首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 95 毫秒
1.
 Eight hundred twenty four nit mutants were induced from 73 strains of Fusarium oxysporum f. sp. vanillae, and classified into four phenotypes by their abilities to utilize different nitrogen sources. Among these mutants, 64.9% were characterized as nit 1, 24.3% as nit 3, 9.8% as nit M, 1.0% as nit X. Based on complementary pairing tests of different nit mutants on the medium MM, 44 isolates belonged to 8 different VCGs, 29 isolates were classified into single and different VCGs. These results indicated that there was significant VCG diversity in Fusarium oxysporum f. sp. vanillae population. VCGs might be correlated with geographic origin of strains, but no close correlation was found between VCGs and pathogenicity.  相似文献   

2.
基于小麦白粉病菌rDNA ITS序列的PCR分子检测   总被引:6,自引:0,他引:6  
 Wheat powdery mildew(Blumeria graminis f.sp.tritici) is the one of main wheat diseases in China.Based on the internal transcribed spacer(ITS) sequences of ribosome of B.graminis f.sp.tritici,three molecular primer pairs(F1/R,F2/R and F3/R) were designed to detect the fungal pathogen of wheat powdery mildew.The species specificity of these primers was confirmed.F1/R was demonstrated a higher sensitivity than the other two primer pairs,and could detect as low as 1 pg DNA of B.graminis f.sp.tritici.Furthermore,F1/R primer pair was used to detect the pathogen DNA extracted from wheat leaves showing chlorosis and typical symptoms of powdery mildew caused by artificial inoculation with B.graminis f.sp.tritici.The preliminary results demonstrated the usefulness of this primer pair and its potential applications in efficient detection of wheat powdery mildew pathogen from leaves with latent infections at early growth stages of wheat.  相似文献   

3.
甜菜褐斑病内生拮抗菌的筛选、鉴定及其防效测定   总被引:1,自引:0,他引:1  
 Three hundred and one endophytic bacteria strains were isolated from healthy sugar beet plants in severely diseased plots in Changji County,Xinjiang Province.Three endophytic bacteria strains,1-5,4-1 and 4-3,showed relatively strong antagonistic against Cercospora beticola.Strain 1-5 was identified as Paenibacillus polymyxa,while strains 4-1 and 4-3 were as Bacillus flexus and Stenotrophomonas sp. by their morphological,physiological and biochemical characteristics.The results from several experiment trials showed that the endophytic bacteria could reduce the disease incidence of sugar beet.The control efficiency reached from 67.6% to 80.2%, indicating that biocontrol with endophytic bacteria was an alternative and potential method to control sugar beet fungi disease.  相似文献   

4.
 It have proved that wheat translocation line H9020-1-6-8-3 derived from Psathyrostachys huashanica Keng is an important resistant resource to stripe rust.To confirm the existence of resistant genes,it was crossed with susceptible cultivar MingXian 169 as male and female parent,respectively.Seedlings of parents and F2 progeny were tested for resistance to selected CY29 of races of Puccinia striiformis f.sp.tritici from China.H9020-1-6-8-3 had one dominant resistant gene which temporarily named YrHs,whatever it was male or female parent.By using BSA method,two markers,Xgwm261 and Xgwm455 located on 2DL were found.The distance to YrHs were 4.3 and 5.8 cM respectively.The result could be used in molecular-assisted breeding.  相似文献   

5.
小麦-滨麦易位系M8657-1抗条锈病基因遗传分析和分子标记   总被引:3,自引:0,他引:3  
 M8657-1, one of the wheat translocation lines derived from Leymus mollis Trin. Hara, is possessed of effective resistance at all stages to Su-ll and other dominant races of Puccinia striiformis f. sp. tritici in China. Seedlings of the parents, F1, and F2 progeny derived from the cross of M8657-1 (resistant) Mingxian169 (susceptible) were inoculated with Su-ll in greenhouse to identify and map the probable new stripe rust resistance gene. The results suggested that the stripe rust resistance in M8657-1 was conferred by a pair of recessive genes. Simple sequence repeat (SSR) technique was used to detect molecular marker associated with the resistance gene:208 pairs of wheat SSR primers were used to screen the two parents, as well as resistant and susceptible bulks and then three SSR markers were selected for genotyping the F2 population. The geue, temporarily designated as YrLml, was found to be located on the chromosome 7DL and flanked by three SSR markers GDM67, WMC150 and WMC671, with the genetic distance of 5.0, 9.7 and 11.8cM, respectively.  相似文献   

6.
苹果黑星病菌遗传多样性的SSR分析   总被引:7,自引:0,他引:7  
 Apple scab caused by Venturia inaequalis has a tendency to spread and threatens the development of apple production in recent years in China. The genetic diversity and population structure were investigated by using simple sequence repeat (SSR) markers. 51 strains were classified into 3 groups by UPGMA method as Xunyi, Xingping and U. K. population, each of them mainly including strains from its original place. A relatively high level of genetic diversity was revealed:H=0.425 3, I=0.675 8, PPL=66.67% (at species level); H=0.149 1, I=0.228 0, PPL=44.44% (at population level). A high level of genetic differentia-tion was detected among/within populations with Nei's Gst analysis and AMOVA. Molecular genetic variance within populations was greater than that among populations. Genetic variance among populations might result from barriers to gene flow (Nm=0.675 8). Genetic variance within populations might result from sexual propagation of V. inaequalis.  相似文献   

7.
 在温室盆栽条件下研究了丛枝菌根(arbuscular mycorrhiza,AM)真菌Glomus versiforme (Karsten) Berch和西瓜枯萎镰刀菌(Fusarium oxysporum f. sp. niveum)对西瓜根系中膜脂过氧化产物丙二醛(MDA)含量和细胞膜透性的影响。结果表明,接种AM真菌的西瓜根系中MDA含量、组织自动氧化速率和膜透性均低于对照,先接种G. versiforme,后接种F. oxysporum f. sp. niveum处理的MDA含量、组织自动氧化速率和细胞膜透性均低于只接种F. oxysporum f. sp. niveum的处理。接种G. versiforme感枯萎病西瓜品种"郑杂5号"MDA含量、组织自动氧化速率和膜透性降低幅度大于抗病品种"京欣1号"的接种处理,说明G. versiforme可降低感病西瓜品种的膜透性和MDA的产生,从而有效地保护细胞膜系统,减轻F. oxysporum f. sp. niveum对西瓜的为害程度。  相似文献   

8.
 Fusarium oxysporum is one of the most important phytopathogens and cause Fusarium wilt disease in cucumber, watermelon and melon, etc.In this study, a pair of species-specific primers Fc-1 and Fc-2 was synthesized based on differences in internal transcribed spacer sequences of Fusarium genus.With the primers, a specific 315 bp PCR product was amplified from five F.oxysporum isolates isolated from cucumber, watermelon and melon, infected cucumber and watermelon tissues, while no product was obtained from other fourteen fungi, healthy cucumber and watermelon tissues.The detection sensitivity is 100 fg for genomic DNA of F.oxysporum and 1 000 spores/g soil for the soil pathogens.In contrast, the nested PCR with two pairs of primers(ITS1/ITS4 and Fc-1/Fc-2) increased the sensitivity by 100-fold.In addition, one-step PCR could also detect F.oxysporum in symptomless cucumber root of 7 dpi(days post inoculation) and in infected cucumber and watermelon tissues at the early stage of disease development.Therefore, the developed PCR-based method enabled rapid, sensitive and reliable detection of F.oxysporum.It also provides the detection method for early monitoring and diagnosis of the pathogen as well as the plant disease management guidance.  相似文献   

9.
 The changes of several defense enzyme activities and phenolic compound in cucumber roots were examined after biological soil amendment(BSA) was applied to the cucumber continuous cropping through pot trials.It could promote seedling growth and reduce disease incidence.The results showed that the activities of defense enzymes such as peroxidase(POD),polyphenol oxidase(PPO) and TTC in treated cucumber roots were measured significantly higher than that of control.The activities of POD and PPO in BSA-treated roots were significantly higher than that of control after inoculation with Fusarium oxysporum(Schl.)f.sp.Cucumerinum.Phenolic compound content of roots decreased in the initial period of inoculation,increased after di-sease incidence,but it was higher in BSA-treated than that of control.These indicated that BSA could induce the defense enzyme activities and increased phenolic compound in cucumber roots.  相似文献   

10.
上海地区草莓炭疽病病原鉴定   总被引:20,自引:2,他引:18  
 Seventeen isolates of strawberry anthracnose were obtained from Shanghai suburb. According to the temperature test for mycelial growth, these isolates were divided into two groups:one was strain CMf-04 with optimal temperature of 24℃, the other was including 16 strains with optimal temperature of 28℃, and most of which could produce sexual stage on PSA media, e.g. QPg-961. Conidia of CMf-04 were hyaline, unicellular, straight and fusiform, (12.1-16.4) μm×(3.6-5.4) μm. Conidia of QPg-961 were hyaline, unicellular and ovoid to oblong, (13.0-19.7)μm×(4.1-7.3) μm. On basis of morphologcal, biological characteristics and the sequences of ribosome rDNA ITS, isolate CMf-04 from the strawberry rotten fruits was identified as Colletotrichum acutatum; while all the other isolates from the diseased leaf stalks, runners and root crowns at strawberry plantlet propagation stage were belonged to Colletotrichum gloeosporioides. It proved that C. gloeosporioides was the main pathogen of the strawberry anthracnose in summer strawberry propagation fields in Shanghai and it is of significance for the breeding of resistant strawberry and its control.  相似文献   

11.
Auxotrophic mutants were used to determine vegetative relatedness among isolates of Fusarium oxysporum f.sp. dianthi (F.o.d.) , the vascular wilt pathogen of carnation. At the first stage, different nitrate-non-utilizing (nit) mutants were produced from 11 isolates of F.o.d. collected in Israel. Complementation (heterokaryon) tests showed that all the isolates belonged to a single vegetative compatibility group (VCG), and two mutants were chosen as its testers. Additional isolates of Fusarium from carnation, collected during 1986-88, were analysed for pathogenicity and vegetative compatibility with the testers. A total of 170 Fusarium isolates, obtained from 42 cultivars at 40 sites, were tested. All the nit mutants of all the 132 pathogenic isolates formed heterokaryons with the testers, indicating that they belonged to the same VCG. None of the 38 non-pathogenic isolates was vegetatively compatible with the testers. The nit mutants retained pathogenicity to carnation. The F.o.d. testers were not compatible with testers of five other formae speciales of F. oxysporum. Thus, F.o.d. appears to constitute a distinct genetic population within the F. oxysporum complex.  相似文献   

12.
One hundred and sixteen isolates of Fusarium oxysporum f. sp. lactucae obtained from 85 fields in three crisphead lettuce-producing areas in Nagano Prefecture, Japan were typed for races using differential cultivars Patriot, Banchu Red Fire and Costa Rica No. 4. They were also grouped into vegetative compatibility groups (VCGs) using complementation tests with nitrate non-utilizing (nit) mutants. Two California strains reported as F. oxysporum f. sp. lactucum, a type culture of F. oxysporum f. sp. lactucae, and 28 avirulent isolates of F. oxysporum obtained from crisphead lettuce were included for comparison. Among Nagano isolates, 66 isolates were identified as race 1, and 50 as race 2. Race 1 strains derived from Shiojiri and Komoro cities and race 2 from Kawakami village and Komoro city. All isolates of race 2 were biotin auxotrophs, and the race could be distinguished based on its requirement for biotin on minimal nitrate agar medium (MM). Pathogenic isolates were classified into two VCGs and three heterokaryon self-incompatible isolates. Strong correlations were found between race and VCG. All the race 1 strains were assigned to VCG 1 except self-incompatible isolates, and all the race 2 strains to VCG 2. The 28 avirulent isolates of F. oxysporum were incompatible with VCG 1 and VCG 2. California strains was vegetatively compatible with VCG 1, and they were assigned to race 1. Based on vegetative compatibility, these two races of F. oxysporum f. sp. lactucae may be genetically distinct, and F. oxysporum f. sp. lactucae race 1 is identical to F. oxysporum f. sp. lactucum. Received 7 May 2002/ Accepted in revised form 6 September 2002  相似文献   

13.
Fusarium crown and root rot, caused by Fusarium oxysporum f.sp. radicis-lycopersici ( Forl ), is one of the most destructive soilborne diseases of tomato in Italy. Chlorate-resistant, nitrate-nonutilizing ( nit ) mutants were used to determine vegetative compatibility among 191 isolates of Forl collected in five geographic regions (Calabria, Emilia-Romagna, Liguria, Sardinia, Sicily) in Italy. The isolates were assigned to five vegetative compatibility groups (VCGs): 65 isolates to VCG 0090; 99 to VCG 0091; 23 to VCG 0092; two to VCG 0093; and two to VCG 0096. The population structure of Forl in Italy is similar to that reported for Israel, and differs from that found in North Atlantic European countries, where VCG 0094 is predominant. The stability of prototrophic heterokaryons originating from hyphal anastomosis between compatible complementary nit mutants was assessed through conidial analysis and mycelial mass transfer. Most monoconidial cultures (84%) recovered from 117 prototrophic heterokaryons were nit mutants, indicating that heterokaryons generally do not proliferate well through conidiation; most of the 177 prototrophic heterokaryons examined were unstable, and only 9% sustained prototrophic growth through the tenth mycelial transfer upon subculturing. The prototrophic growth is proposed to be maintained through restoration of the heterokaryotic state by continual anastomosis between adjacent homokaryotic hyphae. Since heterokaryosis is a prerequisite for parasexual recombination, we speculate that this mechanism is unlikely to play a major role in generating the VCG diversity found among Forl or other strains of F. oxysporum.  相似文献   

14.
Isolates of Fusarium oxysporum from lily were screened for pathogenicity, vegetative compatibility and DNA restriction fragment length polymorphisms, and compared to reference isolates of F. oxysporum f.sp. gladioli and F. oxysporum f.sp. tulipae to justify the distinction of F. oxysporum f.sp. lilii. Twenty-four isolates from different locations in The Netherlands (18 isolates), Italy (4 isolates), Poland and the United States (1 isolate each) shared unique RFLP patterns with probes D4 and pFOM7, while hybridization did not occur with a third probe (F9). Except for a self-incompatible isolate, these 24 isolates all belonged to a single vegetative compatibility group (VCG 0190). Isolates belonging to VCG 0190 were highly pathogenic to lily, but not to gladiolus or tulip, except for a single nonpathogenic isolate. Six saprophytic isolates of F. oxysporum from lily were nonpathogenic or only slightly aggressive to lily, gladiolus and tulip, belonged to unique VCGs and had distinct RFLP patterns. Three pathogenic isolates previously considered to belong to F. oxysporum f.sp. lilii were identified as F. proliferatum var. minus; all three belonged to the same VCG and shared unique RFLP patterns. These three isolates were moderately pathogenic to lily and nonpathogenic to gladiolus and tulip. The reference isolates of F. oxysporum f.sp. tulipae were pathogenic to tulip, but not to lily and gladiolus; they shared a distinct RFLP pattern, different from those encountered among pathogenic and saprophytic isolates from lily, and formed a separate new VCG (VCG 0230). Reference isolates of F. oxysporum f.sp. gladioli belonging to VCG 0340 proved pathogenic to both gladiolus and lily, but not to tulip. These isolates, as well as isolates belonging to VCGs 0341, 0342 and 0343 of F. oxysporum f.sp. gladioli, had RFLP patterns different from those encountered among the isolates from lily or tulip. These findings identify F. oxysporum f.sp. lilii as a single clonal lineage, distinct from F. oxysporum f.sp. gladioli and f.sp. tulipae.  相似文献   

15.
The feasibility of identifying races of Fusarium oxysporum f.sp. dianthi by tests for vegetative compatibility type was investigated. Nitrate non-utilizing nitl and NitM mutants were generated from 51 isolates of F. oxysporum f.sp. dianthi , 18 isolates of f. oxysporum from Dianthus spp. not belonging to f.sp. dianthi and, for comparison, 11 isolates of F. proliferatum from Dianthus spp. Vegetative compatibility groups (VCGs) among the isolates were identified by pairing all nitl with all NitM mutants.
Vegetative compatibility was found between isolates of F. oxysporum f.sp. dianthi races 1 and 8 (VCG 0022), races 2, 5 and 6 (VCG 0021) and race 4 (VCG 0020), and wilt-causing isolates previously classified as F. redolens from D. caryophyllus (VCG 0023) and D. barbatus (VCG 0024), Three self-compatible wilt-causing isolates were vegetatively incompatible with all other isolates (VCGs 0025,0026 and 0027), Two VCGs were found among isolates of F. oxysporum from D. caryophyllus not belonging to f.sp. dianthi ; six non-pathogenic isolates were self-compatible but vegetatively incompatible with all other isolates. The foot-rot-associated isolates of F. proliferatum from D. caryophyllus constituted a separate VCG.
Virulence analyses revealed at least four new races among VCGs 0023 to 0027, New Isolates could be categorized as races as a result of VCG analysis and VCG classification correctly indicated that the race identities previously ascribed to two old isolates had been incorrect. Vegetative compatibility tests offer the prospect for rapid identification of races, although inoculation tests continue to be necessary to differentiate races that belong to a single VCG.  相似文献   

16.
ABSTRACT Genetic variation within a worldwide collection of 208 isolates of Fu-sarium oxysporum f. sp. cubense, representing physiological races 1, 2, 3, and 4 and the 20 reported vegetative compatibility groups (VCGs), was analyzed using modified DNA amplification fingerprinting. Also characterized were 133 isolates that did not belong to any of the reported VCGs of F. oxysporum f. sp. cubense including race 3 isolates from a Heliconia species and isolates from a symptomatic wild banana species growing in the jungle in peninsular Malaysia. The DNA fingerprint patterns were generally VCG specific, irrespective of geographic or host origin. A total of 33 different genotypes were identified within F. oxysporum f. sp. cu-bense; 19 genotypes were distinguished among the isolates that belonged to the 20 reported VCGs, and 14 new genotypes were identified among the isolates that did not belong to any of the existing VCGs. DNA fingerprinting analysis also allowed differentiation of nine clonal lineages within F. oxysporum f. sp. cubense. Five of these lineages each contained numerous closely related VCGs and genotypes, and the remaining four lineages each contained a single genotype. The genetic diversity and geographic distribution of several of these lineages of F. oxysporum f. sp. cubense suggests that they have coevolved with edible bananas and their wild diploid progenitors in Asia. DNA fingerprinting analysis of isolates from the wild pathosystem provides further evidence for the coevolution hypothesis. The genetic isolation and limited geographic distribution of four of the lineages of F. oxysporum f. sp. cubense suggests that the pathogen has also arisen independently, both within and outside of the center of origin of the host.  相似文献   

17.
A severe root and stem rot disease of melon was observed during the 2001 growing season on four glasshouse crops in Heraklio, Greece. A total of 43 isolates of F. oxysporum , obtained in Crete from glasshouse-grown melon and showing fusarium wilt or root and stem rot symptoms, were characterized by pathogenicity and vegetative compatibility. The majority of these isolates was also fingerprinted via amplified fragment length polymorphic (AFLP) analysis. Of the total number of isolates, 22 were identified by pathogenicity tests as F. oxysporum f. sp. melonis , 20 as F. oxysporum f. sp. radicis-cucumerinum , while one isolate was nonpathogenic on cucumber, melon, sponge gourd and pumpkin. All 22 isolates of F. oxysporum f. sp. melonis were assigned to vegetative compatibility group (VCG) 0134, and all 20 isolates of F. oxysporum f. sp. radicis-cucumerinum to VCG 0260. Isolates of F. oxysporum f. sp. radicis-cucumerinum were incompatible with isolates of F. oxysporum f. sp. melonis. AFLP fingerprinting allowed for the clustering of the isolates of the two formae speciales of F. oxysporum along two separate phenetic groups: f. sp. melonis to AFLP major haplotype I, and f. sp. radicis-cucumerinum to AFLP major haplotype II. Overall, pathogenicity, vegetative compatibility grouping and AFLP analysis were correlated and effectively distinguished isolates of F. oxysporum from melon. This appears to be the first report of natural infection of melon by F. oxysporum f. sp. radicis-cucumerinum worldwide.  相似文献   

18.
ABSTRACT A total of 106 isolates of Fusarium oxysporum obtained from diseased cucumber plants showing typical root and stem rot or Fusarium wilt symptoms were characterized by pathogenicity, vegetative compatibility, and random amplified polymorphic DNA (RAPD). Twelve isolates of other formae speciales and races of F. oxysporum from cucurbit hosts, three avirulent isolates of F. oxysporum, and four isolates of Fusarium spp. obtained from cucumber were included for comparison. Of the 106 isolates of F. oxysporum from cucumber, 68 were identified by pathogenicity as F. oxysporum f. sp. radicis-cucumerinum, 32 as F. oxysporum f. sp. cucumerinum, and 6 were avirulent on cucumber. Isolates of F. oxysporum f. sp. radicis-cucumerinum were vegetatively incompatible with F. oxysporum f. sp. cucumerinum and the other Fusarium isolates tested. A total of 60 isolates of F. oxysporum f. sp. radicis-cucumerinum was assigned to vegetative compatibility group (VCG) 0260 and 5 to VCG 0261, while 3 were vegetatively compatible with isolates in both VCGs 0260 and 0261 (bridging isolates). All 68 isolates of F. oxysporum f. sp. radicis-cucumerinum belonged to a single RAPD group. A total of 32 isolates of F. oxysporum f. sp. cucumerinum was assigned to eight different VCGs and two different RAPD groups, while 2 isolates were vegetatively self-incompatible. Pathogenicity, vegetative compatibility, and RAPD were effective in distinguishing isolates of F. oxysporum f. sp. radicis-cucumerinum from those of F. oxysporum f. sp. cucumerinum. Parsimony and bootstrap analysis of the RAPD data placed each of the two formae speciales into a different phylogenetic branch.  相似文献   

19.
ABSTRACT In order to elucidate the origin of Fusarium oxysporum f. sp. dianthi in Argentina, the genetic diversity among pathogenic isolates together with co-occurring nonpathogenic isolates on carnation was investigated. In all, 151 isolates of F. oxysporum were obtained from soils and carnation plants from several horticultural farms in Argentina. The isolates were characterized using vegetative compatibility group (VCG), intergenic spacer (IGS) typing, and pathogenicity tests on carnation. Seven reference strains of F. oxysporum f. sp. dianthi also were analyzed and assigned to six different IGS types and six VCGs. Twenty-two Argentinean isolates were pathogenic on carnation, had the same IGS type (50), and belonged to a single VCG (0021). The 129 remaining isolates were nonpathogenic on carnation and sorted into 23 IGS types and 97 VCGs. The same VCG never occurred in different IGS types. Our results suggest that the pathogen did not originate in the local populations of F. oxysporum but, rather, that it was introduced into Argentina. Given the genetic homogeneity within Argentinean isolates of F. oxysporum f. sp. dianthi, either IGS type or VCG can be used for the identification of the forma specialis dianthi currently in Argentina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号