首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Three essential oils, oregano, red thyme, and cassia (100% pure oil), were encapsulated by phase separation into zein nanospheres. Topographical images indicated that the powders were made up of irregularly shaped particles ( approximately 50 mum) containing close-packed nanospheres. Approximately 31% of the oregano encapsulated particles had mean diameters greater than 100 nm compared to 19% for the zein alone particles. In vitro digestion of zein particles with pepsin at a concentration ratio of 10:1 was complete after 52 h in phosphate-citrate buffer, pH 3.5, at 37 degrees C by spectroscopic analysis. Nonenzymatic, aqueous in vitro release of essential oils from encapsulated zein particles was carried out in phosphate buffered saline at pH 7.4 and 37 degrees C. Release occurred at varying rates over 20 h probably from different locations within the closely packed nanospheres of different sizes. Gel electrophoresis SDS-PAGE of zein incubated with freeze-dried swine manure solids at 37 degrees C indicated that preformed microbial enzymes capable of digesting zein within minutes were present in the manure. Except for differences in size of nanospheres, no structural differences were resolved by several microscopic methods, suggesting that the oil and proteins phases were blended during phase separation.  相似文献   

2.
Complexes of amylose or high-amylose corn starch (HACS) with genistein were prepared by the acidification of an alkali solution to yield a V 6IotaIotaIota structure. The amylose-genistein complexes exhibited significantly higher genistein content (11 mg/100 mg of complex) than HACS-genistein complexes (9 mg/100 mg of complex). The effect of genistein on the amylose complexes was examined in different genistein-amylose ratios, and a model for genistein organization in the amylose complexes was suggested. The complexes were stable at different pH values, with <10% of the complexed genistein released, and were stable at 30 and 50 degrees C. Lower stability was observed at 80 degrees C as shown by the extensive release of genistein. All complexes showed high retention of genistein in simulated stomach conditions and released genistein upon digestion in pancreatin solution. It is therefore suggested that the complexes can be used as carriers for the slow release of genistein.  相似文献   

3.
This study aimed to establish conditions where stable microemulsions, nanoemulsions or emulsions could be fabricated from a nonionic surfactant (Tween 80) and flavor oil (lemon oil). Different colloidal dispersions could be formed by simple heat treatment (90 °C, 30 min) depending on the surfactant-to-oil ratio (SOR): emulsions (r > 100 nm) at SOR < 1; nanoemulsions (r < 100 nm) at 1 < SOR < 2; microemulsions (r < 10 nm) at SOR > 2. Turbidity, electrical conductivity, shear rheology, and DSC measurements suggested there was a kinetic energy barrier in the oil-water-surfactant systems at ambient temperature that prevented them from forming metastable emulsion/nanoemulsion or thermodynamically stable microemulsion systems. High energy homogenization (high pressure or ultrasonic homogenizer) or low energy homogenization (heating) could be used to form emulsions or nanoemulsions at low or intermediate SOR values; whereas only heating was necessary to form stable microemulsions at high SOR values.  相似文献   

4.
Eight types of microcapsules of European pear (La France) aroma model mixture were prepared, and their retained aroma components and sample microstructures (both surface and cross-section) were compared. The La France pear aroma model mixture was prepared by the mixing of hexanal and five kinds of esters. alpha-Cyclodextrin (alpha-CD), gum arabic (GA), soybean soluble polysaccharide (SSPS), and highly branched cyclic dextrin (HBCD) were used as carrier solids, and spray drying and freeze drying comprised the drying methods. The mean particle size of the microcapsules ranged from 8.34 microm for the microcapsules with alpha-CD to 9.67 microm for those with SSPS. The total aroma contents were different depending upon the microencapsulation systems (1.35 g/100 g of microcapsules for the spray-dried microcapsules with HBCD to 14.1 g/100 g of microcapsules for the freeze-dried microcapsules with GA). The microcapsules with alpha-CD and GA were stable against heat treatment (40, 80, or 120 degrees C for 60 min) under nitrogen gas flow.  相似文献   

5.
Chitosan-alginate microcapsules were evaluated as a method of oral delivery of IgY antibodies. Physical characteristics, encapsulation efficiency (EE%), the loading capacity for IgY (IgY loading percentage, %, w/w of microcapsules), gastro-resistance, and release characteristics of these microcapsules in vitro under varying pH were investigated. Optimum physical factors were established for preparation of homogeneous, spherical, and smooth microcapsules. IgY loading% was not significantly altered by pH of the encapsulation medium. Encapsulation efficiency was highest (73.93%) at a pH of 3.5, above which EE% decreased significantly (p < 0.05). IgY was released from microcapsules upon exposure to simulated intestinal fluid (SIF, pH 6.8), and decreasing pH increased significantly IgY release (p < 0.05). The stability of IgY in simulated gastric fluid (SGF, pH 1.2) was greatly improved by encapsulation in chitosan-alginate microcapsules, and the residual activity was not affected by pH of the encapsulation medium. Moreover, microencapsulated IgY was significantly resistant to pepsin hydrolysis. This approach may enable intact IgY to reach target microorganisms within the lower digestive tract.  相似文献   

6.
The preemergence chloroacetamide herbicide metazachlor was encapsulated in biodegradable low molecular weight poly(lactic acid) micro- and submicroparticles, and its release to the water environment was investigated. Three series of particles, S, M, and L, varying in their size (from 0.6 to 8 μm) and with various initial amounts of the active agent (5%, 10%, 20%, 30% w/w) were prepared by the oil-in-water solvent evaporation technique with gelatin as biodegradable surfactant. The encapsulation efficiencies reached were about 60% and appeared to be lower for smaller particles. Generally, it was found that the rate of herbicide release decreased with increasing size of particles. After 30 days the portions of the herbicide released for its highest loading (30% w/w) were 92%, 56%, and 34% for about 0.6, 0.8, and 8 μm particles, respectively. The release rates were also lower for lower herbicide loadings. Metazachlor release from larger particles tended to be a diffusion-controlled process, while for smaller particles the kinetics was strongly influenced by an initial burst release.  相似文献   

7.
贮藏时间和温度对蓝莓花色苷微胶囊品质的影响   总被引:1,自引:1,他引:0  
为了探究贮藏时间和温度对蓝莓花色苷微胶囊品质的影响,确定适宜的贮藏条件,该文研究微胶囊在?18、4和25℃下,贮藏6个月期间品质的变化。结果表明,以乳清蛋白联合多糖为壁材的微胶囊能确保贮藏期间花色苷被高效包封。贮藏期间微胶囊品质的下降可能是因分子间相互作用力减弱所致。贮藏3~4月间,微胶囊玻璃态转化温度出现大幅下降(P0.05),粉体稳定性变差。与其他贮藏温度相比,?18℃下贮藏可抑制微胶囊分子间相互作用力的减弱,使其具有更高的包埋产率(P0.05)和释放率(P0.05),保留更多的花色苷(P0.05)和其他酚类物质(P0.05)从而增强抗氧化活性(P0.05)。因此,花色苷微胶囊较适宜的贮藏时间为3个月,贮藏温度为?18℃。研究结果可为微胶囊的贮藏和应用提供理论依据。  相似文献   

8.
The Ehrlich reaction was optimized to determine the formation of pyrrolized phospholipids in edible oils in an attempt to understand the color reversion produced during the deodorization of poorly degummed edible oils. The procedure consisted of the treatment of the oil with p-(dimethylamino)benzaldehyde in tetrahydrofuran/2-propanol at a controlled acidity and temperature and the spectrophotometric determination of adducts produced. The extinction coefficient of Ehrlich adducts was calculated by using 1-[1-(2-hydroxyethyl)-1H-pyrrol-2-yl]propan-1-ol (1) as a standard and was 15 300 M(-)(1) cm(-)(1). The response was linear and reproducible within the range of 0.334-48.6 microM of compound 1. When the assay was applied to a soybean oil treated with 100-1000 ppm of phosphatidylethanolamine and submitted to deodorization, the formation of pyrrolized phospholipids was observed at the same time that the disappearance of the phospholipid and the oil darkening were produced. The main changes were observed during the first steps of the deodorization process, when the oil was heated between 80 and 160 degrees C. During the initial heating of the oil until achieving 200 degrees C, oil darkening, phosphatidylethanolamine disappearance, and pyrrolized phospholipid formation were correlated, therefore suggesting a contribution of phospholipid pyrrolization to the oil darkening produced.  相似文献   

9.
The thermoxidative stability of partially hydrogenated soybean oil (PHSBO) was examined after addition of ferric stearate and ferrous octanoate, and then heating the samples at 120, 160, 180, and 200 degrees C. In a second experiment, the effect of iron concentration (ferric stearate) on PHSBO stability was examined at 180 degrees C, and at concentrations of approximately 0.5 and 1.2 mg of added iron/kg PHSBO. Oil samples were heated continuously for 72 h and sampled every 12 h. The acid value, p-anisidine value, color, dielectric constant and the triacylglycerol polymer content of oil samples were compared to oil samples containing no added iron. Generally, the value of each oxidative index increased with (1) an increase in temperature, (2) an increase in heating time, and/or (3) an increase in iron. The results demonstrate that low concentrations of iron will substantially increase the rate of oxidation for vegetable oil samples heated to temperatures of 120 degrees C to 200 degrees C.  相似文献   

10.
Fast skeletal light meromyosins (LMMs) of white croaker and walleye pollack were prepared in our expression system using Escherichia coli and determined for their polymer-forming ability and thermodynamic properties by using sodium dodecyl sulfate polyacrylamide gel electrophoresis and differential scanning calorimetry (DSC), respectively. White croaker LMM formed dimer by heating at 80 degrees C and showed only a single peak at 32.1 degrees C of temperature transition in DSC. On the other hand, walleye pollack LMM hardly formed polymer and showed four peaks at 27.7, 30.5, 35.8, and 43.9 degrees C. When Cys525 of white croaker LMM was replaced by alanine, this point-mutated LMM showed no change in its DSC profile but formed no dimer upon heating, suggesting a possible role of Cys525 in dimer formation. On the other hand, walleye pollack LMM where Cys491 was substituted by alanine changed its DSC profile, showing four peaks at 27.9, 29.1, 38.4, and 43.9 degrees C. However, this point-mutated LMM formed no dimer upon heating as in the case of native LMM. These results suggest that cysteine residue(s) participates in thermal gel formation of LMM when it locates in a suitable position of the sequence.  相似文献   

11.
For producing worts that are optimal for beer production, some, but not all, of the barley proteins must be degraded during malting and mashing. This protein hydrolysis is controlled by endoproteinases, and, in turn, is partially regulated by the presence of low-molecular-weight (LMW) proteinaceous inhibitors. This paper reports studies of the interactions between the proteinases and inhibitors and an "affinity" method for concentrating the inhibitors. The malt inhibitors (I) and proteinases (E) quickly formed strong (E-I) complexes when dissolved together, and all of the I was complexed. Heating at 100 degrees C, but not 70 degrees C, dissociated the complex, even though the enzyme activities were destroyed at 70 degrees C. The released I readily recomplexed with fresh E. Barley, however, contained insufficient E to complex all of its I complement. The E-I complex was treated with salts, detergents, and reducing agents to release active E molecules, but none disrupted the complex. By removing the LMW proteins from a malt E-I extract and dissociating the complex by heating, the concentration of I molecules was greatly increased. This "affinity" method can thus be used to concentrate the I molecules for further purification.  相似文献   

12.
为了探讨添加冷冻干燥保护剂对Lactobacillus.plantarum(L.plantarum)LIP-1微胶囊性能的影响,该试验以植物乳杆菌(L.plantarum) LIP-1微胶囊的包埋率和冻干存活率为指标,通过单因素及正交试验,筛选出最佳冷冻干燥保护剂,在此基础上将其添加到微胶囊中,观察对L.plantarum LIP-1微胶囊形态、释放性等性能的影响。试验结果表明冷冻干燥保护剂的最佳配方为质量分数分别为甘油2%、麦芽糖1%、L-半胱氨酸2%、乳糖2%,此时微胶囊的包埋率为67.60%,冻干存活率为83.80%;与未添加保护剂的空白对照组相比,添加适宜保护剂的微胶囊在表观形态、肠液释放性、耐胃酸性及在不同温度(4、20、37℃)下的耐贮藏性能均显著提高(P<0.05)。添加适宜保护剂的微胶囊表面更加光滑致密,粒径更小,约100 μm(空白对照组约为150~200 μm);在模拟肠液中,添加适宜保护剂的微胶囊完全释放仅需60 min,而空白对照组需要90 min才能释放完全;在耐胃酸性上,添加适宜保护剂的LIP-1微胶囊在120min后,活菌数才开始显著下降(P<0.05),150 min后,活菌数下降约30%;空白对照组在90 min后活菌数开始显著下降(P<0.05),150 min后,活菌数下降约44%;在4、20、37℃贮藏28 d后,加保护剂组的活菌数分别下降0.76、1.33、1.88 lg(cfu/g),而空白对照组的活菌数分别下降0.96、 1.50、2.40 lg(cfu/g)。试验结果表明添加适宜的冷冻干燥保护剂可以提高L.plantarum LIP-1微胶囊的性能,为工业化生产中提高益生菌微胶囊的性能提供一定的理论和技术指导。  相似文献   

13.
In this study fish oil was incorporated into commercial homogenized milk using different homogenization temperatures and pressures. The main aim was to understand the significance of homogenization temperature and pressure on the oxidative stability of the resulting milks. Increasing homogenization temperature from 50 to 72 degrees C decreased droplet size only slightly, whereas a pressure increase from 5 to 22.5 MPa decreased droplet size significantly. Surprisingly, emulsions having small droplets, and therefore large interfacial area, were less oxidized than emulsions having bigger droplets. Emulsions with similar droplet size distributions, but resulting from different homogenization conditions, had significantly different oxidative stabilities, indicating that properties of significance to oxidation other than droplet size itself were affected by the different treatments. In general, homogenization at 72 degrees C appeared to induce protective effects against oxidation as compared to homogenization at 50 degrees C. The results thus indicated that the actual composition of the oil-water interface is more important than total surface area itself.  相似文献   

14.
Supercritical carbon dioxide (SC CO(2)) was used for the extraction of oil and squalene from Amaranthus grain. Very small amounts of oil could be extracted by SC CO(2) from undisrupted grains, although SC CO(2) possesses higher diffusivity. Grinding increased the extraction rate and oil yield, and smaller particle size gave higher extraction rate. The oil yield and initial extraction rate increased linearly with the increasing SC CO(2) flow rate from 1 to 2 L/min. Increasing the flow rate of SC CO(2) above 2 L/min resulted in only a slight increase of oil yield and extraction rate. In the pressure range of 150-250 bar, extraction decreased with increasing temperature at a constant pressure, whereas at a pressure of 300 bar, the extraction yield increased with increasing temperature. Possible reasons for this are discussed. Effects of temperature and pressure on squalene yield were different from those on oil yield. A good oil yield (4.77 g of oil/100 g of grain) was obtained at 40 degrees C and 250 bar. The highest squalene yield (0.31 g of squalene/100 g of grain) and concentration (15.3% in extract) were obtained at 50 degrees C and 200 bar, although the oil yield under this condition was low (2.07 g of oil/100 g of grain). The moisture content within 0-10% had little influence on yields of oil and squalene at 40 degrees C and 250 bar. Finally, the oil yield and the squalene concentration in the extracts by SC CO(2) were compared to those by solvent extraction.  相似文献   

15.
Low-temperature blanching of vegetables activates the enzyme pectin methylesterase (PME), which demethylates cell wall pectins and improves tissue firmness. This temperature activation of PME has been investigated by measuring the formation of methanol in intact tissue of green beans and tomatoes. Rates of methanol formation at temperatures of 35-65 degrees C were obtained by measuring the release of methanol from thin slices of tomato pericarp or green bean pod material. Activation energies of 112 and 97 kJ mol(-1) were calculated for PME activity in green beans and tomatoes, respectively. These activation energies indicate that the rate of pectin demethylation at 65 degrees C will be nearly 100 times that at 25 degrees C. PME activity was also determined titrimetrically using a solubilized form of the enzyme and purified pectin at temperatures from 30 to 60 degrees C. Under these conditions, much lower activation energies of 37 and 35 kJ mol(-1) were obtained for green beans and tomatoes, respectively. Methanol accumulation during heating of whole intact green beans was also determined and yielded an activation energy similar to that obtained with sliced beans. Whole green beans held at room temperature did not accumulate any methanol, but sliced or homogenized beans did. If whole beans were first heated to 45 degrees C and then cooled, methanol accumulation was observed at room temperature. These results indicate that two factors contribute to the observed high rate of pectin de-esterification during low-temperature blanching: (1) An irreversible change, causing PME to become active, occurs by heating to > or = 45 degrees C. (2) The high activation energy for pectin de-esterification means that the rate of de-esterification increases substantially with increasing temperature.  相似文献   

16.
Green malt was kilned at 95 degrees C following two regimens: a standard regimen (SKR) and a rapid regimen (RKR). Both resulting malts were treated further in a tray dryer heated to 120 degrees C, as was green malt previously dried to 65 degrees C (TDR). Each regimen was monitored by determining the color, antioxidant activity (by both ABTS(.+) and FRAP methods), and polyphenolic profile. SKR and RKR malts exhibited decreased L* and increased b* values above approximately 80 degrees C. TDR malts changed significantly less, and color did not develop until 110 degrees C, implying that different chemical reactions lead to color in those malts. Antioxidant activity increased progressively with each regimen, although with TDR malts this became significant only at 110-120 degrees C. The RKR malt ABTS(.+) values were higher than those of the SKR malt. The main phenolics, that is, ferulic, p-coumaric, and vanillic acids, were monitored throughout heating. Ferulic acid levels increased upon heating to 80 degrees C for SKR and to 70 degrees C for RKR, with subsequent decreases. However, the levels for TDR malts did not increase significantly. The increase in free phenolics early in kilning could be due to enzymatic release of bound phenolics and/or easier extractability due to changes in the matrix. The differences between the kilning regimens used suggest that further modification of the regimens could lead to greater release of bound phenolics with consequent beneficial effects on flavor stability in beer and, more generally, on human health.  相似文献   

17.
The effects of emulsion structure and composition of the matrix on the release of linalool (nonpolar) and diacetyl (polar) were studied using sensory evaluation, static headspace gas chromatography, and an electronic nose. The matrices used were water, rapeseed oil, and eight oil-in-water emulsions differing in oil volume fraction (0.05/0.5), emulsifier type (sucrose stearate/modified potato starch), and homogenization pressure (100/300 bar). Fat content strongly affected the release of linalool, but it was not as critical a factor in the release of the more polar compound, diacetyl. A slight effect of the emulsifier type on the release of aromas was observed with sensory and gas chromatographic methods. The reduced droplet size, resulting from higher homogenization pressure, enhanced the release of linalool but had no effect on diacetyl. Sensory and gas chromatographic methods detected aroma changes quite similarly. The electronic nose was capable of detecting only the effect of fat on linalool.  相似文献   

18.
The effect of heated quercetin (400 mg/kg of oil) or 5-caffeoylquinic acid (5-CQA) and the presence of ferric ion (2.2 mg/kg of oil) on the stability of soya oil oxidized in an oxidative stability index (OSI) instrument was investigated. After heating the phenolic at 100 degrees C or 150 degrees C, the OSI values of treated oils were not significantly (p < 0.001) different, whereas, at 200 degrees C, the values decreased significantly with addition of quercetin, but not with 5-CQA. However, the antioxidative activity of quercetin remained significantly greater than that of 5-CQA. The antioxidative potency of quercetin was reduced significantly by addition of ferric palmitate (FP), but that of 5-CQA was not. Reaction between the ortho-dihydroxy groups of the quercetin and ferric ion may reduce the number of hydroxyls available to react with free radicals. Chelating action of 5-CQA might be provided by ortho-dihydroxy grouping of the quinic acid moiety.  相似文献   

19.
复配亚麻籽油和辅酶Q10乳液的制备及表征   总被引:1,自引:1,他引:0  
亚麻籽油和辅酶Q10都具有水中溶解度低、稳定性差、生物利用度低等缺点。将亚麻籽油和辅酶Q10(coenzyme Q10,CoQ10)同时负载于乳液中,可解决两者的应用瓶颈。使用阿拉伯胶为乳化剂,采用高压均质法制备复配亚麻籽油和CoQ10乳液。采用动态光散射、透射电子显微镜、体外模拟消化、体外释放、稀释稳定性、冻融稳定性、离子强度稳定性、光稳定性和加速氧化稳定性方法对所制备乳液的理化性质进行表征。结果显示,制备的乳液平均粒径为(284±5.6) nm,多分散指数(polydispersity index,PDI)为0.112±0.025,为均匀分散的球形液滴。制备的乳液在模拟小肠液中消化,和亚麻籽油、CoQ10混悬液相比,乳化后亚麻籽油的消化速率和CoQ10的生物可给率明显提高。乳液中CoQ10的释放表现出缓释效果。制备的乳液具有较好的稀释和冻融稳定性。Na^+和Ca^2+会造成乳液Zeta电位的下降,对乳液稳定性影响较大。乳液载体化后CoQ10的光稳定性得到了提高。CoQ10对亚麻籽油具有较好的保护作用。  相似文献   

20.
This study was designed to find the optimum conditions for isoflavone or beta-galactosidase microencapsulation and to examine the release efficiency of microcapsules in simulated gastrointestinal conditions. Coating materials were either medium-chain triacylglycerol (MCT) or polyglycerol monostearate (PGMS). The highest rate of microencapsulation was found at 15:1 (w/w) ratio of MCT to isoflavone or beta-galactosidase as 70.2 or 75.4%, respectively. When PGMS was used as the coating material, 91.5% beta-galactosidase was microencapsulated with 15:1 mixture (w/w). In vitro study, less than 6.3-9.3% of isoflavone was released in simulated gastric fluid (pH 2-5) during 1 h incubation. Comparatively, isoflavone release increased dramatically to 87.8% at pH 8 for 1 h incubation in simulated intestinal fluid and was maintained thereafter. The release of beta-galactosidase showed a similar trend to that of isoflavone. It appeared in the range of 12.3-15.2% at pH 2-5; however, it increased significantly to 80.6% as the highest value at pH 8. Among the released isoflavones, 53.5% was converted into the aglycone form of isoflavone at pH 8 for 3 h incubation. The present study indicated that isoflavone or beta-galactosidase could be microencapsulated with fatty acid esters and released effectively in simulated intestinal condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号