首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以木质纤维素为原料,采用限氧热解法制备木质纤维素生物炭,以亚甲基蓝和四环素为目标污染物,通过批试验方法考察了生物炭热解温度和溶液初始pH值条件等对吸附的影响,以及吸附的动力学和热力学.研究结果发现,热解温度为300℃时木质纤维素生物炭对2种污染物的吸附能力最强.酸化和未酸化处理木质纤维素生物炭对2种污染物的吸附能力有明显的差异,溶液初始pH值条件对吸附过程有较大影响.吸附动力学研究表明,2种污染物在木质纤维素生物炭上的吸附可能以化学吸附为主.由Langmuir吸附等温方程知,298 K时木质纤维素生物炭对亚甲基蓝和四环素的最大吸附量分别达到437.6 mg/g和1090.1 mg/g.热力学分析证明生物炭对2种污染物的吸附过程均为自发和吸热过程.  相似文献   

2.
以农业废弃物核桃壳为原料制备生物炭,运用红外光谱分析发现其含有丰富的羟基、烷基、芳香基等官能团。将其应用于水体中Cr(Ⅵ)吸附研究,结果表明,核桃壳生物炭对Cr(Ⅵ)的吸附去除效果受热解制备温度、溶液pH值、生物炭投加量、Cr(Ⅵ)初始浓度和吸附时间影响显著,但吸附时溶液温度对其吸附效果影响较小。在25℃、pH值4.0、核桃壳生物炭投加量1.0 g/L、Cr(Ⅵ)初始浓度为40 mg/L时,约210 min后能达到吸附平衡,其去除率可达95.77%。动力学研究发现,核桃壳生物炭吸附Cr(Ⅵ)符合准二级动力学模型,吸附初期属于液膜扩散过程,之后属于颗粒内扩散过程。热力学研究表明,核桃壳生物炭吸附Cr(Ⅵ)为吸热的自发过程,符合Langmuir的单分子层吸附模型。  相似文献   

3.
【目的】我国烟草生产中产生的大量烟秆是一个亟待解决的问题,通过热解炭化技术处理制备成生物炭,并表征其理化特性,探求其吸附重金属Cd2+特性,从而为烟秆资源化利用需求途径提供数据支撑。【方法】以烟秆作为制备生物炭的原料,分别以300、400、500、600、700℃5个温度热解,通过多种表征技术手段、室内批量吸附试验和吸附动力学试验,研究热解温度、结构特性对Cd2+吸附的影响。【结果】不同温度热解烟秆生物炭的性状及对Cd2+吸附特征存在明显差异,热解温度从300℃提高到700℃时,pH从9.05增加到11.54;H、O、N含量及H/C、O/C及(O+N)/C的原子比例随热解温度的提高而降低,显现出高温热解的生物炭芳香结构更加复杂而稳定;低温烟秆生物炭的比表面积较大,但高温下表面孔隙结构更为发达。准二级动力学方程和颗粒内扩散方程能很好拟合不同温度烟秆生物炭对Cd2+的吸附过程,表明吸附是异质性化学吸附;高温热解烟秆对Cd2+吸附能力强,其表面丰富的孔隙结构可增强对Cd2+...  相似文献   

4.
互花米草生物炭的理化特性及其对镉的吸附效应   总被引:2,自引:1,他引:2  
为确定制备互花米草生物炭的最优热解温度,并了解其对镉的吸附特性,以崇明东滩入侵种互花米草为原料,分析了不同热解温度下生物炭的稳定性、基本理化特性及其对镉的吸附能力,通过吸附动力学拟合、扫描电镜、红外光谱,研究互花米草生物炭对镉吸附特性及吸附前后生物炭的形貌及结构变化。结果表明,450℃热解15 min时制备的生物炭可达吸附平衡,吸附量最大为20.576 mg·g~(-1)。互花米草生物炭对镉的吸附满足二级动力学方程式,以化学吸附为主。电镜扫描镉吸附后互花米草生物炭发现粒状突起,红外光谱显示羟基、羧基等含氧官能团发生较大变动。由此可见,450℃制备的互花米草生物炭具有良好镉吸附效应,羟基、羧基等含氧官能团对生物炭吸附镉发挥主要作用,部分镉在生物炭表面发生表层吸附,且可能形成Cd2+复合体。  相似文献   

5.
玉米秸秆碱化处理制备的生物炭吸附锌的特性研究   总被引:2,自引:7,他引:2  
为研究玉米秸秆碱化处理制备的生物炭对模拟废水中Zn的吸附特性,以玉米秸秆为原料制备玉米秸秆生物炭(BC),同时对玉米秸秆进行碱化浸渍处理来获得碱化改性生物炭(K-BC),并在此基础上研究了BC和K-BC对Zn的吸附动力学、吸附热力学以及pH对其吸附的影响,结合元素分析、比表面积孔径测定、扫描电镜及红外光谱等表征来分析其对Zn的吸附差异。结果表明:当Zn浓度为60 mg·L~(-1),BC和K-BC对Zn的吸附过程由快速吸附和慢速吸附2个阶段组成,且符合准二级动力学吸附模型;BC和K-BC对Zn的吸附量随温度(288~318 K)和Zn浓度(10~120 mg·L~(-1))的增加而增加,其中K-BC对Zn的理论饱和吸附量大于BC,且由Freundlich模型对吸附过程进行描述较为合适;热力参数表明BC和K-BC对Zn的吸附为自发、吸热和无序度增加的过程;在pH_2.0~5.0范围内,当pH为5.0时K-BC对Zn的吸附量最大,吸附率接近50%。由BC和K-BC结构表征及理化特性差异可以推知,这2种生物炭对Zn吸附差异来源于其比表面积、孔隙结构和芳香结构之间的差异。  相似文献   

6.
采用野生型水稻(WT,高硅)和硅缺失突变体水稻(lsi1,低硅)秸秆为原材料制备成300、500、700℃3种温度生物炭,探究高低硅秸秆生物炭对Cd2+的吸附特性及作用机制。野生型和突变型水稻秸秆原料总硅含量分别为17.88%和7.42%,制备出的高硅生物炭相对于低硅生物炭具有较高的硅含量、较大的比表面积和孔径。通过元素分析、电镜能谱扫描分析(SEM-EDS)、傅里叶红外光谱分析(FTIR)以及比表面积分析(BET-N2)等对两种生物炭进行分析,结果表明随温度上升两类生物炭均表现出产率下降、pH增大、比表面积上升,高低硅生物炭均能在471、788、1 090 cm-1波峰处观察到Si-O-Si键。吸附实验表明,高低硅生物炭均在pH为6、固液比为1 g·L-1时对水溶液中Cd2+吸附效果最佳。吸附动力学模型结果表明,高低硅生物炭的吸附动力学过程均符合准二级动力学模型(R2>0.9),说明该过程以化学吸附为主。通过Langmuir和Freundlich模...  相似文献   

7.
生物炭老化及其对重金属吸附的影响机制   总被引:5,自引:2,他引:3  
生物炭具有丰富含氧官能团、多孔结构、阳离子交换量、芳香性结构等使其对重金属具有良好的固持作用,进而在重金属污染土壤修复中具有良好的应用前景。生物炭施入土壤中在与土壤接触过程中受物理、化学和生物作用而发生老化现象,致使生物炭特性发生改变。本文综述了原料来源、热解温度和老化方法对老化生物炭特性的影响,以及老化生物炭对重金属吸附的影响机制。老化作用对生物炭特性的改变主要体现在灰分、表面元素组成、含氧官能团、pH、形貌特征、孔隙结构及比表面积。老化生物炭表面含氧官能团、负电荷和CEC含量增加会促进其对重金属的吸附;而比表面积和pH的降低、酚羟基和芳香醚含量增加以及羧基数量减少则抑制其对重金属的吸附。  相似文献   

8.
玉米秸秆生物炭对水中戊唑醇和稻瘟酰胺的吸附特性研究   总被引:1,自引:0,他引:1  
《山东农业科学》2019,(6):117-124
以农业废弃物玉米秸秆为材料,在300、500、700℃下采用限氧碳化法制备生物炭,并测定了生物炭的元素组成,利用扫描电镜(SEM)和红外光谱(FTIR)表征了生物炭的形貌结构特征,考察了生物炭对水中戊唑醇和稻瘟酰胺的吸附动力学和热力学特征,并评价了pH对生物炭吸附的影响。结果表明:随着碳化温度的升高,玉米秸秆生物炭C元素含量增大,表面微孔形变程度及粗糙程度增大,芳香族化合物增加,芳香化程度提高,对两种农药的吸附性增强。准二级动力学方程能更好地描述玉米秸秆生物炭对两种农药的吸附动力学过程,颗粒内扩散表明膜扩散和颗粒内扩散共同控制着生物炭对两种农药的吸附过程;Langmuir和Freundlich方程均可以较好地描述玉米秸秆生物炭对两种农药的吸附热力学过程,说明生物炭对两种农药的吸附同时存在物理吸附和化学吸附两种形式,但以化学吸附为主。吸附过程中焓变(ΔH~o)、熵变(ΔS~o)和吉布斯自由能变(ΔG~o)表明玉米秸秆生物炭对两种农药的吸附是自发的吸热过程。溶液pH值会对生物炭吸附两种农药产生较大影响,酸性条件下吸附率高,碱性条件下吸附率低。  相似文献   

9.
以核桃壳为原材料,采用高温裂解法制备成核桃壳生物炭;通过扫描电镜、能谱分析仪、傅里叶变换红外光谱仪和X射线衍射仪对核桃壳生物炭的结构表征;通过吸附试验,探讨初始U(VI)浓度、pH、反应时间和温度对核桃壳生物炭吸附U(VI)的影响.结果表明,核桃壳生物炭表面光滑,所包含的元素主要是C、O、K和Ca;其表面含有大量的官能团,这将有利于其吸附.Langmuir吸附等温模型和伪二级动力学方程能更好地模拟核桃壳生物炭对U(VI)的吸附过程.  相似文献   

10.
冻融循环对牦牛粪生物炭吸附氨氮的影响   总被引:1,自引:2,他引:1  
为了解冻融循环(模拟物理老化过程)对不同热解温度下的牦牛粪生物炭吸附氨氮的影响,通过吸附实验,考查牦牛粪生物炭老化前后对氨氮的吸附特性,并采用元素分析、扫描电镜、FTIR、BET-N2等方法分析牦牛粪生物炭的组成及表面结构特性,探讨冻融循环对牦牛粪生物炭吸附氨氮的影响机理。结果表明,牦牛粪生物炭老化前后对氨氮的吸附动力学模型符合准二级动力学,吸附等温模型较符合Freundlich模型。不同热解温度的牦牛粪生物炭对氨氮的吸附作用存在显著性差异,冻融循环作用对热解温度较高的牦牛粪生物炭影响较显著(C020 mg·L~(-1)),氨氮初始浓度为5 mg·L~(-1)时,老化后的生物炭PBC450和PBC600(热解温度分别为450℃和600℃)的吸附量比老化前分别显著提高13.1%、12.4%,去除效率分别为62.6%、55%。PBC450和PBC600的阳离子交换量和比表面积比老化前显著增加,阳离子交换量分别增加9.1%和75.7%,pH值、Zeta电位显著降低,其中阳离子交换量和比表面积是影响牦牛粪生物炭吸附氨氮的主要因素。  相似文献   

11.
为探究生物炭对磷酸三(2-氯异丙基)酯(TCIPP)的吸附机理及pH、温度和吸附剂添加量对吸附效果的影响,以玉米秸秆为原料,经500℃限氧热解制备生物炭,通过元素分析、FTIR及XPS等方法分析了生物炭吸附前后表面官能团及元素的变化。结果表明,生物炭对TCIPP的吸附过程更符合准二级动力学(R2=0.964 1)和Temkin(R2=0.994 8)方程,吸附过程以化学吸附为主且存在分子间作用力;生物炭对TCIPP的吸附过程包括液膜扩散、表面吸附及颗粒内部扩散三个过程。pH值和吸附剂添加量对吸附效果的影响较大,而温度对吸附过程的影响较小。生物炭吸附前后的FTIR和XPS表明,生物炭表面的—OH、C=O及芳环上的C—H等官能团以π-π、配位作用参与了吸附过程。研究表明,生物炭对TCIPP的吸附受多个因素的影响,因此在使用生物炭去除污染物时要综合考虑其本身理化性质及外界环境因素的影响。  相似文献   

12.
加拿大一枝黄花生物炭对Cd2+的吸附特性及机理   总被引:1,自引:0,他引:1  
以外来入侵种加拿大一枝黄花为原料,探究不同成分在不同热解温度下制得的生物炭的基本性质及其对水中Cd~(2+)的吸附能力、最优吸附工艺条件和吸附机制,以提高其资源化利用效率。结果表明:以茎叶混合作为原料在450℃下热解制得的加拿大一枝黄花生物炭(SCBC450)对Cd~(2+)吸附能力最优。正交结果显示,3种所选因素对生物炭吸附Cd~(2+)的影响程度依次为吸附质起始浓度pH温度;当pH=6、温度35℃、吸附质起始浓度50 mg·L~(-1)时,Cd~(2+)的吸附效率最高,可达(95.6±0.38)%。SCBC450对Cd~(2+)的吸附过程符合二级动力学模型,以化学吸附为主,且符合Langmuir等温吸附模型,最大理论吸附量达107.03 mg·g~(-1)。通过对生物炭吸附前后的XPS、FTIR和SEM-EDS分析可知,其对Cd~(2+)的吸附机制包括离子交换、络合反应、沉淀作用和物理吸附。因此,加拿大一枝黄花生物炭对Cd~(2+)的吸附具有极大的应用潜力。  相似文献   

13.
以甘蔗渣为原料,在450℃条件下限氧制备甘蔗渣生物质炭,用于水中磷的吸附。研究了pH、溶液初始含磷量和吸附时间对甘蔗渣炭吸附磷的影响,并通过FTIR、等温吸附线和吸附动力学研究进一步讨论了其吸附机理。结果表明甘蔗渣制备成甘蔗渣炭后对磷吸附效果提升显著,在温度为25℃、甘蔗渣炭投加量为0.05 g条件下,当含磷溶液pH为6、含磷废水浓度150 mg/L和吸附时间120 min时,磷吸附容量达到最大,为68.24 mg/g。等温吸附线研究说明甘蔗渣炭对磷的吸附过程使用Freundlich等温吸附方程描述更准确,吸附动力学研究表明甘蔗渣生物质炭吸附磷的动力学特性可以使用Lagergren准二级动力学进行描述。红外扫描结果表明甘蔗渣制备成甘蔗渣炭后表面功能性基团发生了改变。  相似文献   

14.
玉米秸秆生物炭对Cd2+的吸附特性及影响因素   总被引:7,自引:0,他引:7  
以玉米秸秆生物炭为实验材料,研究了生物炭吸附重金属Cd2+的性能,分析了吸附温度、吸附时间、初始pH值以及生物炭粒径对吸附的影响,并对吸附前后生物炭样品进行傅里叶变换红外光谱分析(FITR)、X-射线衍射(XRD)和X-射线光电子能谱(XPS)表征以分析吸附机理。结果表明:玉米秸秆生物炭对Cd2+的吸附可用Langmuir等温方程较好地拟合,在不同温度下其饱和吸附量分别为18.49 mg·g-1(288.15 K)、23.51 mg·g-1(298.15 K)、23.59 mg·g-1(308.15 K)和24.43 mg·g-1(318.15 K),吸附动力学过程可以由准二级动力学方程很好地拟合,约40 min即达平衡,pH值为5时吸附量最大,生物炭粒径对吸附无明显影响。结构表征表明,生物炭对Cd2+的吸附机理主要为表面羟基(-C-OH)和羰基(-C=O)与Cd2+发生络合化学反应作用。  相似文献   

15.
以KOH为活化剂,优化毛豆壳活化生物炭(A-SBC)的制备条件,研究不同体系对A-SBC吸附甲萘威的影响,分析A-SBC对甲萘威的吸附动力学、热力学特性,以期为实现毛豆壳的资源化利用和控制甲萘威农药的环境污染提供理论依据和技术支撑。结果表明:将毛豆壳在700℃、1 h预碳化后,与KOH按1∶2.0的质量比混合,在750℃、1.5 h的条件下活化,获得的A-SBC对甲萘威的吸附性能最佳,吸附率达89.63%,吸附容量为113.28 mg·g-1。与未经活化的毛豆壳生物炭相比,A-SBC的表面凹陷,孔隙密集,有机官能团减少。当体系pH为2.0~6.5时,A-SBC对甲萘威的吸附良好,并在pH值为5.5时吸附容量最大;A-SBC对甲萘威的吸附随温度升高而增多,在离子强度(NaCl)为0.01 mol·L-1时吸附容量最大。A-SBC对甲萘威的吸附更符合准二级动力学模型,等温吸附曲线更适于用朗缪尔(Langmuir)方程拟合,说明其以化学吸附为主。吸附热力学结果表明,A-SBC对甲萘威的吸附由疏水作用主导,是自发的吸热反应。A-SBC对甲萘威的吸附性...  相似文献   

16.
猪粪制备的生物炭对西维因的吸附与催化水解作用   总被引:13,自引:3,他引:10  
以猪粪为原料,在不同温度下制备生物炭,并对其进行除灰处理,研究了不同处理温度和灰分含量的生物炭与西维因的相互作用。猪粪制备的生物炭含有无机矿物、不定型有机质和结晶态芳香碳,且随处理温度升高,灰分含量增加,BET比表面积增加。生物炭对西维因的吸附表现为非线性,等温线符合Freundlich方程,且随生物炭制备温度的升高,非线性增强。生物炭除灰后,吸附作用大大增强,表明有机碳与无机成分复合造成其一部分吸附点位的损失。生物炭对西维因的吸附由亲脂性分配与特殊作用力构成,随着生物炭不同以及西维因浓度的变化,吸附机制发生变化。生物炭可提高溶液pH,pH随生物炭添加量和处理温度而升高,生物炭含有的矿物对西维因水解具有催化作用,其水解速率及程度与生物炭灰分含量呈正相关。  相似文献   

17.
本研究以园林绿化废弃物刺桐为原料,在不同的热解温度下(300、500、700 ℃)制备生物炭,用动力学方程和等温吸附方程分别拟合生物炭对氨氮和磷的吸附性能。等温吸附方程拟合结果表明:生物炭对水中氨氮和磷的吸附量均随着氨氮和磷的初始浓度的增加而增大,且均能较好地拟合Langmuir吸附方程,且BC500吸附效果最好;动力学方程拟合结果表明:不同热解温度下得到的生物炭对氨氮和磷的吸附速率较快的过程分别发生在最初的300 min和60 min内,且均能较好地拟合准二级动力学方程;此外,生物炭对不同初始pH下对氨氮和磷溶液的吸附效果分别为pH7 > pH11 > pH3和pH11 > pH7 > pH3。  相似文献   

18.
为了更好地处理废水中的Sb(Ⅴ),利用三价铝和高锰酸钾对生物炭进行改性,并使用比表面积(BET法)分析、扫描电子显微镜(SEM)和傅里叶变换红外光谱(FTIR)表征改性前后的生物炭。通过对生物炭投加量、反应时间、Sb(Ⅴ)初始浓度、pH值进行研究,拟合分析试验数据,探究3种生物炭的吸附特性与吸附机理。结果表明,25℃下,固液比为1 g∶400 mL,反应时间为4 h,pH值为2时,原炭(BC)、Al~(3+)改性的生物炭(Al-BC)和高锰酸钾改性生物炭(KMnO_4-BC)对Sb(Ⅴ)的最大吸附量分别为4.41、10.48、30.06 mg/g,三者吸附量均整体随pH值的增大而逐渐减小。3种生物炭等温吸附曲线符合Langmuir等温模型,BC和KMnO_4-BC吸附动力学过程遵循拟二级动力学方程,Al-BC吸附符合拟一级动力学方程。生物炭吸附过程为以物理吸附行为主的物理-化学复合过程。BET比表面积分析结果表明,Al-BC比表面积及总孔体积最大,KMnO_4-BC粒径较小且其表面附着的晶体提高其吸附能力。FTIR结果表明,改性前后生物炭表面官能团差别不大。  相似文献   

19.
以南疆农业废弃物棉花秸秆为原料,采用限氧控温裂解法制备不同温度(200、400和600℃)下的棉花秸秆生物质炭(CSBC200、CSBC400和CSBC600),研究棉花秸秆生物质炭对重金属Pb(Ⅱ)的吸附性能及影响因素,探讨pH、温度、初始浓度和吸附剂投加量对棉花秸秆生物炭吸附Pb(Ⅱ)的影响。研究结果表明:随着热解温度的升高生物炭的pH、比表面积及芳香性增强;不同热解温度制备的棉花秸秆生物炭对Pb(Ⅱ)的快速吸附过程发生在2 h内,吸附在10 h以后逐渐达到平衡状态,准二级动力学吸附模型能较好地描述棉花秸秆生物炭对Pb(Ⅱ)的动力学吸附过程;不同热解温度制备的棉花秸秆生物炭对Pb(Ⅱ)的吸附能力不同CSBC600 CSBC400 CSBC200,且CSBC600远高于其他;CSBC400和CSBC600的吸附过程更符合Freundlich模型,吸附体系既有物理吸附又有化学吸附;棉花秸秆生物炭对Pb(Ⅱ)的吸附最佳pH为5. 00,其饱和吸附量随着体系温度的升高而增加,吸附是自发进行的吸热过程,溶液体系温度升高更有利于吸附的进行。  相似文献   

20.
不同原料生物炭对铵态氮的吸附性能研究   总被引:4,自引:3,他引:4  
为探讨不同原料生物炭对铵态氮吸附量及吸附机制,以花生壳、玉米秆、杨木屑和竹屑为原料,在500℃下充N_2保护热解制备生物炭,通过电镜扫面图(SEM)与傅立叶红外光谱图(FTIR)表征NH_4~+-N在生物炭表面的吸附特征,结合批量平衡吸附试验,对比研究不同原料生物炭对NH_4~+-N的吸附性能。结果表明:吸附后生物炭表面附着颗粒或粉末物质,孔隙被填充,表面变得较为平坦。四种生物炭表面分布的-OH、-C=O、-C-O,以及花生壳生物炭与玉米秆生物炭表面的-CH_3、-CH_2、-O-参与了吸附;Langmuir方程可以较好地拟合四种生物炭对NH_4~+-N的等温吸附;吸附均在50 min内达到平衡,伪二级动力学方程均可以较好地描述生物炭对NH_4~+-N的动力学吸附过程;在溶液pH=7.00条件下,初始浓度为800 mg·L~(-1)的体系中,四种生物炭对NH_4~+-N的最大吸附量为9.5~15 mg·g~(-1),吸附能力大小为花生壳生物炭玉米秆生物炭竹屑生物炭杨木屑生物炭。研究表明,生物炭表面含氧官能团对吸附NH_4~+-N起到决定性作用,吸附为单分子层吸附,且由快速反应所控制,四种生物炭中吸附性最好的是花生壳生物炭。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号