首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Thermal Emission Imaging System (THEMIS) on Mars Odyssey has produced infrared to visible wavelength images of the martian surface that show lithologically distinct layers with variable thickness, implying temporal changes in the processes or environments during or after their formation. Kilometer-scale exposures of bedrock are observed; elsewhere airfall dust completely mantles the surface over thousands of square kilometers. Mars has compositional variations at 100-meter scales, for example, an exposure of olivine-rich basalt in the walls of Ganges Chasma. Thermally distinct ejecta facies occur around some craters with variations associated with crater age. Polar observations have identified temporal patches of water frost in the north polar cap. No thermal signatures associated with endogenic heat sources have been identified.  相似文献   

2.
Dendritic valleys on the plateau and canyons of the Valles Marineris region were identified from Thermal Emission Imaging System (THEMIS) images taken by Mars Odyssey. The geomorphic characteristics of these valleys, especially their high degree of branching, favor formation by atmospheric precipitation. The presence of inner channels and the maturity of the branched networks indicate sustained fluid flows over geologically long periods of time. These fluvial landforms occur within the Late Hesperian units (about 2.9 to 3.4 billion years old), when Mars was thought to have been cold. Our results suggest a period of warmer conditions conducive to hydrological activity.  相似文献   

3.
Global distributions of thermal, epithermal, and fast neutron fluxes have been mapped during late southern summer/northern winter using the Mars Odyssey Neutron Spectrometer. These fluxes are selectively sensitive to the vertical and lateral spatial distributions of H and CO2 in the uppermost meter of the martian surface. Poleward of +/-60 degrees latitude is terrain rich in hydrogen, probably H2O ice buried beneath tens of centimeter-thick hydrogen-poor soil. The central portion of the north polar cap is covered by a thick CO2 layer, as is the residual south polar cap. Portions of the low to middle latitudes indicate subsurface deposits of chemically and/or physically bound H2O and/or OH.  相似文献   

4.
Full disk images of Mars have been obtained with the use of the Very Large Array (VLA) to map the radar reflected flux density. The transmitter system was the 70-m antenna of the Deep Space Network at Goldstone, California. The surface of Mars was illuminated with continuous wave radiation at a wavelength of 3,5 cm. The reflected energy was mapped in individual 12-minute snapshots with the VLA in its largest configuration; fringe spacings as small as 67 km were obtained. The images reveal near-surface features including a region in the Tharsis volcano area, over 2000 km in east-west extent, that displayed no echo to the very low level of the radar system noise. The feature, called Stealth, is interpreted as a deposit of dust or ash with a density less than about 0.5 gram per cubic centimeter and free of rocks larger than 1 cm across. The deposit must be several meters thick and may be much deeper. The strongest reflecting geological feature was the south polar ice cap, which was reduced in size to the residual south polar ice cap at the season of observation. The cap image is interpreted as arising from nearly pure CO(2) or H(2)O ice with a small amount of martian dust (less than 2 percent by volume) and a depth greater than 2 to 5 m. Only one anomalous reflecting feature was identified outside of the Tharsis region, although the Elysium region was poorly sampled in this experiment and the north pole was not visible from Earth.  相似文献   

5.
Landforms representative of sedimentary processes and environments that occurred early in martian history have been recognized in Mars Global Surveyor Mars Orbiter Camera and Mars Odyssey Thermal Emission Imaging System images. Evidence of distributary, channelized flow (in particular, flow that lasted long enough to foster meandering) and the resulting deposition of a fan-shaped apron of debris indicate persistent flow conditions and formation of at least some large intracrater layered sedimentary sequences within fluvial, and potentially lacustrine, environments.  相似文献   

6.
The Observatoire pour la Minéralogie, l'Eau, les Glaces, et l'Activité (OMEGA) investigation, on board the European Space Agency Mars Express mission, is mapping the surface composition of Mars at a 0.3- to 5-kilometer resolution by means of visible-near-infrared hyperspectral reflectance imagery. The data acquired during the first 9 months of the mission already reveal a diverse and complex surface mineralogy, offering key insights into the evolution of Mars. OMEGA has identified and mapped mafic iron-bearing silicates of both the northern and southern crust, localized concentrations of hydrated phyllosilicates and sulfates but no carbonates, and ices and frosts with a water-ice composition of the north polar perennial cap, as for the south cap, covered by a thin carbon dioxide-ice veneer.  相似文献   

7.
Chlorides commonly precipitate during the evaporation of surface water or groundwater and during volcanic outgassing. Spectrally distinct surface deposits consistent with chloride-bearing materials have been identified and mapped using data from the 2001 Mars Odyssey Thermal Emission Imaging System. These deposits are found throughout regions of low albedo in the southern highlands of Mars. Geomorphologic evidence from orbiting imagery reveals these deposits to be light-toned relative to their surroundings and to be polygonally fractured. The deposits are small (< approximately 25 km(2)) but globally widespread, occurring in middle to late Noachian terrains with a few occurrences in early Hesperian terrains. The identification of chlorides in the ancient southern highlands suggests that near-surface water was available and widespread in early Martian history.  相似文献   

8.
Ground ice on Mars probably consists largely of carbon dioxide hydrate, CO(2) . 6H(2)O. This hydrate dissociates upon release of pressure at temperatures between 0 degrees and 10 degrees C. The heat capacity of the ground would be sufficient to produce up to 4 percent (by volume) of water at a rate equal to that at which it can be drained away. Catastrophic dissociation of carbon dioxide hydrate during some past epoch when the near surface temperature was in this range would have produced chaotic terrain and flood channels.  相似文献   

9.
Measurements of the dissociation pressure of carbon dioxide hydrate show that this hydrate (CO(2) . 6H(2)O) is stable relative to solid CO(2) and water ice at temperatures above about 121 degrees K. Since this hydrate forms from finely divided ice and gaseous CO(2) in several hours at 150 degrees K, it is likely to be present in the martian ice cap. The ice cap can consist of water ice, water ice + CO(2) hydrate, or CO(2) hydrate + solid CO(2), but not water ice + solid CO(2).  相似文献   

10.
The Infrared Thermal Mappers aboard the two Viking orbiters obtained solar reflectance and infrared emission measurements of the Martian north and south polar regions during an entire Mars year. The observations were used to determine annual radiation budgets, infer annual carbon dioxide frost budgets, and constrain spring season surface and atmospheric properties with the aid of a polar radiative model. The results provide further confirmation of the presence of permanent CO(2)frost deposits near the south pole and show that the stability of these deposits can be explained by their high reflectivities. In the north, the observed absence of solid CO(2) during summer was primarily the result of enhanced CO(2) sublimation rates due to lower frost reflectivities during spring. The results suggest that the present asymmetric behavior of CO(2)frost at the Martian poles is caused by preferential contamination of the north seasonal polar cap by atmospheric dust.  相似文献   

11.
Throughout the complete Mars year during which they have been on the planet, the imaging systems aboard the two Viking landers have documented a variety of surface changes. Surface condensates, consisting of both solid H(2)O and CO(2), formed at the Viking 2 lander site during the winter. Additional observations suggest that surface erosion rates due to dust redistribution may be substantially less than those predicted on the basis of pre-Viking observations. The Viking 1 lander will continue to acquire and transmit a predetermined sequence of imaging and meteorology data as long as it is operative.  相似文献   

12.
We have found that a rather simple thermal model of the Martian surface, in combination with current observations of the atmospheric composition, points strongly toward the conclusion that the polar caps of Mars consist almost entirely of frozen CO(2). This study was based upon the following principal assumptions. 1) Carbon dioxide is a major constituent of the Martian atmosphere. 2) The blanketing effect of the atmosphere is small, and due principally to the absorption band of CO(2) near 15 microns. 3) Lateral and convective heat transfer by the atmosphere is negligible. 4) The far-infrared emissivity of the Martian soil and of solid CO(2) are near unity. 5) The reflectivities of the soil and of solid CO(2) in the visible part of the spectrum are about 0.15 and 0.65, respectively. 6) Values for soil conductivity, density, and specific heat are those characteristic of powdered minerals at low gas pressure. 7) Water is a minor constituent of the Martian atmosphere, the maximum total amount in the atmosphere being 10 to 30 X 1O(-4) g cm(-2). In addition, several simplifications were made, which might have significant effects but should not alter our principal conclusions. Among these are the following. 1) Local blanketing or snowfall effects due to clouds or polar haze were ignored. 2) Dark and light areas were not differentiated in this study, although Sinton and Strong (6) have observed temperature differences between such areas. 3) The effects of local topography and microrelief were neglected. We believe that these must have quite significant effects at the higher latitudes, especially in connection with the evaporation of the remanent south polar cap. 4) Variation of reflectivity with angle of incidence of the sunlight was neglected. 5) Temperature dependence of soil conductivity and specific heat was ignored. 6) Effects of saturation of the soil by ice upon the thermal properties of the soil were neglected. Although in our main investigation we used certain specific values for the various relevant parameters, we also tested the effects of moderate changes in these quantities. Specifically, the soil conductivity was varied by a factor of 3, the albedo and emissivity of the surface were changed by 15 to 20 percent, and the effects of a gross amount of atmospheric blanketing were studied, as described. Only the last of these variations had any significant effect on the model, and other results of the atmospheric blanketing were in disagreement with other physical observations of the planet. Consequently, we find it difficult to avoid the conclusion that CO(2) must condense in large amounts relative to H(2)0. The main conclusions indicated by this study are the following. 1) The atmosphere and frost caps of Mars represent a single system with CO(2) as the only active phase. 2) The appearance and disappearance of the polar caps are adequately explained on the presumption that they are composed almost entirely of solid CO(2) with perhaps an occasional thin coating of water ice. 3) If the currently reported water-vapor observations are correct, water-ice permafrost probably exists under large regions of the planet at polar and temperate latitudes. 4) The geochemically anomalous enrichment of CO(2) relative to N(2) in the present Martian atmosphere may be a result of selective trapping of CO(2) in the solid phase at and under the surface. 5) If the basic evaporation and condensation mechanisms for CO(2) and H(2)O discussed in this article are correct, the possible migration of volatile organic compounds away from the warm temperate regions of the planet and their possible accumulation in the polar regions need to be carefully considered.  相似文献   

13.
The Observatoire pour la Minéralogie, l'Eau, les Glaces, et l'Activité (OMEGA) visible-infrared imaging spectrometer extensively observed regions of Mars with latitudes above 70 degrees N in late 2004 (heliocentric longitude from Ls 93 degrees to Ls 127 degrees ). The extent of water ice at the surface and the size of ice grains were monitored as a function of time. Bright, small-grained frost, which initially covered a large fraction of the polar cap, waned in favor of large-grained ice. In outlying regions, dominated by large-grained ice, the albedo increased over the period. Evaluating the dust content was model dependent. However, contamination of ice by dust was low.  相似文献   

14.
Both poles of Mars are hidden beneath caps of layered ice. We calculated the density of the south polar layered deposits by combining the gravity field obtained from initial results of radio tracking of the Mars Reconnaissance Orbiter with existing surface topography from the Mars Orbiter Laser Altimeter on the Mars Global Surveyor spacecraft and basal topography from the Mars Advanced Radar for Subsurface and Ionospheric Sounding on the Mars Express spacecraft. The results indicate a best-fit density of 1220 kilograms per cubic meter, which is consistent with water ice that has approximately 15% admixed dust. The results demonstrate that the deposits are probably composed of relatively clean water ice and also refine the martian surface-water inventory.  相似文献   

15.
The residual frost caps of Mars are probably water-ice. They may be the source of the water vapor associated with seasonal polar hoods. A permanent reservoir of solid CO(2) is also probably present within the north residual cap and may comprise a mass of CO(2) some two to five times that of the present atmosphere of Mars. The martian atmospheric pressure is probably regulated by the temperature of the reservoir and not by the annual heat balance of exposed solid CO(2) (37). The present reservoir temperature presumably reflects a long-term average of the polar heat balance. The question of a large permanent north polar cap is reexamined in light of the Mariner 9 data. The lower general elevation of the north polar region compared to the south and the resulting occurrence in the north of a permanent CO(2) deposit are probably responsible for the differences in size and shape of the two residual caps. The details of the processes involved are less apparent, however. It might be argued that the stability of water-ice deposits depends on both insolation and altitude. The present north and south residual caps should be symmetrically located with respect to such a hypothetical stability field. However, the offset of the south cap from the geometrical pole, the non-symmetrical outline of the north cap, and the apparently uniform thickness of the thin, widespread water-ice all argue against control by simple solid-vapor equilibrium of water under present environmental conditions. We think that the present location of the water-ice may reflect, in part, the past location of the permanent CO(2) reservoir. The extreme stability of polar water-ice deposits increases the likelihood that past environmental conditions may be recorded there. Detailed information on elevations in the vicinity of the residual caps is needed before we can further elucidate the nature and history of the residual caps. This, along with measurements of polar infrared emission, should be given high priority in future missions to Mars. Two conclusions follow from the limitation of the mass of solid CO(2) on Mars at present to two to five times the mass of CO(2) in the atmosphere. If all of this CO(2) was entirely sublimated into the atmosphere as a result of hypothetical astronomical or geophysical effects, the average surface pressure would increase to 15 to 30 mbar. Although such a change would have considerable significance for eolian erosion and transportation, there seems to be little possibility that a sufficiently earthlike atmosphere could result for liquid water to become an active erosional agent, as postulated by Milton (38). The pressure broadening required for a green-house effect requires at least 10 to 20 times more pressure (39). If liquid water was ever active in modifying the martian surface, it must have been at an earlier epoch, before the present, very stable CO(2)/H(2)O system developed. There can be no intermittent earthlike episodes now. Furthermore, the present abundance of CO(2) on Mars may be an indicator of the cumulative evolution of volatiles to the surface of the planet (40). Thus, even the possibility of an earlier earth-like episode is dimmed. On Mars, the total CO(2) definitely outgassed has evidently been about 60 +/- 20 g/cm(2). On the earth, about 70 +/- 30 kg/cm(2) of CO(2) have been released to the surface (41). Hence, the total CO(2) devolved by Mars per unit area is about 0.1 percent of that evolved by the earth. Thus, the observational limits we place on solid CO(2) presently located under the north residual cap also may constitute considerable constraints on the total differentiation and devolatilization of the planet. If they are valid, it would seem unlikely that Mars has devolatilized at all like the earth, or ever experienced an earthlike environment on its surface.  相似文献   

16.
Mars ice caps     
Leovy C 《Science (New York, N.Y.)》1966,154(3753):1178-1179
Minimum atmospheric temperatures required to prevent CO(2) condensatio in the Mars polar caps are higher than those obtained in a computer experiment to simulate the general circulation of the Mars atmosphere. This observation supports the view that the polar caps are predominantly solid CO(2). However, thin clouds of H(2)0 ice could substantially reduce the surface condensation rate.  相似文献   

17.
We have detected a 30,000-square-kilometer area rich in olivine in the Nili Fossae region of Mars. Nili Fossae has been interpreted as a complex of grabens and fractures related to the formation of the Isidis impact basin. We propose that post-impact faulting of this area has exposed subsurface layers rich in olivine. Linear mixture analysis of Thermal Emission Spectrometer spectra shows surface exposures of 30% olivine, where the composition of the olivine ranges from Fo30 to Fo70.  相似文献   

18.
Shallow Radar soundings from the Mars Reconnaissance Orbiter reveal a buried deposit of carbon dioxide (CO(2)) ice within the south polar layered deposits of Mars with a volume of 9500 to 12,500 cubic kilometers, about 30 times that previously estimated for the south pole residual cap. The deposit occurs within a stratigraphic unit that is uniquely marked by collapse features and other evidence of interior CO(2) volatile release. If released into the atmosphere at times of high obliquity, the CO(2) reservoir would increase the atmospheric mass by up to 80%, leading to more frequent and intense dust storms and to more regions where liquid water could persist without boiling.  相似文献   

19.
In their pioneering work, Leighton and Murray argued that the Mars atmosphere, which at present is 95% carbon dioxide, is controlled by vapor equilibrium with a much larger polar reservoir of solid carbon dioxide. Here we argue that the polar reservoir is small and cannot function as a long-term buffer to the more massive atmosphere. Our work is based on modeling of the circular depressions commonly found on the south polar cap. We argue that a carbon dioxide ice layer about 8 meters thick is being etched away to reveal water ice underneath. This is consistent with thermal infrared data from the Mars Odyssey mission.  相似文献   

20.
Results from the neutral mass spectrometer carried on the aeroshell of Viking 1 show evidence for NO in the upper atmosphere of Mars and indicate that the isotopic composition of carbon and oxygen is similar to that of Earth. Mars is enriched in (15)N relative to Earth by about 75 percent, a consequence of escape that implies an initial abundance of nitrogen equivalent to a partial pressure of at least 2 millibars. The initial abundance of oxygen present either as CO(2) or H(2)O must be equivalent to an exchangeable atmospheric pressure of at least 2 bars in order to inhibit escape-related enrichment of (18)O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号