首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of earthworms on soil hydrolases (protease, urease, invertase, and alkaline phosphatase) and dehydrogenase activities was investigated in maize residue amended rice–wheat rotation agro-ecosystem. Experimental plots in the rotation had five treatments, i.e. incorporation or mulching of maize residues with or without added earthworms and an untreated control. The application of maize residues to soil without earthworms significantly enhanced the five soil enzyme activities compared with the control treatment during rice and wheat cultivation. The presence of earthworms further significantly enhanced protease activity in the soils with both incorporated and mulched maize residues during two cultivation seasons, but only significantly increased alkaline phosphatase activity in the soil with incorporated maize residue during the rice cultivation season. Invertase activity was significantly enhanced by the presence of earthworms in the soil with maize residue incorporation during two cultivation seasons. There were no changes in dehydrogenase activity when earthworms were present. Additionally, the five enzyme activities in earthworm casts were significant higher than those in the surrounding soil, especially dehydrogenase and invertase activities. Whatever the treatment, the values obtained for the enzyme activities in both soil and casts, except for dehydrogenase activity in earthworm casts, were significantly higher under wheat than those in rice-cultivated soil. These results indicate that the presence of earthworms strongly affected soil enzyme activities, depending on the method of organic residue application, and the enhanced enzyme activities of earthworm casts probably contributed to the surrounding soil enzyme activities.  相似文献   

2.
Abstract

Earthworms influence soil fertility, and their population is known to be influenced by fertilization. The objective of this study is to characterize the abundance of earthworms under three different kinds of rotation-crops (Rotation: cereals–legumes for green manure-cotton), three tillage systems (Conventional Tillage CT, Minimum Tillage MT, & No-Tillage NT) and fertilization (NP: inorganic and FYM: farmyard manure-organic). Significantly higher populations of earthworms were found under the legumes and NT system in contrast to the lowest abundance determined under the cotton and CT system. Earthworm populations benefited more from organic fertilization than from NP. Our study showed that the most important factors for earthworm abundance are the macropores and Corg under Mediterranean conditions. No-till management considerably influenced the improvement of the physical and chemical soil properties and increased the earthworm abundance.  相似文献   

3.
为探究蚯蚓粪施用量对黄土区典型土壤团聚体及其结合碳的影响,该研究采用土柱培养试验,研究了黄绵土(CS)、黑垆土(DS)和风沙土(AS)团聚体和有机碳的数量及稳定性对不同蚯蚓粪施用量(0、1%、3%和5%)的响应。结果表明,施用蚯蚓粪后粒径不大于0.25 mm团聚体含量在CS和DS中降低了9.2%~24.7%和7.0%~21.3%;AS中在3%和5%用量条件下减少了25.9%~34.0%。3%用量蚯蚓粪对CS、DS和AS水稳性团聚体数量、平均重量直径、几何平均直径和粒径大于0.25 mm团聚体含量提高有显著作用,但用量增加至5%后效果未进一步改善。施用1%~5%用量蚯蚓粪可使土壤有机碳增加17.9%~66.9%,同时也提高了各级团聚体结合碳含量。施用蚯蚓粪后,不大于0.25mm团聚体对总有机碳贡献率在CS和DS中降低了21.4%~41.1%和15.7%~20.4%,3%和5%用量处理间没有差异。各级团聚体中易氧化碳含量随蚯蚓粪施用量的增加而增大。综合考虑土壤团聚体和有机碳对蚯蚓粪施用量的响应可知,3%用量蚯蚓粪即可有效提升土壤团聚体和有机碳稳定性。研究可为合理利用蚯蚓粪对黄土区土壤结构进行改良提供依据。  相似文献   

4.
The influence of earthworms on nematodes and protozoan communities was determined during the wheat phase of a six year rice-wheat rotation agro-ecosystem. Experimental plots in the rotation had five treatments, i.e. incorporation or mulching of maize residues with or without added earthworms and a control. The addition of maize residues to soil strongly affected the abundance and community structure of nematodes and protozoa in the absence of earthworms. The presence of earthworms gave significantly lower total nematode numbers at all soil depths following maize residue incorporation than the same treatment without earthworms, and also gave lower (although not significantly) total nematode numbers in the upper soil layer following maize residue mulching than the same treatment without earthworms. This was mainly due to a significant decrease in bacterial-feeding nematode numbers. Earthworms also strongly affected the distribution of the number of total nematodes and two trophic groups (bacterial and plant feeders) with soil depth. In the presence of earthworms, total protozoan and flagellate numbers significantly increased at all soil depths following both incorporation and mulching of maize residues, while numbers of amoebae increased only when maize residues were mulched. Additionally, in earthworm casts total nematode numbers (mainly bacterial and fungal feeders) were significantly higher, whereas total protozoa numbers (mainly flagellates and amoebae) were significantly lower than that in soil from 0 to 5 cm layer.These results indicated that earthworm activity could affect the abundance and community structure of microfauna, and change their distribution between soil layers and cast material, depending on the mode of application of organic residues.  相似文献   

5.
Adding biochar to soils and maintaining high earthworm biomasses are potential ways to increase the fertility of tropical soils and the sustainability of crop production in the spirit of agroecology and ecological engineering. However, a thorough functional assessment of biochar effect on plant growth and resource allocations is so far missing. Moreover, earthworms and biochar increase mineral nutrient availability through an increase in mineralization and nutrient retention respectively and are likely to interact through various other mechanisms. They could thus increase plant growth synergistically. This hypothesis was tested for rice in a greenhouse experiment. Besides, the relative effects of biochar and earthworms were compared in three different soil treatments (a nutrient rich soil, a nutrient poor soil, a nutrient poor soil supplemented with fertilization). Biochar and earthworm effects on rice growth and resource allocation highly depended on soil type and were generally additive (no synergy). In the rich soil, there were both clear positive biochar and earthworm effects, while there were generally only positive earthworm effects in the poor soil, and neither earthworm nor biochar effect in the poor soil with fertilization. The analysis of earthworm and biochar effects on different plant traits and soil mineral nitrogen content, confirmed that they act through an increase in nutrient availability. However it also suggested that another mechanism, such as the release in the soil of molecules recognized as phytohormones by plants, is also involved in earthworm action. This mechanism could for example help explaining how earthworms increase rice resource allocation to roots and influence the allocation to grains.  相似文献   

6.
Studies on earthworms in rice-based ecosystems tend to focus on some pest species, while the potential of these important soil engineers for beneficially affecting carbon storage and cycling is widely ignored. We carried out a microcosm experiment to quantify the impact of the tropical earthworm Pheretima sp. on the C turnover in paddy soils under different conditions of water saturation and N fertilization. The soil was sampled at the lowland farm of the International Rice Research Institute (Philippines). In the absence of earthworms, soil respiration showed a distinct hump-shaped maximum at intermediate levels of water saturation (4-fold higher than in hand-dry soil) and increased 1.5-fold with increasing amounts of N fertilization. Amounts of CH4 emitted, in contrast, were small at low to moderate soil humidity and became very high under conditions of water saturation (80-fold higher than hand-dry soil). No response to nitrogen addition was observed. Earthworms suppressed both the respiration maximum at intermediate saturation levels (by a factor of 1.4) and the stimulating impact of N fertilization (1.7-fold at maximum fertilizer level). On the other hand, earthworms strongly increased CH4 release under conditions of high water saturation (3-fold). No consistent response of the soil microflora (bacterial abundance, soil enzymes) to earthworm activity could be established. Our findings suggest that the stabilization of soil organic C via earthworm bioturbation is confined to the range of soil humidity that allows high activity of Pheretima sp. Under conditions of intensive agriculture, the stabilizing effect of the worms may even be augmented by the fact that they offset the positive effect of N fertilization on microbial respiration. Earthworms may thus play a vital role in reducing the CO2 flush from paddy soils after the conversion to non-flooded crops such as aerobic rice or maize. Acceleration of methane emission in very humid soils nevertheless points to a certain risk that is associated with increasing earthworm abundance in production systems that are still exposed to temporary flooding during the wet season.  相似文献   

7.
Soil organic matter (SOM) plays a central role in the functioning of ecosystems, and is beneficial from agronomic and from environmental point of view. Alternative cultural systems, like direct seeding mulch-based cropping (DMC) systems, enhance carbon (C) sequestration in agricultural soils and lead to an increase in soil macrofauna. This study aimed at evaluating in field mesocosms the effects of earthworms on SOM dynamics and aggregation, as influenced by residue quality and management.In the highlands of Madagascar, buckets were filled with 2 mm-sieved clayey Inceptisol. The effects of earthworm addition (Pontoscolex corethrurus), residue addition (rice, soybean, and no addition), and localization of the residues (mulched or buried) were studied. After 5 months, soil from mesocosms with earthworms had significantly lower C concentration and higher proportion of large water-stable macroaggregates (>2000 μm) than those without earthworms, because of the production of large macroaggregates by earthworms. Earthworm effect on soil aggregation was greater with rice than with soybean residues. Casts (extracted from mesocosms with earthworms) were slightly enriched in C and showed significantly higher mineralization than the non-ingested soil (NIS), showing that at the time scale of our study, the carbon contained in the casts was not protected against mineralization. No difference in microbial biomass was found between casts and NIS.Complementary investigations are necessary to assess long-term effects of earthworm addition on SOM dynamics, the conditions of occurrence of physical protection, and the impact of earthworms on the structure of the microbial community.  相似文献   

8.
By burrowing galleries and producing casts, earthworms are constantly changing the structure and properties of the soils in which they are living. These changes modify the costs and benefits for earthworms to stay in the environment they modify. In this paper, we measured experimentally how dispersal behaviour of endogeic and anecic earthworms responds to the cumulative changes they made in soil characteristics. The influence of earthworm activities on dispersal was studied in standardised mesocosms by comparing the influence of soils modified or not modified by earthworm activities on earthworm dispersal rates.The cumulative use of the soil by the earthworms strongly modified soil physical properties. The height of the soil decreased over time and the amount of aggregates smaller than 2 mm decreased in contrast to aggregates larger than 5 mm that increased. We found that: (i) earthworm activities significantly modified soil physical properties (such as bulk density, soil strength and soil aggregation) and decreased significantly the dispersal rates of the endogeic species, whatever the species that modified the soil; (ii) the decreasing in the dispersal proportion of the endogeic species suggests that the cost of engineering activities may be higher than the one of dispersal; (iii) the dispersal of the anecic species appeared to be not influenced by its own activities (intra-specific influences) or by the activities of the endogeic species (inter-specific influences). Overall these results suggest that the endogeic species is involved in a process of niche construction, which evolved jointly with its dispersal strategy.  相似文献   

9.
蚯蚓对土壤温室气体排放的影响及机制研究进展   总被引:3,自引:1,他引:3  
卢明珠  武海涛  吕宪国  管强 《土壤学报》2015,52(6):1209-1225
土壤是温室气体的重要源和汇。蚯蚓是土壤物质循环的重要参与者,能够直接或间接影响土壤CO2、N2O和CH4等温室气体的产生和释放。蚯蚓呼吸产生的CO2,是土壤呼吸的重要组成部分;蚯蚓自身肠道、分泌液、消化物和排泄物等微环境促进反硝化过程释放N2O。蚯蚓还通过取食、掘穴、排泄等活动,改变土壤理化性质、微生物组成和活性及其他土壤动物的组成,影响地上植物生长,调节土壤分解、矿化、硝化、反硝化和甲烷生成及氧化等生态过程,间接影响土壤温室气体的排放。蚯蚓对土壤温室气体排放的影响逐渐受到重视,但目前研究仍以室内培养和单因子环境条件的模拟为主,缺少野外原位实验和多环境因子的交互实验研究。长期监测和同位素示踪技术,是深入探讨蚯蚓影响温室气体排放机制的重要手段。温室气体类型上,CO2和N2O是研究热点,CH4研究比较罕见。未来研究,应重视不同生态类群蚯蚓与土壤理化特征、微生物组成、其他类群土壤动物和地上植物间的交互作用,加强机制研究,并关注土壤污染环境下蚯蚓功能性状的变化;综合评价蚯蚓对土壤温室气体排放和土壤碳氮固定的影响,科学评估蚯蚓活动对土壤碳氮释放的促进或减缓作用。  相似文献   

10.
Earthworm casts form stable aggregates in physically degraded soils   总被引:1,自引:0,他引:1  
Topsoils affected by surface mining suffer severe physical degradation and lose most of their earthworm populations. After mining, replaced soils are planted to grassland and managed to improve soil structure. Earthworm inoculation into selected restored areas produced populations similar to those of undisturbed soils within 3 years. Soil properties in inoculated areas were compared with those of controls to evaluate the contribution of casts to bulk soil aggregation, and soil organic matter and root content responses to earthworm activity. Crumb porosity and coarse particle content were measured in water-stable macro-aggregates and earthworm casts to establish whether aggregates were formed by earthworms. Over a 5- to 6-year period, inoculation increased stable aggregation (>2 μm, >60 μm and >3 mm), even at 0- to 5-cm depth where it reduced soil organic matter content. Productivity and root content were also increased by inoculation; roots and organic matter were re-distributed to greater depth. Crumb porosity decreased with casts > aggregates (inoculated plots) > aggregates (control plots). Coarse particle content increased with casts < aggregates (inoculated plots) < aggregates (control plots). Coarse particle and porosity data were consistent with much of the newly aggregated soil being processed and formed by earthworms as casts. Whilst levels of soil organic matter were often closely associated with percentage stable aggregation, root content showed weaker associations. Aggregation percentage was most closely associated with abundance of Aporrectodea longa, although at particular depths significant correlations were also obtained for Aporrectodea caliginosa and Lumbricus terrestris. Results suggest that earthworms, rather than plant roots, initiate aggregation in severely degraded grassland soils.  相似文献   

11.
The genesis and architecture of the structures built by ants and earthworms differ markedly, suggesting that—in addition to having different physical and chemical properties—the resident microbial community should also have unique properties. We characterized the inorganic N, biomass C, C mineralization rate, and functional diversity of the microbial communities of earthworm casts, earthworm burrow soil, ant mounds, and bulk soil from an agricultural field. Mound soil was most enriched in inorganic N and had the lowest pH, moisture content, and C mineralization rate. Functional diversity was evaluated by determining the ability of microorganisms to grow on 31 substrates using Biolog®EcoPlates in combination with a most probable number (MPN) approach. Casts had MPNs that were one to two orders of magnitude higher than burrow, mound and bulk soil for most substrates. Casts also had the highest MPNs for particular substrate guilds relative to bulk soil, followed by mound and burrow soil. Indices of substrate diversity and evenness were highest for casts, followed by burrow, mound, and bulk soil. Differences in the type of habitat provided by the structures built by ants and earthworms result in the differential distribution of nutrients, microbial activity, and metabolic diversity of soils within an agricultural field that affect soil fertility and quality.  相似文献   

12.
耕作模式对冷浸田水稻产量和土壤特性的影响   总被引:4,自引:0,他引:4  
为探明不同耕作模式对冷浸田的影响机制,挖掘冷浸田的生产潜力,以冷浸田为研究对象,通过田间试验,以常规平作模式为对照,研究了垄作和稻鱼共作模式对冷浸田水稻产量以及土壤团聚体、温度、pH及有机质和还原性物质含量以及酶活性的影响。结果表明:相比对照(CK),垄作模式(T1)能显著降低土壤微团聚体(0.25 mm)含量,促进大团聚体的形成,提高土壤温度,增加土壤有机质含量,提高土壤pH,抑制水稻分蘖期后土壤亚铁含量的上升,降低土壤亚锰含量,减轻其对水稻根系的毒害作用,提高土壤酶活性,增加土壤速效养分含量。稻鱼共作模式(T2)对冷浸田土壤理化性状影响不显著,但能显著增加土壤速效养分含量,土壤速效钾含量在水稻孕穗期和成熟期分别较对照(CK)增加18.2%和69.2%,从而为水稻生长提供良好的土壤环境和营养,促进水稻生长发育,提高水稻产量。研究表明T1和T2模式能显著提高冷浸田水稻产量,增产范围为8.8%~25.8%,T1模式增产效果最显著,实际产量达到7 623 kg·hm-2。综上所述,垄作模式可以有效地改善冷浸田土壤特性,提高水稻产量,而稻鱼共作模式增产效果主要体现在增加冷浸田水体和土壤的速效养分。  相似文献   

13.
福建黄泥田肥力质量特征与最小数据集   总被引:3,自引:1,他引:2  
黄泥田为福建省主要中低产田类型之一,约占水稻土面积的30%。为解析关键限制因子及开展黄泥田肥力质量评价,进而实施针对性的改良措施,采用配对采样方法,采集福建省20对典型黄泥田与邻近同一微地貌单元内高产灰泥田表层土壤,分析了两种土壤类型28项属性因子指标差异及其原因,并采用主成分分析等方法构建福建省黄泥田肥力质量评价因子最小数据集,通过加权指数法分别计算最小数据集土壤肥力质量指数与差异显著因子构成的重要数据集土壤肥力质量指数。结果表明,与灰泥田相比,黄泥田的有机质含量低19.1%,全氮、全磷、全钾含量分别低14.8%、29.9%和25.4%,碱解氮、有效磷和速效钾含量分别低17.8%、56.7%和39.3%,CEC、交换性钙、交换性镁含量分别低12.9%、50.6%和30.8%,有效铁、有效硼和有效锌含量分别低25.6%、33.3%和44.1%。黄泥田的物理性黏粒、0.001 mm黏粒和容重分别较灰泥田高20.8%、25.6%和12.3%,而孔隙度低19.3%。黄泥田过氧化氢酶活性较灰泥田高20.4%,脲酶活性较灰泥田低40.4%。用主成分分析方法从上述19项有显著差异的因子构成的重要数据集中归纳出累计贡献率达76.22%并能反映黄泥田综合肥力特征的6个主成分,建立了由CEC、全钾、有效磷、有效硼和孔隙度5项因子组成的黄泥田肥力评价最小数据集,相应的黄泥田最小数据集土壤肥力质量指数仅相当于灰泥田的69.5%,通过与重要数据集的土壤肥力质量指数相关分析比较,最小数据集可代替重要数据集对福建省黄泥田土壤肥力质量进行正确评价。  相似文献   

14.
论蚯蚓对土壤结构形成及性态的影响   总被引:3,自引:0,他引:3  
黄福珍 《土壤学报》1979,16(3):211-217
土壤结构是土壤肥力的重要指标之一。许多研究者(熊毅,1965;Leenher,1958;Boekel,1963)认为,良好的结构能调节土壤中的水、热、空气和生物状况,能充分发挥植物营养元素的作用,提高养分的供应能力。但是并非所有土壤结构都是良好的结构。熊毅认为:由有机胶体和无机胶体不可逆凝聚形成的水稳性团聚体,对提高土壤肥力有良好的作用。而由土粒紧密排列形成的水稳性团聚体对农业生产,往往起不良的作用。  相似文献   

15.
低产水稻土改良与管理研究策略   总被引:2,自引:1,他引:2  
我国耕地后备资源极端缺乏,改良低产田是提高粮食产量的重要途径。低产水稻土作为低产田的重要组成部分,相关肥力特征及其改良技术研究比较零散,缺乏系统科学的调控管理策略。本文从低产水稻土类型、新的改良研究方法角度,探索可能的技术突破。基于农业部统计数据,因环境条件不良或土壤自身存在障碍因素,全国约有7.67×106hm2低产水稻土。按其主导成因,低产水稻土可分为冷潜型、粘结型、沉板型、毒质型四类。土壤质量评价是低产水稻土研究的重要方面,其评价方法主要包括土壤质量动力学法、土壤质量综合评分法、多变量指标克立格法、土壤相对质量评价法,现已发展了基于GIS的区域尺度水稻土质量评价方法,以及基于土壤生物学性状的质量评价方法。低产水稻土改良研究更多关注新技术和新方法,稳定性同位素探针技术、傅里叶变换红外光谱法(FTIR)和固相交叉极化魔角自旋13C核磁共振(CPMS13C-NMR)波谱技术的应用,将土壤有机碳的微团聚体分布、腐殖质的转化及其与土壤矿物结合机制深入到微观水平;同时高通量测序、土壤宏基因组学、宏转录组学等方法将相关研究推向分子水平。低产水稻土改良与管理的技术主要涉及到冷潜型、粘结型、沉板型、毒质型四大类低产水稻土的改良技术,基于产量反应和农学效率的推荐施肥方法是水稻土养分管理方法的重要发展方向。1)在低产水稻土质量评价方面,未来要结合不同低产类型的障碍因素开展个性化的土壤质量评价,如白土的质地和耕层厚度,加强引入土壤生物学指标进行土壤质量评价研究。2)在低产水稻土改良方面,要研究稻田障碍层次的形成机理与调控途径;研究其他低产类型如新垦水稻土、盐渍化水稻土、石灰化水稻土和污染水稻土的改良技术;研究长期改良措施对不同粒级团聚体腐殖质结构、酶类、微生物多样性和功能基因的影响。3)在低产水稻土管理方面,着重研究秸秆还田技术、推荐施肥技术、抗逆品种技术、群体控制技术。  相似文献   

16.
水稻土的排水及其意义   总被引:1,自引:0,他引:1  
程云生 《土壤学报》1983,20(3):214-224
我国种植水稻的历史十分悠久,种植面积亦甚广.水稻土遍及全国,南起热带的海南岛,北至寒温带的黑龙江,东自台湾省,西到新疆、西藏自治区,总面积约三亿九千万亩.据1980年的统计[3],1979年水稻种植面积占全国粮食播种总面积的28.4%.  相似文献   

17.
Different earthworm species have different tolerances of acid soil conditions, and the application of lime to upland grassland to improve the grazing quality may therefore alter the size and diversity of the earthworm community. Altering soil properties may also affect the chemical characteristics of organic C in earthworm casts. We surveyed the earthworm community of an upland grassland in southern Scotland at the outset of annual lime applications, and after 3 years, and used 13C nuclear magnetic resonance (NMR) spectroscopy to assess the distribution of C between different functional groups in the organic matter. In addition, soil was incubated for 8 weeks with several earthworm species in the presence or absence of lime, and the earthworm casts were subsequently analysed by 13C NMR spectroscopy. Liming did not significantly affect earthworm abundance or species diversity, but it did affect the chemical composition of the casts. Casts from earthworms incubated in unlimed soil had greater ratios of alkyl‐C to O?alkyl‐C, indicative of more decomposed, recalcitrant C, and spectra from litter‐feeding species had the greatest intensities of O?alkyl‐C signals. In limed soil, the largest O?alkyl‐C signal intensities were not restricted to litter‐feeding species, indicating an increase in the quality of organic matter ingested by geophagous species.  相似文献   

18.
New non-tillage or reduced tillage agricultural practises are being increasingly adopted but generally result in higher soil compaction. Due to their recognised physical influence mainly through burrow creation, it is often claimed that earthworm activity could alleviate soil compaction in these systems. To put this assumption to the test, an experimental compaction event was carried out on one plot of arable land. The abundance and biomass of earthworms were evaluated in compacted (under wheel tracks) and non-compacted (between wheel tracks) zones, seven times over a two-year period. In addition, the functional consequences of earthworm activity, defined by burrow abundance assessed in 2D and 3D and water infiltration, were measured three times over the same period. The short-term (less than three months) effects of the compaction were clear: soil bulk density increased from 1.46 to 1.57 g cm−3, the abundance and biomass of earthworms were greatly reduced (−40% and −70% respectively) and the number and continuity of macroporosity were lower under wheel tracks at least until a depth of 30 cm. After these initial detrimental effects, we observed a rapid recovery of earthworm populations with no statistical difference between compacted and control zones more than three months after the compaction. However, the recovery of soil functional properties linked to earthworm activity, macroporosity and water infiltration, was much slower and took between 12 and 24 months. Despite these modifications, there were no significant changes in soil bulk density with time during the two-year period. This study demonstrates that earthworms are important actors in the regeneration of compacted soil. Although the complete regeneration of compacted soil by earthworms is a slow process, agricultural practises that promote earthworm density and activity should be encouraged in reduced or minimum tillage systems.  相似文献   

19.
ABSTRACT

After the rice harvest in Japan, rice straw (RS) is usually cut by combine harvester and incorporated into the soil to improve its fertility. In mixed crop–livestock systems, however, RS is collected and used as livestock feed, and cow dung compost (CDC) is then applied to the soil. This system utilizes the residual organic matter from both rice production and livestock husbandry to make each product. CDC application is also considered to improve the fertility of paddy soil. However, the nutrient input from CDC and the effect of CDC application on soil fertility vary among regions and/or soil types. We compared soil fertility between RS application (RS treatment, avg. 32 years) and RS removal plus CDC application (CDC treatment, avg. 21 years) in 79 paddy fields in Mamurogawa town, Yamagata Prefecture, a cold temperate region of Japan, and measured the nutrient contents in the applied RS and CDC. The total C content of RS was significantly higher than that of CDC, whereas the N, P, K, and Si contents of CDC were significantly higher than those of RS. However, there was no significant difference in paddy soil fertility – as measured by soil organic C, total N, CEC, available N, P, and Si, exchangeable K, Ca, and Mg, base saturation percentage, pH, and bulk density – between the treatments. The soil fertility of most fields was adequate by RS or CDC treatment. Thus, leaving RS in paddy fields or removing it and then adding CDC to the paddy fields has a similar effect in maintaining adequate soil fertility for single rice production or rice–livestock production systems.  相似文献   

20.
I assessed the direct influence of earthworm excretions, and the impact of earthworms through their action on the soil structure (increased macroporosity), on the population dynamics of the collembolan species Heteromurus nitidus. The intestinal content of Collembola arising from cultures on different soil types was observed, and two experimental cultures of H. nitidus were run: (1) a culture performed on an inert substrate supplied either with earthworm casts or with soil as food resource, (2) an experiment using microcosms with cores of two humus forms (moder and calcic mull), in the presence or absence of earthworms. The observation of gut contents revealed that H. nitidus feeds on excrements, the composition of which (ratio organic matter/mineral matter) varies according to the humus form where it lived. Slightly aged (10–15 days) organo-mineral casts of earthworms appeared to be a better food than calcic mull aggregates or organic material from moder. Densities of H. nitidus cultured in cores of calcic mull were higher than in moder, except when cores of moder were inhabited by an anecic earthworm for 2 months. The humus form strongly influenced populations of H. nitidus, firstly because densities of predators were higher in moder than in calcic mull, and probably also because of soil macroporosity. It was concluded that earthworms would affect predation on H. nitidus by creating a network of interconnected macropores in which Collembola can move and find shelter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号