop establishment where moisture from summer and autumn rainfall is stored in the subsoil below 5 cm, by reducing damage from herbicides applied immediately before or after sowing, and by improving the survival of Rhizobium inoculated on the seed due to more favourable soil conditions at depth.  相似文献   

8.
Although the root length density (RLD) of crops depends on their root system architecture (RSA), the root growth modules of many 1D field crop models often ignored the RSA in the simulation of the RLD. In this study, two model set‐up scenarios were used to simulate the RLD, above‐ground biomass (AGB) and grain yield (GY) of water‐stressed spring wheat in Germany, aiming to investigate the impact of improved RLD on AGB and GY predictions. In scenario 1, SlimRoot, a root growth sub‐model that does not consider the RSA of the crop, was coupled to a Lintul5‐SlimNitrogen‐SoilCN‐Hillflow1D crop model combination. In scenario 2, SlimRoot was replaced with the Somma sub‐model which considered the RSA for simulating RLD. The simulated RLD, AGB and GY were compared with observations. Scenario 2 predicted the RLD, AGB and GY with an average root mean square error (RMSE) of 0.43 cm/cm3, 0.59 t/ha and 1.03 t/ha, respectively, against 1.03 cm/cm3, 1.20 t/ha and 2.64 t/ha for scenario 1. The lower RMSE under scenario 2 shows that, even under water‐stress conditions, predictions of GY and AGB can be improved by considering the RSA of the crop for simulating the RLD.  相似文献   

9.
Tomato ( Lycopersicon esculentum mill. cv. Petopride ) is the most important vegetable crop in Jordan; its production is characterized by inadequate irrigation and fertilization practices, especially under open field conditions. A field study was carried out to determine the effect of different irrigation intervals and different N-fertilizer doses on water use, tomato yields and residual soil nitrogen.
Results indicated significant differences in water use and tomato yields between irrigation treatments. Highest yield (51.4 ton ha−1) was obtained under three irrigations per week with 504 mm total water supply, whereas under irrigation once a week 35.3 ton ha−1were produced with 353 mm total water supply. There were no significant differences in yield between fertigation with ten equal time intervals and fertigations with intervals as per crop requirements, the yields were 47.1 ton ha−1 and 44.5 ton ha−1, respectively. However, yield was significantly lower with three fertigations at equal intervals and equal doses (35.8 ton ha−1) throughout the season. There were no significant differences between mineral nitrogen forms in terms of yield effects. Significant irrigation effects were observed on total soil nitrogen. Residual soil N was 0.052% in the surface layer (0–30 cm), and 0.030% in the subsurface layer (30–60 cm).  相似文献   

10.
A field experiment was conducted to evaluate the performance of hybrid (BJ 104, MBH 110, CM 46 and GHB 27) and composites (PSB 3, PSB 8, WCC 75 and Local) of pearl-millet on the soils (pH 7.1, Organic carbon 0.5 %, P2O5 9.6 kg/ha, K2O 80 kg/ha, soil depth 65 cm and profile moisture 8.6 cm) of Indian Grassland and Fodder Research Institute, Jhansi under extreme drought condition (340 mm total precipitation during the crop season). It was observed that hybrids, by and large, gave higher production than composites and local variety even failed to bloom. Further the highest yield from hybrid MBH 110 was due to its drought escaping character (earliness), drought enduring capacity (CSI-12), efficient translocation and better sink strength. BJ 104 and CM 46, though were also drought escaping and possessed capacity to endure drought but inferior to MBH 110 in sink strength which was ultimately reflected in production.
An appraisal of the various agro-physiological traits revealed that earliness, high harvest index, low CSI value (chlorophyll stability index) and high sink strength were directly correlated with productivity of cultivars under drought condition which could be used as a guide lines for breeding drought resistant cultivars of pearl millet.  相似文献   

11.
N2-Fixation and Yield Structure of White Lupin ( Lupinus albus L.) in Comparison to Vicia faba L. and Glycine max (L.) Merr. on Different Sites
In field studies white lupin ( Lupinus albus L., Eldo ) was compared with faba bean ( Vicia faba L., Herz Freya ) in 1986 and soybean ( Glycine max [L.] Merr., Gambit ) in 1988 on five sites respectively. Total N2-fixation, which was determined by the extended difference method, and yield components were correlated to weather and soil conditions:
1. While faba bean responded to low pH with delayed nodulation, white lupin showed no decrease in N2-fixation at pH less than 5.5 as far as soil was not calcareous.
2. The white lupin developed its root system most quickly into further soil depths and produced a root dry weight six times as large as that of faba bean in the soil layer 60-90 cm until the end of July (Bayreuth).
3. Despite on the calcareous sites the white lupin showed the highest total-N2-fixation (max. 36 g N/m2) throughout, the N-gain for the succeeding crop was up to 8 g N/m2 for white lupin and faba bean as well. In contrast the N-balance of soybean was mostly negative.
4. Seed yields of white lupin (48-450 g/m2) ranged between those of faba bean (145-549 g/m2) and of soybean (89-290 g/m2); its raw protein yields were the highest found (max. 158 g/m2) though.  相似文献   

12.
In rape (Brassica napus L., cv. Global) seed growth mainly depends on husk CO2 assimilation. In irrigated plants, the net photosynthetic rate (Amax) was 10–13 μmol CO2 m−2 s−1 in non-maturing pods and correlated with nitrogen content. The stomatal conductance of water vapour (gH2O) was 0.3 mol m−2 s−1 in non-maturing pods. The photosynthetic nitrogen use efficiency (NUE) was 8.3 μmol CO2g−1 N s−1, about one-third of that in leaves. The photosynthetic water use efficiency (WUE; AmaxgH2O−1) was similar in pods and leaves. In severely droughted plants, the photosynthetic rate was reduced to 38%. The seed growth rate, however, was not influenced by intermittent periods of water stress, indicating translocation of assimilates to the seeds. The drought resistant character of the pods was due to low specific area, succulence, low stomatal conductance causing a small decrease of ΔΨ day−1 during soil drying and maintenance of high relative water content during severe drought. A mathematical formulation of the pod water release curve was undertaken. © (1997) Elsevier Science B.V.  相似文献   

13.
Influence of light quantity on growth and biological nitrogen fixation of white clover ( Trifolium repens L.)
The influence of photon irradiance (Ep; 100 to 500 μmol m−2 s−1) and of the photoperiod (16 or 11 h) on growth and nitrogenase activity of nodulated white clover plants was studied in growth chambers at two nitrate levels (1.0 and 7.5 mM NO3).
Total dry mass production, the root proportion and nitrogenase activity increased with increasing Ep and photoperiod. Nitrogenase activity generally increased proportionally to root mass. Only at low Ep (100 μmol m−2 s−1) and under a short photoperiod (11 h) was the specific nitrogenase activity per unit root mass reduced. An abrupt change in Ep led to a rapid and parallel change in nitrogenase activity and relative growth rate.
A higher NO3 concentration in the nutrient solution (7.5 mM) led to a marked decrease in specific nitrogenase activity, but increased growth between 200 and 500 μmol m−2 s−1 during early development only. At 100 μmol m−2 s−1, there was no growth response to nitrate, although its effect on nitrogenase activity was more marked than at a higher Ep.
The results show that with changing light quantity, biological nitrogen fixation of white clover adapts to the existing demand for nitrogen and does not limit growth except during early development, even when light supply is low.  相似文献   

14.
In drought‐prone environments, sweet sorghum and sorghum‐sudangrass hybrids are considered worthy alternatives to maize for biogas production. The biomass productivity of the three crops was compared by growing them side‐by‐side in a rain‐out shelter under different levels of plant available soil water (PASW) during the growing periods of 2008 to 2010 at Braunschweig, Germany. All crops were established under high levels of soil water. Thereafter, the crops either remained at the wet level (60–80 % PASW) or were subjected to moderate (40–50 % PASW) and severe drought stress (15–25 % PASW). While the above‐ground dry weight (ADW) of sweet sorghum and maize was insignificantly different under well‐watered conditions, sweet sorghum under severe drought stress produced 27 % more ADW than maize. The ADW of sorghum‐sudangrass hybrids significantly lagged behind sweet sorghum at all levels of water supply. The three crops differed markedly in their susceptibility to water shortage. Severe drought stress reduced the ADW of maize by 51 %, but only by 37 % for sweet sorghum and 35 % for sorghum‐sudangrass hybrids. The post‐harvest root dry weight (RDW) in the 0–100 cm soil layer for maize, sweet sorghum and sorghum‐sudangrass hybrids averaged 4.4, 6.1 and 2.9 t ha?1 under wet and 1.9, 5.7 and 2.4 t ha?1 under severe drought stress. Under these most dry conditions, the sorghum crops had relatively higher RDW and root length density (RLD) in the deeper soil layers than maize. The subsoil RDW proportion (20–100 vs. 0–20 cm) for maize, sweet sorghum and sorghum‐sudangrass hybrids amounted to 6 %, 10 % and 20 %. The higher ADM of sweet sorghum compared with maize under dry conditions is most likely attributable to the deep root penetration and high proportion of roots in the subsoil, which confers the sorghum crop a high water uptake capacity.  相似文献   

15.
不同降水状况下旱地玉米生长与产量对施氮量的响应   总被引:2,自引:0,他引:2  
水分不足是旱地玉米生长主要限制因素,渭北旱塬雨养玉米种植区降水季节波动大,干旱频繁发生,已严重影响春玉米正常生长发育及产量稳定性。于2016—2018年在渭北旱塬合阳县进行旱地玉米施氮量定位试验,设置5个施氮量处理, 2016—2017年包括0、75、150、270、360 kg hm~(–2) (分别以N0、N75、N150、N270、N360表示), 2018年施氮量处理为0、90、180、270、360kgNhm~(–2) (分别以N0、N90、N180、N270、N360表示),供试品种为郑单958(ZD958)和陕单8806(SD8806)。分析了不同降水分布年份施氮量对春玉米生育期土壤水分变化动态、干物质积累动态、产量构成、经济效益及水分利用效率(WUE)的影响。结果表明,试验年份降水分布可分为穗期多雨、粒期干旱型(2016年和2018年)和穗期干旱、粒期多雨型(2017年)。生长季降水量及其分布显著影响土壤蓄水量和玉米地上部干物质积累,从而影响玉米产量及其构成因素,穗期干旱显著降低地上部干物质积累量和穗粒数,粒期干旱会明显降低粒重。不同降水分布年份施氮处理较N0增产6.72%~91.23%不等,施氮量对玉米产量、水分利用效率(WUE)影响呈现二次曲线关系,穗期多雨、粒期干旱型以N270处理籽粒产量和WUE最高,而穗期干旱、粒期多雨型以N150处理产量和WUE最好。籽粒产量与"休闲至抽雄期降水(FP2)"、"播前土壤蓄水量+播种至抽雄期降水(SP2)"相关性较强(FP2:R2=0.839**; SP2:R2=0.837**)。根据产量、水分利用和经济收益综合评价,渭北旱地玉米最适施氮方案为基施氮肥150kghm~(–2),再根据休闲至抽雄期降水量或播前土壤蓄水量与播种至抽雄期降水量之和预测产量,估算并及时追施适宜施氮量。  相似文献   

16.
NO3 dynamics in the soil, yield formation and N uptake of winter wheat as influenced by dosage and distribution effects of N-fertilizer application
In a 4 year series of field trials carried out with 9 regimes of nitrogen fertilizer application at two trial sites with rather shallow top soil layers but large deviations in soil characteristics, grain yield varied between 50 dt/ ha and 120 dt/ha with nitrogen doses from 0–170 kg N/ha. Soil nitrogen supply for wheat grain formation on unfertilized plots reached 80 kg N/ha/year within the narrow range of 75–95 kg N/ha in different years at both sites which amounts to 1.5 % and 0.5 % of the highly different N-content of the trial sites.
The most successful nitrogen application regimes are characterized by modest fertilizer doses in early spring and the delay of supplemental fertilizer doses until growth stage EC 32. They resulted into modest NO) soil content from EC 29 to EC 32 and/or a noticable decrease of soil NO3 content during growth stage EC 30–32, which seems to be responsible for the development of only modest stand densities and reduced straw yield, while the delayed supplementation with nitrogen fertilizer overcompensated these effects mainly by increased grain numbers/ear and a remarkable improvement of harvest index.
The contribution of soil borne nitrogen to kernel yield formation started to decrease with even low dosages of supplemental nitrogen fertilization with the exception of the highest yielding season 1987/88. Top levels of grain yield have been regularly obtained with supplemental nitrogen fertilizer dosages about 40 kg N/ha below grain yield nitrogen extraction if they were added within favorable application regimes.  相似文献   

17.
In a field experiment with fertilized and irrigated winter wheat the above-ground crop was sampled once a week. Phenological development, plant density and canopy height were recorded and the green surface areas of leaves, stems and ears were measured. Soil mineral nitrogen was sampled and the field climate monitored. There were four treatments. The daily irrigated/fertilized (IF) and daily irrigated (I) treatments were both irrigated by a drip-tube system. Liquid fertilizer was applied to IF following a logistic function according to calculated plant uptake. A total of 200 kg N ha−1 was applied. Treatment I, control (C) and drought (D) were all fertilized once in spring with 200 kg N ha−1. In treatment D transparent screens were used to divert rainwater. Dry matter production ranged between 1400 in D and 2352 g m−2 in IF. The corresponding amount of nitrogen uptake ranged between 15.8 and 24.6 g m−2. After harvest, soil mineral nitrogen was lowest in IF.
An increase in the availability of nitrogen and water enhanced total biomass production as well as grain yield and leaf area. The daily supply of nitrogen according to crop demand delayed nitrogen uptake and increased total uptake. The results suggest that when the nitrogen is supplied in accordance with crop demand, the efficiency with which the applied fertilizer is utilized increases and the risk for nitrogen leaching decreases.  相似文献   

18.
Crop productivity in semiarid regions is mainly limited by water availability. Root characteristics and plasticity to drought may reduce the negative impact of drought on crop yield. A set of near-isogenic wheat-rye translocation lines was used to test the hypothesis that root system plasticity to drought influences grain yield in wheat. Bread wheat Pavon 76 and 1RS translocation lines, namely Pavon 1RS.1AL, Pavon 1RS.1BL, and Pavon 1RS.1DL were evaluated for root allocation and plasticity in sand-tube experiments under well-watered and droughted conditions across 2 years using factorial treatments in a randomized complete block design with four replicates. The 1RS translocation lines had greater root biomass per plant ranging from 7.37 to 8.6 compared to 5.81 g for Pavon 76. Only Pavon 76 showed a positive response to drought by producing more shallow roots (roots developed between 0 and 30 cm) and deep roots (roots developed below 30 cm) in droughted conditions than in well-watered conditions. Thus at drought intensity of 19% (measured as overall reduction in grain yield), grain yield in Pavon 76 was reduced only by 11% compared to the other genotypes with yield reductions ranging from 18 to 24%. However, at drought intensity of 36%, grain yield in Pavon 76 showed maximum reduction indicating that greater root production under drought is advantageous only when plant-available water is enough to support grain production. Grain yield was positively correlated with shallow and deep root weight and root biomass under terminal drought. Correlation coefficients between root system components (shallow and deep root weight and root biomass) and phenological periods were not significant. Our study indicated that genes influencing adaptive phenotypic plasticity of the root system to drought in Pavon 76 are located on chromosome 1BS.  相似文献   

19.
土壤氮素和水分含量对小麦产量和品质有重要影响。为优化水肥管理实现优质高效栽培, 2014—2015和2015—2016小麦生长季在河南省温县大田水氮长期定位试验地块, 以中筋品种豫麦49-198为材料进行灌水与施氮两因子裂区试验。主区为灌水处理, 设全生育期不灌水(W0)、拔节期750 m 3 hm -2 (W1)和拔节期750 m 3 hm -2 +开花期750 m 3 hm -2 (W2) 3个水平, 副区为氮素处理, 设不施氮(N0)及总氮量180 (N1)、240 (N2)和300 kg hm -2 (N3) 4个水平。与W0处理相比, 2个灌水处理均显著降低耕层土壤(0~20 cm)中的硝态氮含量, 灌水处理的籽粒支链淀粉含量、总淀粉含量、淀粉峰值黏度、谷值黏度和最终黏度均显著高于不灌水处理。灌水还增加了籽粒中小淀粉粒(粒径<5.0 μm)的体积百分比, 2014—2015年度增幅显著, W1、W2处理分别较W0处理增加3.4%和4.8%。施氮提高耕层土壤硝态氮含量, 但籽粒直链淀粉含量和小淀粉粒体积百分比低于不施氮处理。在0~240 kg hm -2施氮量范围内, 籽粒支链淀粉含量、总淀粉含量及峰值黏度、谷值黏度、最终黏度均随施氮量增加而增加。相关分析表明, 耕层土壤硝态氮含量与总淀粉含量、峰值黏度、谷值黏度和最终黏度间呈极显著正相关。拔节期灌1水、施氮量240 kg hm -2条件下, 耕层土壤硝态氮含量为19.64~20.55 mg kg -1, 小麦籽粒黏度值较高, 同时改善了淀粉品质。  相似文献   

20.
Results of yield formation at ecological oriented winter wheat cultivation on Calcic Chernozem soil in arid areas
The influence were examined in field experiments of wheater elements (air temperature, precipitation), nitrogen fertilization, sowing rate and irrigation on the yield and yield formation of winter wheat stands. The average level of yields amounts to 81.3 dt/ha (76…93.8 dt/ha). Limiting factor for yields is the availability of water in the soil. In humide seasons 9…12 % higher yields were obtained then in dry seasons. Without nitrogen fertilization yields of winter wheat are lower by 18 % than with nitrogen fertilization. At very high level of N fertilization only vegetative biomass increases, and the water use efficiency decreases.
Increase in plants/m2 caused a rise of vegetative biomass and of ears/m2, kernels per ear strongly decreased in the same time. At winter wheat cultivation in low input farming systems without nitrogen fertilization high yields will be obtained with 320…370 plants/m2 and 15,000 kernels/m2. Nitrogen uptake from the soil amounts to 180 kgN/ha. Because of great amounts of inorganic in the soil (70…200 kgN/ha) sufficient nitrogen is available until heading of the wheat plants. The nitrogen supply of wheat plants in later stages of development is influenced by wheater conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号