首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 449 毫秒
1.
The successful production of organic vegetables relies heavily on mechanical weeding, flame weeding and stale seedbeds. These operations involve repeated passes by tractors. Mechanical weeding also involves regular tillage. This combination of repeated tillage and compaction changes soil structure. We studied these structural changes in two fields of organic carrots and one field of beans in eastern Scotland. Structure was described by measuring soil strength with a vane shear tester and a cone penetrometer, by measuring bulk density and by visual assessment. Under beans, vane shear strength below the growing root zone was highly variable and in some areas was high enough to restrict root growth (>50 kPa). The carrots were grown in beds containing crop rows separated by bare soil. The bare soil was regularly weeded mechanically. The structure of this weeded soil in the top 10 cm layer of a loam eventually became disrupted and compacted enough to deter root growth (vane shear strength of 70 kPa). In addition the topsoil and subsoil in the wheel-tracks between the beds became very compact with little distinguishable structure. This compaction extended to the subsoil and persisted into the next cropping season (cone resistance >3 MPa at 35–50 cm depth). Reduced tillage by discing without ploughing was used to incorporate the straw used to protect the carrots overwinter and prepare the soil for the next crop. The resulting topsoil quality was poor leading to anaerobic growing conditions which restricted growth of the following crop and led to losses of the greenhouse gas nitrous oxide. The greatest threat to soil quality posed by mechanical weeding was subsoil compaction by tractor wheeling.  相似文献   

2.
Abstract. Two experiments on the same site in different years compared the effects of different intensities of deep loosening on soil properties and crop yield. Both experiments included subsoiling and one experiment, with potatoes, also included double digging and a comparison of conventional and zero traffic. The site was in a moist climate area (S.E. Scotland) on an imperfectly drained Gleysol with a clay loam subsoil. Cone resistance, soil water content and potential, bulk density and crop yield were measured to assess the effects of the treatments. Subsoiling did not loosen the soil very effectively because the subsoil was wetter than the plastic limit at the time of cultivation, even though the growing season prior to subsoiling was drier than average in both years. Double digging was more effective than subsoiling. Zero traffic gave a large yield benefit, especially when combined with double digging. There was no crop response to deep loosening in the presence of conventional traffic. Deep loosening had little effect on the drainage status of the topsoil.  相似文献   

3.
Soil compaction influences crop growth, movement of water and chemicals in numerous ways. Mathematical modelling contributes to better understanding of the complex and variable effects. This paper reviews models for simulating topsoil and subsoil compaction effects. The need for including both topsoil and subsoil compaction results from still increasing compactive effect of vehicular pressure which penetrates more and more into the subsoil and which is very persistent. The models vary widely in their conceptual approach, degree of complexity, input parameters and output presentation. Mechanistic and deterministic models were most frequently used. To characterise soil compactness, the models use bulk density and/or penetration resistance and water content data. In most models root growth is predicted as a function of mechanical impedance and water status of soil and crop yield—from interactions of soil water and plant transpiration and assimilation. Models for predicting movement of water and chemicals are based on the Darcy/Richards one-dimensional flow equation. The effect of soil compaction is considered by changing hydraulic conductivity, water retention and root growth. The models available allow assessment of the effects of topsoil and subsoil compaction on crop yield, vertical root distribution, chemical movement and soil erosion. The performance of some models was improved by considering macro-porosity and strength discontinuity (spatial and temporal variability of material parameters). Scarcity of experimental data on the heterogeneity is a constraint in modelling the effects of soil compaction. Suitability of most models was determined under given site conditions. Few of the models (i.e. SIBIL and SIMWASER) were found to be satisfactory in modelling the effect of soil compaction on soil water dynamics and crop growth under different climate and soil conditions.  相似文献   

4.
This study was in an olive (Olea europea L.) grove in the Vélez Blanco District of Almería, Spain, where the soil is a typical Aridisol. The aim was to evaluate subsoil compaction caused by three different tractors currently used in olive groves. Measurements were made of (i) the cone index (CI), (ii) hydraulic conductivity (HC) and (iii) rut depth after passage of a light tractor (LT = 22.50 kN), a heavy tractor (HT = 42.60 kN) and a medium tractor (MT = 33.30 kN). The CI differed for the topsoil (0–200 mm) for each type of tractor after up to five passes. In this depth soil level, the CI was greatest for LT because the ground pressure (by narrow tyres) was greater than under the MT and HT. For deeper layers, there was a strong positive relationship between number of tractor passes and CI values, and the CI was greater for passes by the HT than the LT or MT. The HT resulted in shallower ruts up to the fifth pass, and the CI values were smaller because there was less ground pressure from this tractor than the others. In all treatments, tractor traffic caused varying decreases in HC in the 0–600 mm depth range. The main conclusion is that subsoil compaction is related directly to tractor weight. For the three tractors, topsoil compaction is caused by ground pressure and not on total axle load.  相似文献   

5.
Soil horizons below 30 cm depth contain about 60% of the organic carbon stored in soils. Although insight into the physical and chemical stabilization of soil organic matter (SOM) and into microbial community composition in these horizons is being gained, information on microbial functions of subsoil microbial communities and on associated microbially-mediated processes remains sparse. To identify possible controls on enzyme patterns, we correlated enzyme patterns with biotic and abiotic soil parameters, as well as with microbial community composition, estimated using phospholipid fatty acid profiles. Enzyme patterns (i.e. distance-matrixes calculated from these enzyme activities) were calculated from the activities of six extracellular enzymes (cellobiohydrolase, leucine-amino-peptidase, N-acetylglucosaminidase, chitotriosidase, phosphatase and phenoloxidase), which had been measured in soil samples from organic topsoil horizons, mineral topsoil horizons, and mineral subsoil horizons from seven ecosystems along a 1500 km latitudinal transect in Western Siberia. We found that hydrolytic enzyme activities decreased rapidly with depth, whereas oxidative enzyme activities in mineral horizons were as high as, or higher than in organic topsoil horizons. Enzyme patterns varied more strongly between ecosystems in mineral subsoil horizons than in organic topsoils. The enzyme patterns in topsoil horizons were correlated with SOM content (i.e., C and N content) and microbial community composition. In contrast, the enzyme patterns in mineral subsoil horizons were related to water content, soil pH and microbial community composition. The lack of correlation between enzyme patterns and SOM quantity in the mineral subsoils suggests that SOM chemistry, spatial separation or physical stabilization of SOM rather than SOM content might determine substrate availability for enzymatic breakdown. The correlation of microbial community composition and enzyme patterns in all horizons, suggests that microbial community composition shapes enzyme patterns and might act as a modifier for the usual dependency of decomposition rates on SOM content or C/N ratios.  相似文献   

6.
碳酸氢根与水肥同层对玉米幼苗生长和吸收养分的影响   总被引:4,自引:1,他引:4  
把水分(NaHCO3溶液或纯水)供应于底施了铵态或硝态N肥的土层内,以研究HCO3-及水肥供应方式对石灰性土壤上玉米生长及养分吸收的影响。结果表明,在限制灌水量的条件下,在土壤上层供应HCO3-显著抑制根系生长,但在下层供应对生长无明显影响;当施用不同形态N素时,HCO3-对N素吸收并无明显影响;此外,供应HCO3-溶液能明显提高灌水土层的土壤pH。总体来看,在供试条件下,HCO3-对玉米幼苗生长量、根系分布及养分吸收量的影响均较为有限,而后三者主要受施肥灌水层次的影响,即:在土壤上层施肥灌水,幼苗生长量显著降低;而在下层施肥灌水是一种节水节肥的水肥供应方式。但下层施肥灌水不利于植株的直立性。因为下层施肥灌水时根系主要分布在下层,在上层分布数量极少;而上层施肥灌水根系在上下两层中的分布无明显差异;下层施肥灌水的玉米植株,其N、P、K吸收量远高于上层施肥灌水的植株。  相似文献   

7.
A swelling stagnogley soil remained unwheeled or was uniformly wheeled by a combine harvester and a tractor in two successive autumns before direct drilling winter cereals. Combine wheeling of the soil at its wettest condition caused the largest loss of soil porosity. The autumn and spring of the second growing season for the winter cereals were wetter than long term average. The smaller porosity in the wheeled soil, created lower soil redox potential and smaller oxygen flux as well as greater soil strength and larger amounts of available water, but little difference in soil temperature. The crop in the wheeled soil had fewer plants, less root and a lighter yield than in the unwheeled soil. The wheeled soil recovered some porosity and lost strength after wetting and drying during the second growing season, whereas soil freezing had very little effect. This restructuring was sufficient to reverse some of the detrimental effects of compacting the soil.  相似文献   

8.
The magnitude of variation in soil properties can change from place to place, and this lack of stationarity can preclude conventional geostatistical and spectral analysis. In contrast, wavelets and their scaling functions, which take non‐zero values only over short intervals and are therefore local, enable us to handle such variation. Wavelets can be used to analyse scale‐dependence and spatial changes in the correlation of two variables where the linear model of coregionalization is inadmissible. We have adapted wavelet methods to analyse soil properties with non‐stationary variation and covariation in fairly small sets of data, such as we can expect in soil survey, and we have applied them to measurements of pH and the contents of clay and calcium carbonate on a 3‐km transect in Central England. Places on the transect where significant changes in the variance of the soil properties occur were identified. The scale‐dependence of the correlations of soil properties was investigated by calculating wavelet correlations for each spatial scale. We identified where the covariance of the properties appeared to change and then computed the wavelet correlations on each side of the change point and compared them. The correlation of topsoil and subsoil clay content was found to be uniform along the transect at one important scale, although there were significant changes in the variance. In contrast, carbonate content and pH of the topsoil were correlated only in parts of the transect.  相似文献   

9.
Spatial distributions of micronutrients in soils of Shouguang were evaluated using semivariogram and Moran's index (Moran‘s I) techniques to compare difference and veracity of these two spatial analysis methods. A total of 601 topsoil (0–20 cm) and 155 deep subsoil (150–200 cm) samples were collected on a symmetrical grid in the regional geochemical survey of soils in Shandong Province, and copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn) concentrations were analyzed and compared. The results showed significant spatial correlations of micronutrients in Shouguang soils, and the spatial correlation degree was greater in topsoil than in deep subsoil. In topsoil and deep subsoil, the spatial correlation distance for each element obtained using the semivariogram technique was 20–60 km, whereas with Moran's I technique, the positive autocorrelation distance was 20–25 km and the negative autocorrelation distance was 25–55 km. The spatial autocorrelation degree was significant (P ≤ 0.05) for every micronutrient except deep subsoil Zn. Moran's I technique was able to distinguish between positive and negative autocorrelations and the results of semivariogram analysis gave the sum of the positive and negative autocorrelations. This study shows that Moran's I is more accurate and meaningful than semivariogram analysis for spatial autocorrelation of some soil attributes. These results provide the theoretical foundation for the application of spatial analysis methods, and Moran's I in particular, in environmental research.  相似文献   

10.
In many coarse textured soils, limited root development and biomass production are attributed to adverse physical conditions in the subsoil. The current study was undertaken on an Arenic Acrisol located in Northeast Thailand (i) to assess whether subsoil physical characteristics influence crop rooting depth, and (ii) to compare the benefits associated with conventional tillage with that of localised subsoil loosening on crop performance and selected soil attributes. Control plots consisted of disk ploughing; the implemented treatments were conventional deep-ripping and localised slotting below the planting line. A crop rotation consisting of a legume followed by maize was established annually to assess the impact of these treatments on crop performance. In the control treatment, root development was restricted to the topsoil (0–20 cm) due to high subsoil bulk density (>1.6 Mg m−3). After deep-ripping, no improvement was observed in bulk density, rooting depth and in crop performance. The implementation of a slotting treatment systematically improved root development in the slotted subsoil, root impact frequency increasing from <0.2 to 0.6–0.8 (P = 0.01) despite no change in the bulk densities of the subsoil. This systematic improvement in root development could be explained by (i) reduced slumping that enable root development prior to recompaction and/or (ii) preferential drainage in the slot and therefore decreased resistance to root penetration. In a dry year maize yield was improved by 78% (P = 0.01); the deep-rooting legume Stylosanthes was tested only a wet year and its biomass production increased by >40% (P = 0.03). This study highlights the detrimental impact of subsoil compaction on root development and the potential role of slotting in coarse textured soils as a long-term management tool in addressing adverse subsoil physical characteristics that limit deep-rooting.  相似文献   

11.
The extent of within-field spatial variability of pesticide degradation was characterised in topsoil and subsoil, using the compounds isoproturon, bentazone and mecoprop, which are major contaminants of groundwater and surface freshwater in Europe. Twenty topsoil samples from 0 to 15 cm depth and twenty subsoil samples from 50 to 60 cm depth were collected from a single agricultural field within a 160×90 grid. It was shown that degradation rates of all compounds declined with soil depth. Variability of pesticide degradation rates, pesticide sorption and formation of non-extractable pesticide residues was higher in subsoil relative to topsoil. Furthermore, in the subsoil, there was variation in large scale soil physicochemical composition, which did not occur in topsoil. The greater variability in pesticide degradation rates in subsoil relative to topsoil could be the result of a greater range of degradation kinetics, which could reflect greater spatial variability in the distribution and/or activities of pesticide metabolising communities.  相似文献   

12.
Appropriate soil amendments may increase plant available water and crop yields on coarse sandy soils under drought conditions. In this study, we applied straw ash or straw biochar from gasification to a Danish coarse sandy subsoil to assess the effects on soil water retention, evapotranspiration and crop yields. Spring barley (2016, 2017) and winter wheat (2018) were grown over three years in columns containing 25cm of organic matter-rich topsoil, 80 cm of amended coarse sandy soil (1.5%, 3%, 6% wt. ash or 1% wt. biochar or control soil) and 45 cm of un-amended subsoil. Precipitation, evaporative demands and soil moisture were recorded across the growth seasons, with 2018 having severe drought conditions. This year evapotranspiration levels increased with increasing ash and biochar content (by 54% and 33% for the 6% ash- and 1% biochar-amended soils, respectively), and plant dry matter increased by 18% in both the 1% biochar- and 6% ash-treated soils compared to the untreated control. A linear relationship was established between in situ field capacity and ash dosage (R= .96), showing an increase of 2.2% per percentage (wt.) of ash added, while the 1% biochar treatment increased the capacity by 3.5%, indicating a higher efficiency than for ash. However, we did not find significant positive effects on grain yields. The results show that ash and biochar have the potential to significantly increase soil water retention, evapotranspiration and total dry matter yield in drought conditions, but that this may not correspond to an increase in grain yield.  相似文献   

13.
为确定秸秆还田方式对白浆土土壤养分及作物产量的影响,试验设置了普通翻耕的对照处理以及秸秆覆盖还田、心土还田和秸秆焚烧的3种还田方式。3年的试验结果表明:在耕层部分(0~20 cm),普通翻耕处理区土壤氮素和有机质含量测定值最低,而土壤磷素和钾素含量最高;在白浆层(20~40 cm),秸秆心土还田处理的土壤碱解氮、全氮、有效磷、全磷和有机质含量最高;在淀积层(40~60 cm),不同秸秆还田方式,氮素、磷素和有机质含量变化差异较小,钾素表现为土壤下层含量比表层高。两年的数据显示秸秆心土还田处理大豆产量最高,说明秸秆心土还田对土壤地力提升效果明显,利于大豆增产。  相似文献   

14.
The relative effects of using light (2–3 Mg) versus heavier (5–7 Mg) tractors, shallow (15 cm) versus deeper (25 cm) ploughing and on-land versus in-furrow wheel placement during ploughing were investigated from 2003 to 2006 in organic rotations (wheat or barley, green manure, oats with peas) and conventionally fertilized barley. Trials were located on loam soil in south-eastern Norway and silty clay loam in central Norway. Ploughing was performed in spring, when the topsoil moisture content was at or below field capacity, using single furrow ploughs that allowed alternative wheel placement and resulted in complete coverage of the surface by wheels each year (ca. 3 times the normal coverage during ploughing). Low tyre inflation pressures (≤80 kPa) were used throughout. The use of a heavy tractor increased topsoil bulk density slightly in the loam soil, and, in combination with in-furrow wheeling, it reduced air-filled pore space and air permeability at 18–22 cm. On the silty clay loam, the use of a heavy tractor did not increase bulk density, but it reduced air-filled pore space throughout the topsoil. In-furrow wheeling reduced air-filled pore space in this soil also, compared to on-land wheeling. Penetration resistance was in this soil always greater at 15–25 cm depth after shallow than after deep ploughing, especially with in-furrow rather than on-land wheeling. Shallow ploughing led on both soils to marked increases in perennial weed biomass compared to deep ploughing. Earthworms were hardly affected by the treatments, but in the loam in 2006 a higher number of individuals were found where the light rather than the heavy tractor had been used. Few significant treatment effects were found on grain yield and quality. Deep ploughing with a light tractor gave the highest wheat yield and protein content in 2 years on the loam soil, and on the silty clay loam the yield of conventionally fertilized barley was higher after deep than after shallow ploughing. In summary, limited evidence was found to support the use of on-land rather than in-furrow wheeling when ploughing is performed at favourable soil moisture and with tractor weights < 5 Mg. There is, however, reason to be wary of using heavy tractors (>5 Mg), even under such conditions. With regard to ploughing depth in organic rotations dominated by cereals, the need to combat perennial weeds by deep ploughing weighs probably more heavily than any possible beneficial effect of shallow ploughing on stimulating nutrient turnover.  相似文献   

15.
Chickpea (Cicer arietinum L.) roots exude carboxylates. While chickpea commonly grows where the topsoil dries out during crop growth, the importance of carboxylate exudation by the roots and mobilization of soil P from below the dry topsoil has not been examined. The study investigates the response of carboxylate exudation and soil P mobilization by this crop to subsoil P fertilizer rate. In constructed soil columns in the glasshouse, the P levels (high, low, and nil P) were varied in the well‐watered subsoil (10–30 cm), while a low level of P in the dry topsoil (0–10 cm) was maintained. At flowering, rhizosphere carboxylates and rhizosphere soil from topsoil and subsoil roots were collected separately and analyzed. The concentration of total carboxylates per unit rhizosphere mass in the subsoil was nearly double that of the topsoil. Plants depleted sparingly soluble inorganic P (Pi), NaOH‐Pi, and HCl‐Pi, along with the labile Pi (water soluble and NaHCO3‐Pi). The P depletion by plants was greater from the subsoil than the topsoil. The study concluded that depletion of sparingly soluble P from the chickpea rhizosphere in the subsoil was linked with the greater levels of carboxylates in the rhizosphere. These findings indicate that chickpea, with its deep rooting pattern, can increase its access to subsoil P when the topsoil dries out during crop growth by subsoil rhizosphere modification.  相似文献   

16.
The objective of this study was to evaluate long-term effects of two tillage regimes (ploughing and minimum tillage) on the bearing capacity of a clay rich soil, by using two different slurry tankers (4.1 and 6.6 Mg wheel load) and contrasting wheeling frequencies (1 and 10 passes). The soil strength was assessed by laboratory measurements of the precompression stress (Pc) at ?6 kPa in topsoil (20 cm) and subsoil (40 and 60 cm) samples. Stress propagation, elastic and plastic deformation during wheeling were measured in the field with combined stress-state-transducer and displacement transducer system. Results presented in this study show that minimum tilled soil had 74% higher Pc than ploughed soil in the upper soil layer, whilst differences were less distinct in subsoil. Wheeling increased Pc at all soil depths. Compared to ploughing, higher strength in the upper layer of minimum tilled soil led on average to 60% and 48% reductions in the major principal stress with the use of the light and heavy slurry tanker, respectively. The extent of the major principal stress was dependent on the ground pressure in the topsoil. The first pass of a wheel caused the greatest damage in some cases, but all wheelings led to accumulative plastic deformation in both vertical and horizontal directions. Wheeling with high intensity would have exceeded Pc in all cases when soil was at a matric potential of ?6 kPa. The results show that soil water content is an important factor influencing bearing capacity. Drier soil (?100 kPa), in combination with minimum tillage, limited the occurrence of stresses exceeding Pc in the upper soil layer.  相似文献   

17.
The main function of primary tillage is to increase the soil's structural macro-porosity, but during secondary tillage operations over these freshly tilled soils, traffic causes significant soil compaction. In terms of soil conservation however, there is evidence that direct sowing is a more sustainable system, even though there is still insufficient information about the rheology of a non-tilled soil under traffic. The objective of this study was to compare the traffic intensity and soil compaction caused by four different tillage regimes currently used by Argentinean farmers (1 direct sowing with a tractor and planter weighing 127 kN and 3 conventional tillage systems with equipment weighing 55.2 kN). The work was performed in the east of the Rolling Pampa region, Buenos Aires State, Argentina at 34°25′S, 59°15′W. Variables measured were: (1) cone index in the 0–450 mm depth profile; (2) bulk density; (3) total soil porosity; and (4) rut depth. (a) Results indicated that in the depth range 0–150 mm with all tillage treatments, bulk density and cone index values generated by tractor traffic were greater than the 1.3 Mg m−3 and 1400 kPa respectively. Similarly in deeper layers these parameters were greater than 1.45 Mg m−3 and 2000 kPa respectively. Measurements revealed that traffic reduced topsoil porosity under direct sowing by an average of 7% and under conventional tillage by 7.6–14.8% confirming that both systems cause both topsoil and subsoil compaction.  相似文献   

18.
The objective of this study was to evaluate the effect of wheeling with two different wheel loads (1.7 and 2.8?Mg) and contrasting wheeling intensities (1x and 10x) on the bearing capacity of a Stagnosol derived from silty alluvial deposits. Soil strength was assessed by laboratory measurements of the precompression stress in topsoil (20?cm) and subsoil (40 and 60?cm) samples. Stress propagation, as well as elastic and plastic deformation during wheeling were measured in the field with combined stress state (SST) and displacement transducers (DTS). We also present results from soil physical analyses (bulk density, air capacity, saturated hydraulic conductivity) and barley yields from the first two years after the compaction. Although the wheel loads used were comparatively small, typical for the machinery used in Norway, the results show that both increased wheel load and wheeling intensity had negative effects on soil physical parameters especially in the topsoil but with similar tendencies also in the subsoil. Stress propagation was detected down to 60?cm depth (SST). The first wheeling was most harmful, but all wheelings led to accumulative plastic soil deformation (DTS). Under the workable conditions in this trial, increased wheeling with a small machine was more harmful to soil structure than a single wheeling with a heavier machine. However, the yields in the first two years after the compaction did not show any negative effect of the compaction.  相似文献   

19.
Variation in soil texture has a profound effect on soil management, especially in texturally complex soils such as the polder soils of Belgium. The conventional point sampling approach requires high sampling intensity to take into account such spatial variation. In this study we investigated the use of two ancillary variables for the detailed mapping of soil texture and subsequent delineation of potential management zones for site‐specific management. In an 11.5 ha arable field in the polder area, the apparent electrical conductivity (ECa) was measured with an EM38DD electromagnetic induction instrument. The geometric mean values of the ECa measured in both vertical and horizontal orientations strongly correlated with the more heterogeneous subsoil clay content (r = 0.83), but the correlation was weaker with the homogenous topsoil clay content (r = 0.40). The gravimetric water content at wilting point (θg(?1.5 MPa)) correlated very well (r = 0.96) with the topsoil clay content. Thus maps of topsoil and subsoil clay contents were obtained from 63 clay analyses supplemented with 117θg(?1.5 MPa) and 4048ECa measurements, respectively, using standardized ordinary cokriging. Three potential management zones were identified based on the spatial variation of both top and subsoil clay contents. The influence of subsoil textural variation on crop behaviour was illustrated by an aerial image, confirming the reliability of the results from the small number of primary samples.  相似文献   

20.
Topsoil carbon (C) stocks are known to decrease as a consequence of the conversion of natural ecosystems to plantations or croplands; however, the effect of land use change on subsoil C remains unknown. Here, we hypothesized that the effect of land use change on labile subsoil organic C may be even stronger than for topsoil due to upward concentration of plantations and crops root systems. We evaluated soil labile organic C fractions, including particulate organic carbon (POC) and its components [coarse POC and fine POC], light fraction organic carbon (LFOC), readily oxidizable organic carbon, dissolved organic carbon (DOC) and microbial biomass down to 100 cm soil depth from four typical land use systems in subtropical China. Decrease in fine root biomass was more pronounced below 20 cm than in the overlying topsoil (70% vs. 56% for plantation and 62% vs. 37% for orchard. respectively) driving a reduction in subsoil labile organic C stocks. Land use changes from natural forest to Chinese fir plantation, Chinese chestnut orchard, or sloping tillage reduced soil organic C stocks and that of its labile fractions both in top and subsoil (20–100 cm). POC reduction was mainly driven by a decrease in fine POC in topsoil, while DOC was mainly reduced in subsoil. Fine POC, LFOC and microbial biomass can be useful early indicators of changes in topsoil organic C. In contrast, LFOC and DOC are useful indicators for subsoil. Reduced proportions of fine POC, LFOC, DOC and microbial biomass to soil organic C reflected the decline in soil organic C quality caused by land use changes. We conclude that land use changes decrease C sequestration both in topsoil and subsoil, which is initially indicated by the labile soil organic C fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号