首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new approach to the control of postharvest pathogens, while maintaining fruit quality, has been implemented by the application of essential oil amended coatings to citrus. This approach eliminates the need for synthetic fungicides, thereby complying with consumer preferences, organic requirements and reducing environmental pollution. In vitro studies indicated that the essential oils and some of the terpenoid components tested were active against Penicillium digitatum. In a series of subsequent semi-commercial and commercial trials, Mentha spicata and Lippia scaberrima essential oils, as well as pure (d)-limonene and R-(−)-carvone were incorporated into a variety of commercial citrus coatings. These amended coatings were applied postharvest to ‘Tomango’ oranges in the absence of the standard fungicide dip. Excellent disease control was achieved with the amended coatings, while measured quality parameters indicated that overall fruit quality was maintained. Moreover, moisture loss was decreased significantly in fruit treated with essential oil enriched coatings. The efficacy of amended coatings as a viable alternative or supplement to existing fruit protection strategies was demonstrated in a commercial trial.  相似文献   

2.
Chemical fungicides have been intensively used in the control of postharvest decay in fruit in postharvest conditions; nevertheless, continuous use of these fungicides has faced two major obstacles: development of pathogen resistance to many key fungicides, and public knowledge on the health and environmental hazards of these compounds. This study evaluated the efficacy of Lactobacillus plantarum A7, thyme (Thymus vulgaris L.) and cumin (Cuminum cyminum L.) essential oils and the combination of these three elements as postharvest biocontrol agents against Botrytis spp. on strawberry fruit. Thyme oil had a remarkable antifungal effect against Botrytis spp. in vitro, whereas an inhibitory effect of cumin oil was achieved in higher concentrations. With thyme oil (2 h after artificial inoculation of the fruit), among three tested concentrations, only the 200 μL/L concentration showed an inhibitory effect on strawberries against Botrytis spp. (91.97%), while higher concentrations of cumin oil were required to prevent decay significantly. Both combinations of L. plantarum+ cumin oil and L. plantarum+ thyme oil completely inhibited the mycelia growth of the pathogens in vitro. Results showed that the combined treatments of strawberry fruit with L. plantarum+ cumin oil (50 μL/L) and L. plantarum+ thyme oil (100 μL/L) resulted in remarkably improved control of Botrytis infections, in comparison to the stand-alone application of L. plantarum A7 or essential oils. Quality (i.e. pH, acidity and ascorbic acid content) and sensory attributes of the strawberry fruit were better in the case of using cumin compared to thyme oil, when a combination of L. plantarum A7 and essential oils was used. This study has demonstrated that the integration of L. plantarum A7 with thyme and cumin essential oils is a potential biocontrol tool as a biofungicide in postharvest stage.  相似文献   

3.
Anthracnose caused by Colletotrichum gloeosporioides is a major postharvest disease in avocados that causes significant losses during transportation and storage. Complete inhibition of the radial mycelia growth of C. gloeosporioides in vitro was observed with citronella or peppermint oils at 8 μL plate−1 and thyme oil at 5 μL plate−1. Thyme oil at 66.7 μL L−1 significantly reduced anthracnose from 100% (untreated control) to 8.3% after 4 days, and to 13.9% after 6 days in artificially wounded and inoculated ‘Fuerte’ and ‘Hass’ fruit with C. gloeosporioides. GC/MS analysis revealed thymol (53.19% RA), menthol (41.62% RA) and citronellal (23.54% RA) as the dominant compounds in thyme, peppermint and citronella oils respectively. The activities of defence enzymes including chitinase, 1, 3-β-glucanase, phenylalanine ammonia-lyase and peroxidase were enhanced by thyme oil (66.7 μL L−1) treatment and the level of total phenolics in thyme oil treated fruit was higher than that in untreated (control) fruit. In addition, the thyme oil (66.7 μL L−1) treatment enhanced the antioxidant enzymes such as superoxide dismutase and catalase. These observations suggest that the effects of thyme oil on anthracnose in the avocado fruit are due to the elicitation of biochemical defence responses in the fruit and inducing the activities of antioxidant enzymes. Thus postharvest thyme oil treatment has positive effects on reducing anthracnose in avocados.  相似文献   

4.
Postharvest decay, caused by various fungal pathogens, is an important concern in commercial blueberry production, but current options for managing postharvest diseases are limited for this crop. Four plant essential oils (cinnamon oil, linalool, p-cymene, and peppermint leaf oil) and the plant oil-derived biofungicides Sporan (rosemary and wintergreen oils) and Sporatec (rosemary, clove, and thyme oils) were evaluated as postharvest biofumigants to manage fungal decay under refrigerated holding conditions. Hand-harvested Tifblue rabbiteye blueberry fruit were inoculated at the stem end with conidial suspensions of Alternaria alternata, Botrytis cinerea, Colletotrichum acutatum, or sterile deionized water (check inoculation) and subjected to biofumigation treatments under refrigeration (7 °C) for 1 wk. Sporatec volatiles reduced disease incidence significantly (P < 0.05) in most cases, whereas other treatments had no consistent effect on postharvest decay. Sensory analysis of uninoculated, biofumigated berries was performed utilizing a trained sensory panel, and biofumigation was found to have significant negative impacts on several sensory attributes such as sourness, astringency, juiciness, bitterness, and blueberry-like flavor. Biofumigated fruit were also analyzed for antioxidant capacity and individual anthocyanins, and no consistent effects on these antioxidant-related variables were found in treated berries. Because of limited efficacy in reducing postharvest decay, negative impacts on sensory qualities, and failure to increase antioxidant levels, the potential for postharvest biofumigation of blueberries under refrigerated holding conditions appears limited.  相似文献   

5.
Anthracnose is the main postharvest disease in papaya fruit. Today, there is considerable interest on alternative methods of control to promote resistance against pathogens and supplement or replace the use of fungicides. The goal of this work was to evaluate the effects of gamma and UV-C irradiation on Colletotrichum gloeosporioides, the causal agent of anthracnose. Mycelial growth, sporulation, and conidial germination were evaluated in vitro after fungal exposition to different irradiation doses. In the in vivo assays, ‘Golden’ papaya fruit were inoculated through subcuticular injections of a conidial suspension or mycelium discs. Next, fruit were submitted to different irradiation doses (0, 0.12, 0.25, 0.5, 0.75, and 1 kGy), using Co60 as source, or UV-C (0, 0.2, 0.4, 0.84, 1.3, and 2.4 kJ m−2). To check the possibility of resistance induction by irradiation, papayas were also inoculated 24, 48, or 72 h after the treatments. The fruit were stored at 25 °C/80% RH for 7 days and evaluated for incidence and rot severity. The results showed that the 0.75 and 1 kGy doses inhibited conidial germination and mycelial growth in vitro. All doses increased fungal sporulation. The 0.75 and 1 kGy doses reduced anthracnose incidence and severity, but did not reduce them when the fruit were inoculated after irradiation. All UV-C doses inhibited conidial germination and those higher than 0.84 kJ m−2 inhibited mycelial growth. The 0.4, 0.84, and 1.3 kJ m−2 UV-C doses reduced fungal sporulation in vitro. There was no effect of UV-C doses and time intervals between treatment and inoculation on anthracnose control and fungal sporulation in fruit lesions. Moreover, all UV-C doses caused scald on the fruit. Thus, gamma irradiation can contribute for the reduction of postharvest losses caused by anthracnose and reduce the use or doses of fungicides on disease control.  相似文献   

6.
Inoculum of postharvest pathogens can accumulate inside storage rooms and contaminate new batches of fruit and vegetables, but this chain can be broken by disinfecting storage facilities between storage periods. Quaternary ammonium (QA) has been known for over 50 years as an efficient disinfectant against microorganisms, with wide applications in the food industry. The aim of this study was to determine the efficacy of didecyldimethylammonium chloride (Sporekill, designated here as QAsk), against development of Botrytis cinerea after direct exposure or by ultrasonic fogging. Following direct exposure to a concentration of QAsk below 5 mg L?1, a population of 104 conidia of B. cinerea was inactivated after 2 min; ultrasonic fogging with QAsk at 500 mg L?1 took 30 min to achieve consistent inactivation. Fumigation at 20 °C was considerably more effective than fumigation at 5 °C, and similar results were obtained for three other postharvest pathogens, Penicillium expansum, Colletotrichum gloeosporioides and Alternaria alternata. These results show that conidia of B. cinerea are highly sensitive to direct exposure to QAsk, but that effective sanitation of a storage facility by ultrasonic fumigation requires a QAsk concentration two orders of magnitude greater.  相似文献   

7.
Pericarp colour of litchi fruit is an important quality attribute that determines its market value and consumer acceptance. Plant growth regulators (PGR) such as abscisic acid (ABA) and ethephon are known to play important roles in peel colour development during maturation and ripening of non-climacteric fruits (e.g. grape and litchi). Our aim was to investigate the effects of preharvest application of ABA, ethephon and their combination on pericarp colour and fruit quality of litchi (cv. Calcuttia) and also to assess the potential effects on postharvest performance of fruit. Exogenous application of ABA (150 or 300 mg L−1) at the colour-break stage significantly increased the concentration of total anthocyanins and cyanidin-3-O-rutinoside, the major anthocyanin contributing ∼71–96% of the total anthocyanins, in litchi pericarp compared to ethephon (500 μL L−1). Among different anthocyanins quantified, the relative contribution of cyanidin-3,5-diglucoside to the total anthocyanins was significantly higher in all PGR-treated fruit compared to the control, but the concentration of cyanidin-3-O-glucoside was specifically enhanced by ABA. No significant effect on the concentrations of epicatechin, and quercetin-3-O-rutinoside was observed in response to PGR treatments. Ethephon (500 μL L−1) treatment did not significantly increase the anthocyanin levels in pericarp, but it caused more degradation of chlorophyll pigments than control. Aril quality with regard to firmness, soluble solids and acidity was not significantly affected by PGR treatments, except that ethephon-treated fruit showed significant softening and lower acidity. Postharvest changes in fruit quality attributes including pericarp browning during cold storage at 5 °C for 14 d were mainly related to the storage duration effect, rather than PGR treatment. In conclusion, ABA treatment (150 or 300 mg L−1) at the colour-break stage enhanced anthocyanins accumulation in litchi pericarp without adversely affecting postharvest quality and storage stability for 14 d.  相似文献   

8.
In Israel, black spot caused by Alternaria alternata is the main postharvest factor that impairs the quality and reduces the storability of persimmon fruit (Diospyros kaki cv. Triumph). The fungus infects the fruit in the orchard and remains quiescent until harvest. After harvest, the pathogen slowly colonizes the fruit during storage at 0 °C, which elicits black spot symptom development 2–3 months after storage entry. A commercial postharvest dip treatment in chlorine at 500 mg L?1, released from sodium troclosene tablets, effectively controlled black spot in fruit stored for up to 2 months. However, decay incidence increased as the length of storage was extended beyond 2.5 months. The long incubation period that precedes black spot symptom development after harvest enabled the development of a series of integrative approaches for application at the pre- and postharvest stages, in combination with the commercial chlorine dip treatment, to improve the control of black spot disease. Preharvest treatments included treatment with the cytokinin-like N1-(2-chloro-4-pyridyl)-N3-phenylurea (CPPU) 30 d after fruit set, or a single spray with the curative fungicide polyoxin B 14 d before harvest, and when one of these was applied in combination with the postharvest chlorine dip treatment, the black spot infected area was reduced by 3 and 60%, respectively, compared with the chlorine dip alone. At the postharvest stage, fogging during storage, or post-storage on-line spraying with sodium troclosene, when applied in combination with the postharvest chlorine dip, improved the percentage of marketable fruit by 2 or 10%, respectively, compared with the chlorine dip alone. The results indicate that postharvest pathogens that show a slow colonization pattern might enable the integration of pre- and postharvest disease control methods to improve quality and reduce postharvest disease development.  相似文献   

9.
The vapours of allyl-isothiocyanate (AITC) were evaluated in in vitro and in vivo trials against Botrytis cinerea, a severe pathogen of strawberries. In in vitro trials AITC activity was assayed on conidial germination and mycelial growth of the fungus. The mycelium appeared less sensitive to AITC than conidia (EC50 values of 1.35 mg L−1 and 0.62 mg L−1, respectively). In addition, AITC had a fungistatic effect against the pathogen, since the values of EC50, for both parameters, increased by around 30% after AITC removal. In in vivo trials, ‘Tecla’ and ‘Monterey’ strawberries (spring-bearing and day-neutral cultivars, respectively) obtained from organic production and naturally infected by B. Cinerea, were exposed for 4 h in an atmosphere enriched by pure AITC or derived from defatted seed meals of Brassica carinata (0.1 mg L−1, in a 0.1 m3 treatment cabinet). After 2 days at 0 °C and another 3–4 days at 20 °C, the fruit were evaluated for grey mould infections. The AITC treatment reduced the decay caused by the pathogen by over 47.4% up to 91.5%, significantly different from the untreated fruit. No significant differences were found between synthetic and glucosinolate-derived AITC. Residue analysis performed on fruit at the end of storage (7 d after treatment) showed values lower than 1 mg kg−1. Total phenolic content and antioxidant capacity estimated in treated and untreated strawberries showed no significant difference between control and AITC treated fruit. Our results show it is possible to reduce the incidence of postharvest grey mould on strawberries with a treatment of AITC (0.1 mg L−1) for 4 h, opening a potential application of biofumigation in the postharvest control of B. cinerea in strawberry.  相似文献   

10.
Fumigation by plant volatile compounds and hot water treatment were tested in vitro and in vivo for their activity against Neofabraea alba (anamorph Phlyctema vagabunda), the cause of lenticel rot in apple fruit. In vitro trials with volatile compounds showed a consistent inhibition of pathogen growth by carvacrol, trans-cinnamaldehyde, citral and trans-2-hexenal, while (?)-carvone, hexanal, p-anisaldehyde, 2-nonanone and eugenol showed progressively lower inhibition. The greatest inhibition of mycelial growth was demonstrated by carvacrol (effective doses for 50 and 95 inhibition [ED50 and ED95] = 5.9 and 17.0 μL L?1, respectively; minimum inhibitory concentration [MIC] = 36.9 μL L?1) and of conidial germination by trans-2-hexenal (ED50 and ED95 = 4.1 and 6.9 μL L?1, respectively; MIC = 9.2 μL L?1). Hot water showed a complete inhibition of conidial germination in vitro after 10, 2 and 1 min of exposure at 40, 45 and 50 °C, respectively, and a complete inhibition of mycelial growth after 20 min of exposure at 75 °C. Among the volatile compounds tested, only 25 μL L?1 of carvacrol slightly reduced fungal infection on artificially infected apples (11.4% efficacy). Hot water treatment at 45 °C for 10 min showed high efficacy in the control of lenticel rot on apples. Reduction of infection was 80% in artificially inoculated fruit (cv Golden Delicious) and 90% in naturally infected fruit (cv Pink Lady) after 90 and 135 d of storage, respectively.  相似文献   

11.
Postharvest diseases limit the storage period and marketing life of figs. The efficacy of chlorine dioxide by fogging was tested for the control of postharvest diseases of black fig (Ficus carica L. cv. Bursa Siyahi). Fruit were fogged with various concentrations of chlorine dioxide in a cold storage unit for 60 min at room temperature. Treated fruit were stored either in air or modified atmosphere bags for 7 d at 1 °C followed by 2 d shelf-life at 20 °C. Fogging at 300–1000 μL L−1 significantly reduced natural incidence of decay, most of which was gray mold. The efficacies of fogging at 500 and 1000 μL L−1 were at the same level and fogging at 1000 μL L−1 was superior to that at 300 μL L−1 in fruit stored in air. Modified atmosphere packaging did not improve the efficacy of fogging in reducing decay incidence. The epiphytic population on the fruit surface was similarly reduced by chlorine dioxide fogging. All treatments significantly reduced total microorganisms, fungal and bacterial populations in fruit. In addition, microorganisms in the storage atmosphere were significantly reduced. None of the treatments affected the visual quality and taste of fruit.  相似文献   

12.
In most northeast Argentinean citrus packing houses, postharvest fungicide treatments are based on the use of thiabendazole and imazalil. However, these fungicides have been used in a manner highly conducive to the selection and proliferation of resistant biotypes of Penicillium digitatum, the main fruit decay fungus in the area. Recently, a new fungicide, pyrimethanil (PYR), was introduced to control molds. Aims of this study were to determine the baseline sensitivities for PYR against isolates of P. digitatum considering its use in the region is not yet widespread and to evaluate the control of the fungus in vivo. One hundred and nine (109) P. digitatum isolates were collected from diseased fruit within citrus groves (43 isolates) and packing houses (66 isolates). EC50 was determined for each isolate by measuring colony diameters on different agar dilutions of the fungicide. The mean EC50 value of the green mold isolates collected from the groves was 0.14 ± 0.03 mg L−1 while the mean EC50 of those collected from packing houses was 0.13 ± 0.05 mg L−1. No resistant isolates were found in the field where the fungicide is not used, while one isolate originated from a packing house showed an EC50 of 3.40 mg L−1, 26-fold higher than the mean level. This isolate was collected from lemons stored in cool rooms of a packing house where PYR had not been used. Fruit decay by sensitive isolates was reduced approximately 80% by PYR applied at 500–600 mg L−1 by immersion for 60 s at room temperature to inoculated oranges and mandarins. In contrast, the resistant isolate was not controlled by PYR applied at 1000 mg L−1. Thus, the introduction of PYR applied into packing houses should be done carefully and control strategies should be implemented in order to minimize the development of resistant isolates.  相似文献   

13.
The aim of this study was to evaluate the efficacy of silver nanoparticles (SNP) and essential oils as novel antimicrobial agents in extending the vase-life of gerbera (Gerbera jamesonii cv. ‘Dune’) flowers. The vase-life of flowers held in a solution containing 5 mg L−1 SNP plus 6% sucrose was found to be significantly higher than with 8-HQC (8-hydroxyquinoline citrate) or control treatments. However, the vase-life was not different to that of flowers held in similar concentrations of silver nitrate. All gerbera flowers held in SNP solutions showed significantly higher relative fresh weight than the control. Vase-life of gerbera flowers was extended by addition of either 50 or 100 mg L−1 carvacrol and either 1 or 2 mg L−1 SNP from 8.3 to 16 d. In addition, the relative fresh weight and solution uptake of gerbera flowers were increased by addition of 100 mg L−1 essential oils and 1 or 2 mg L−1 SNP as compared to that of control flowers. Our results suggest the potential application of essential oils or SNP as novel alternatives to common chemicals used in preservative solutions for gerbera flowers.  相似文献   

14.
To investigate the effects of postharvest application of 1-MCP on ethylene production and fruit softening, activities of ethylene biosynthesis and fruit softening enzymes were measured during postharvest ripening of plum (Prunus salicina Lindl. cv. Tegan Blue) fruit after being exposed to 1-MCP (0, 0.5, 1.0 or 2.0 μL L−1) at 20 ± 1 °C for 24 h. Following the treatments, fruit were allowed to ripen at ambient temperature (20 ± 1 °C), and ethylene production in fruit, activities of ACS and ACO, ACC content and fruit softening enzymes (PE, EGase, exo-PG and endo-PG) in fruit skin and pulp were recorded at different intervals. Postharvest application of 1-MCP significantly delayed and suppressed the climacteric ethylene production with reduction in the activities of ethylene biosynthesis enzymes (ACS, ACO) and ACC content, and fruit softening enzymes (PE, EGase, exo-PG and endo-PG) in the skin as well as in pulp tissues. The reduction was more pronounced with increased concentrations of 1-MCP. 1-MCP treated fruit showed different rates of fruit softening and activities of ethylene biosynthesis enzymes in the skin and pulp tissues which warrant further investigation on regulation of gene expression related to these enzymes with the inhibitory effect of 1-MCP.  相似文献   

15.
‘Crimson Seedless’ is a popular table grape cultivar, but in warm-climates, its fruits often fail to develop adequate red color, even after they have been treated with ethephon. Application of abscisic acid (ABA) may improve color more effectively than ethephon, but its potential effects on postharvest quality must be considered before recommending its use on table grapes. Therefore, we compared the postharvest quality attributes of grapes treated preharvest with 250 μL L−1 ethephon, the current industry standard, to that of grapes treated with 150 or 300 μL L−1 ABA, or nontreated. Treatment with either ethephon or 150 μL L−1 ABA allowed grapes to be harvested 10 d before nontreated fruit, and fruits treated with 300 μL L−1 ABA attained marketable quality 30 d before nontreated fruit. Early harvest was possible because the treatments induced more rapid coloring of the grapes, and though total yield was not affected by any plant growth regulator (PGR), all PGRs doubled packable yields by improving the color of the grapes. ABA-treated grapes were characterized by superior appearance both in berries and clusters’ rachises compared to ethephon-treated and control grapes. Other quality attributes such as firmness, berry weight, decay incidence, and shatter remained unaffected among treatments. Therefore, ABA is an effective alternative to ethephon for enhancing the color and maintaining postharvest quality of ‘Crimson Seedless’ grapes.  相似文献   

16.
Peel yellowing is a major postharvest problem of lime fruit. Research was conducted to control peel yellowing by UV-B irradiation. Mature green lime fruit were irradiated with UV-B doses at 0 (control), 8.8, and 13.2 kJ m?2 and then stored at 25 °C in darkness. UV-B treatment at 8.8 kJ m?2 efficiently delayed the decrease of chlorophyll content. A high level of chlorophyllide a accumulated in mature green fruit and then gradually decreased with the progress of peel yellowing. The chlorophyllide a level was higher in 8.8 kJ m?2 UV-B-treated fruit than it was in the controls. The pheophorbide a level declined in lime fruit treated with 8.8 kJ m?2 UV-B, especially during the development of yellowing. In addition, the pheophytin a level increased by 8.8 kJ m?2 UV-B treatment at the late period of storage. We concluded that UV-B treatment effectively suppressed chlorophyll degradation in mature green lime during storage, which suggests that UV-B irradiation is a usable method for prolonging the postharvest life of lime fruit.  相似文献   

17.
Hexanal vapour and intact tomatoes were used as models to assess the opportunities for control of Botrytis cinerea rots by controlled release of organic vapours. Hexanal vapour concentrations in the ranges 5–270 μL L−1 were applied continuously or as a single dose at the start of storage. The postharvest microbiological, physiological and quality attributes of control and hexanal treated tomatoes were investigated during storage for 7 days at 20 ± 1 °C and ∼99% RH. Continuous hexanal exposure effectively suppressed grey mould with the minimum inhibitory concentration (MIC) being 40–70 μL L−1; the single-dose treatment showed minimal antifungal activity. During continuous exposure at the MIC the fruit respiration rate was increased ∼50% and reddening was slowed. No clear trend was observed in ethylene production and treated fruit did not differ from the controls in firmness or mass loss. The controlled release of low concentrations of hexanal vapour into a packaging headspace appears a feasible mechanism for prolonging tomato storage life.  相似文献   

18.
This study aimed to investigate the application of microbubble technology for delaying banana ripening. A preparation of 1-MCP designed for use as a form of aqueous micro bubble (MBs) solutions was formulated. Banana fruit were immersed in 500 nL L−1 of aqueous 1-MCP microbubbles (1-MCP-MBs) or fumigated with 500 nL L−1 1-MCP, then stored at 25 °C for 8 days. 1-MCP-MBs were more effective in delaying postharvest ripening than conventional 1-MCP fumigation. 1-MCP-MBs reduced the respiration rate and ethylene production compared to the control and 1-MCP fumigated fruit. Moreover, 1-MCP-MBs delayed yellowing and maintained firmness of banana fruit during storage. These results indicate that 1-MCP-MBs can be used as an alternative method for delaying the postharvest ripening of banana fruit, and its application for other commodities needs to be further elucidated.  相似文献   

19.
Control of primary postharvest diseases caused by Rhizopus stolonifer, Botrytis cinerea, and Penicillium expansum on a variety of fresh fruit was evaluated with an invert emulsion formulation of Trichoderma harzianum. Diseases evaluated were quantified by the period of protection conferred by the antagonist and the diameter of decay lesions. Treatment of the various fruit species with formulated T. harzianum conidia in an invert emulsion significantly (P  0.05) reduced the mean lesion diameters of R. stolonifer on apple, pear, peach and strawberry, B. cinerea on grape, pear, strawberry, and kiwifruit, and P. expansum on grape, pear, and kiwifruit in comparison with the control treatment. Significant differences (P  0.05) were obtained in the mean percent reduction in lesion diameter caused by the same postharvest pathogens on the same fruit species due to the treatment with the formulated T. harzianum conidia relative to control treatment. The greatest mean percent reduction (86.7%) was obtained on apple fruit for the infection with R. stolonifer. Significant differences (P  0.05) were also obtained in the mean durations of the minimum protection period due to treatment with the formulated T. harzianum against the infection with the same postharvest pathogens on the same fruit species. The longest mean duration of the minimum protection period (up to 59 days) was obtained for unwounded apple fruit against the infection with R. stolonifer. Overall, the results indicate that the treatment with the invert emulsion formulation of T. harzianum protected fruit from infection by the primary postharvest pathogens of the fruit tested for up to 2 months and reduced the diameters of decay lesion up to 86% and is a promising treatment to prolong the postharvest shelf-life of fresh fruit.  相似文献   

20.
Brown rot caused by Monilinia spp. is the most important postharvest disease of stone fruit. From preliminary studies, the combination of 0.25% hydrogen peroxide, 0.02% peracetic acid (PAA) and 0.075% acetic acid, corresponding to 300 mg L−1 of PAA, was selected to control Monilinia fructicola. Brown rot control was similarly controlled when the same concentration of PAA was applied with a PAA-based commercial product. In order to reduce PAA concentration, combinations of different concentrations and temperatures were evaluated. A treatment of 200 mg L−1 of PAA at 40 °C for 40 s was selected to control pre-existing and future infections, different inoculum concentrations of M. fructicola and to control brown rot on naturally infected fruit. Brown rot was completely controlled with the selected treatment when peaches and nectarines were inoculated 0 h before the treatment but it was not controlled when infection time was increased to 24, 48 and 72 h. Also, the treatment significantly controlled brown rot at all inoculum concentrations evaluated (103, 104, 105 and 106 conidia mL−1) in both peaches and nectarines, but no protection against future infections was observed. In naturally infected fruit, brown rot incidence was slightly but significantly reduced to 61 and 36% in ‘Roig d’Albesa’ and ‘Placido’ peaches, respectively, but not in nectarines. Immersion for 40 s in 200 mg L−1 of PAA at 40 °C provides an alternative treatment to control only recent infections of Monilinia spp. whatever their concentration without generally affecting fruit quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号