首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
双目立体视觉在果树采摘机器人中的应用   总被引:1,自引:0,他引:1  
果树采摘机器人是未来智能农业机械化的发展方向,具有广阔的应用前景。为此,针对果树采摘机器人作业环境的复杂性与定位目标的特殊性,从双目定位的几何模型出发,归纳了双目定位的基本过程,总结了立体视觉的摄像机标定问题,提出变焦距双目视觉定位果实的研究方向,并对双目图像的匹配问题进行了分析。  相似文献   

2.
针对当前机器人定位避障技术中,感知外界环境信息单一及误差大等问题,提出了一种基于双目视觉的农业机器人运动定位和避障系统,可以通过双目视觉采集农业机器人周边的环境信息,实现农业机器人运动定位和避障。MatLab实验结果表明:农业机器人从起点成功到达终点,算法路径为最优避障路径,证明了系统的准确性和可行性。  相似文献   

3.
针对采摘机器人对果蔬的位置定位不够准确、无法准确避障,导致采摘效率较低的问题基于深度双目视觉处理对智能采摘机器人进行了设计。智能采摘机器人的主要组成包括PLC控制器、视觉系统、移动平台、导航系统、机械臂、通信系统和电源。为了对采摘机器人的机械臂进行最优路径规划并避障,通过对采集的图像进行预处理后,利用双目视觉系统对果蔬进行精准定位,然后采用哈夫变换直线检测的方法进行最优路径的设计和选择,最终确定最优采摘路径。对采摘机器人进行运动轨迹精度试验和采摘试验,结果表明:采摘机器人对果蔬的采摘成功率较高,可以满足果农对于采摘机器人的要求。  相似文献   

4.
提高农药的利用率、降低污染,一直是农药喷洒技术的一个发展方向。为此,从分析传统农药喷洒方法入手,阐述了传统方法污染大、浪费严重的弊端,并在论述激光扫描成像系统原理的基础上,介绍了一种利用该成像装置的机载农药喷洒方法。有关实验数据表明,该方法具有节约、环保、高效等优点,具有极好的推广应用前景。  相似文献   

5.
提出了一种针对高粉尘强腐蚀环境的复合肥颗粒双目视觉检测系统。首先分析检测系统使用需求,提出实现连续大样本快速检测、实时显示结果、防腐除尘等功能的设计要求;提出3种双目视觉检测方案并进行对比,确定双目线阵CCD检测为可行方案。接着对系统硬件进行配置,并进行防腐除尘设计。为提高检测精度对电磁振动给料机进行自适应伺服控制,采用双相机并行的图像处理程序。对检测系统进行粒度分布实验,结果表明,检测系统误差在±3%范围内,满足实际应用要求。  相似文献   

6.
基于双目视觉的树木图像测距方法   总被引:3,自引:1,他引:3  
研究了双目视觉技术在智能对靶喷雾中的应用;试验中运用平行光轴的摄像机采集图像,通过寻找树木图像中特征点的方式将两幅图像进行匹配,解决相似性问题;再计算出目标树木到摄像头的距离及其误差,试验的平均偏差率在8%以内;运用该方法能达到智能喷雾中控制施药量的目的,提高精确智能对靶施药效率。  相似文献   

7.
针对目前农药变量喷洒技术缺乏的情况,开发了一种农药变量喷洒的控制系统。以往的农药变量喷洒控制系统大部分是利用读取流量传感器的值,然后通过调节拖拉机速度或者水压来控制喷头流量大小,进而达到在喷洒过程中单位面积的量相等。而本套控制系统是通过试验将PWM和速度通过公式整合起来,然后通过霍尔传感器来采集拖拉机速度来自动调节PWM的值,保证了单位面积内喷洒量的相同,从而达到变量喷洒、均匀喷洒的效果。  相似文献   

8.
分析了双目视觉系统的工作原理及视觉标定方法,利用YOLO V2卷积神经网络算法实现对目标果实的识别,并对目标果实的空间定位进行了深入研究,设计了一套基于双目视觉和机器学习的采摘机器人果实识别与定位系统。在多次实际定位实验中,橘子的深度定位误差最大值为1.06mm,证实了系统具有一定的准确性和稳定性。  相似文献   

9.
基于单片机的农药喷洒机械自动调平系统设计   总被引:2,自引:0,他引:2  
设计一套基于单片机STC89C51的农药喷洒机械自动调平控制系统,使安装在机械车上的农药喷洒装置在不平整的农田或山地作业时,始终能水平地喷洒农药。系统采用倾角传感器进行倾斜检测,再经单片机控制电路,最终由三位四通电磁换向阀控制液压缸完成自动调平。该系统对提高农药的利用率、降低农作物生产成本起着积极地推动作用。  相似文献   

10.
农用无人机市场大,发展迅速,双目视觉系统对周边环境检测能力强,被广泛用于路径规划、避障和导航中。针对农用无人机的路径规划和导航的特定场合,利用双目视觉、图像处理和嵌入式控制等技术,设计了一套农用无人机导航算法,可以为无人机提供准确的导航策略。  相似文献   

11.
基于机器视觉的室内农药自动精确喷雾系统   总被引:14,自引:1,他引:14  
建立了基于机器视觉的室内农药自动精确喷雾系统,对信号采集、图像处理、施药决策、数据交换等主要问题作了较深入的研究,提出了基于相对色彩因子的树木图像分割算法,和传统方法相比,在不影响分割效果的同时大大提高了图像分割的实时性。测试表明该系统运行良好,有很好的户外应用前景。  相似文献   

12.
宽幅施药机械机器视觉辅助导航系统研究   总被引:5,自引:0,他引:5  
为了实现宽幅施药机械喷幅的精确拼接,提出一种机器视觉辅助GPS导航方法。该方法首先对施药机械幅边喷洒泡沫剂并进行泡沫剂识别,识别过程中为了有效分割目标与背景,选定蓝色泡沫剂作为试验对象,提出使用超蓝色灰度化方案,并经过形态学滤波、行定位点的选取、Otsu分割提取泡沫剂信息,使用迭代的最小二乘法检测泡沫剂中心线的信息;然后给出了二维图形航向偏角和偏距的定义,并根据识别的泡沫剂信息进行航向偏角和偏差信息的提取,从而指导施药机械的行进方向。试验表明,所提方法可以较为准确地进行泡沫剂识别,根据泡沫剂信息识别得到的偏角计算值和实际测量值平均误差为1.58°,最大误差为2.5°,偏距计算值和实际测量值平均误差为5.4 cm,最大误差为8.4 cm,检测精度能够满足实际需求。  相似文献   

13.
秧苗嫁接机器人视觉与识别的研究   总被引:5,自引:2,他引:5  
研制了一套应用于瓜果秧苗嫁接机器人的视觉系统,该系统能判别秧苗品质和秧苗方向,使得瓜类秧苗嫁接机器人在保证质量情况下实现全自动嫁接成为可能。  相似文献   

14.
随着我国工业发展脚步的不断加快,机器人在工业智能化中发挥的作用日益突出,将其应用到机械零件分拣工作中,可以利用机器人的智能化特点,代替传统模式下的人工操作.基于此,本文主要从机器视觉技术出发,探讨基于机器视觉的工业机器人智能分拣系统设计,以此来为日后工业生产效率及质量的提升提供参考.  相似文献   

15.
基于双目立体视觉的果树三维信息获取与重构   总被引:6,自引:0,他引:6  
为实现果实收获机器人避障,研究了树枝空间信息提取方法和果树树枝三维重建方法:采用归一化互相关法获取立体图像视差图,在图像中提取树枝骨架并采用多线段逼近法提取特征点;结合视差图,利用双目立体视觉原理计算树枝骨架特征点的空间坐标,再利用距离图像求取树枝半径信息;将分枝点断开形成简单线图形,简化了树枝三维信息。在空间坐标原点采用12棱柱构建各段树枝模块,通过仿射变换将三维模块以正确的位姿与其他模块组合成果树模型。试验表明,生成的虚拟果树为水果采摘机器人避障及路径规划提供了环境参照。  相似文献   

16.
多喷枪协同式喷涂五轴混联机器人设计   总被引:10,自引:0,他引:10  
针对大型扁平型立方体工件的喷涂工艺特点,将并联机构应用于喷涂工艺,设计了一种控制解耦性很好的五轴混联喷涂机器人,阐述了这种喷涂机器人的机构设计、工作原理、运动学分析、驱动方式、控制系统硬件组成及其控制方式。该机器人具有结构紧凑、喷涂效率高、涂层厚度均匀和操作简便等特点,具有较好的应用前景。  相似文献   

17.
传统农业中覆盖式喷洒除草剂,不但浪费除草剂和人力资源,而且污染环境,因此采用计算机视觉技术把杂草从农作物和土壤的背景中识别出来,定量与定位地喷洒化学制剂就显得极为重要.动态杂草识别与喷洒系统不但与识别算法有关,还与摄像头的安装高度、安装角度以及喷头的距离有很大的关系.为了达到精确喷洒的目的,对系统的计算机视觉部分进行了深入的研究和设计,通过大量试验进行验证,为动态杂草识别与喷洒系统的精确喷洒做好了充分的准备.  相似文献   

18.
对靶喷雾系统中的时延估计是关系到整个系统实际喷雾命中率的关键问题。首先对经典的机载对靶喷雾模型进行了分析,总结出理论上机载设备长度、硬件延时、算法耗时、农机运行速度和理论对靶精确度之间的关系;然后,在此基础上提出了一套基于双目机器视觉的核心速度测算方法,并设计了喷雾时延估计模型;最后,通过搭建完整软硬件实验平台实现了对算法的有效性验证。实验结果表明:该算法可以在常用的基于机器视觉的农机装备中实现准确的常规对靶喷雾时延估计。  相似文献   

19.
机器人在农业生产、农产品运输等方面的应用程度,已逐渐成为农业智慧化水平的体现,而受农业环境复杂性的限制,机器人的导航路径规划及定位精度问题,仍是制约农业机器人应用的主要因素之一。为此,设计了一种基于单目视觉的农业机器人导航系统,通过摄像头采集农业机器人工作环境信息,建立机器人的视觉导航地图;采用级联分类器区域检测结合颜色标定的方法,使用户能够根据具体环境,自主规划机器人运动路径,实现机器人的实时定位与导航。实验结果表明:农业机器人沿用户自主规划的无轨道路径,可自动完成导航定位工作,并在路径各目标点获得了亚米级的定位精度,满足农业机器人的应用需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号