首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
研究了竹材热压干燥过程中的水分迁移特性.结果表明:在整个干燥过程中,前期含水率降低较快,后期含水率降低较慢.竹材平均干燥速度与次表层竹材的干燥速度相近;在含水率较高的干燥初期,水分迁移的阻力在竹材表面,水分迁移主要靠毛细管张力作用;在含水率较低的干燥后期.水分迁移的阻力在竹材内部.水分迁移主要以扩散方式进行,干燥速度取决于木材内部水分移动的速度.竹材热压干燥过程中的水分移动.主要受温度梯度和含水率梯度的共同作用.  相似文献   

2.
【目的】研究板坯含水率、目标密度、热压温度及板材厚度4个因素对棉秆重组材板坯中心层升温的影响,为制定棉秆重组材的热压工艺提供参考。【方法】采用先进的温度在线测量手段,测定棉秆重组材热压过程中板坯中心层的温度,分析板坯含水率、目标密度、热压温度及板材厚度与棉秆重组材板坯中心层升温速度的关系。【结果】棉秆重组材板坯热压时中心层温度的变化曲线可分为3个阶段,即水分开始气化前的快速升温段、水分气化时的恒温段和水分基本气化完的慢速升温段。在快速升温段,板坯中心层的升温速度随着板坯含水率、热压温度的增加而加快,随着目标密度、板材厚度的增加而减小;在水分气化时的恒温段,随着板坯含水率、目标密度、板材厚度的增大,气化段的时间延长,热压温度越高,气化段时间越短;在慢速升温段,热压温度高,板坯升温速度快,板材厚度、目标密度大的板坯升温速度慢,板坯含水率对慢速升温段的升温速度几乎没有影响。【结论】在棉秆重组材板坯热压过程中,板坯含水率、热压温度、目标密度和板材厚度对板坯中心层升温速度均有不同程度的影响。  相似文献   

3.
为了研究热压温度对硅烷化杨木(107杨Populus × euramericana)单板/高密度聚乙烯(HDPE)薄膜复合材料各项性能的影响,以乙烯基三甲氧基硅烷(A-171)和过氧化二异丙苯(DCP)为杨木单板的改性剂,在不同的热压温度下(140,150,160,170 ℃)与HDPE薄膜复合制备了硅烷化杨木单板/高密度聚乙烯(HDPE)薄膜复合材料。采用万能力学试验机、动态力学分析仪(DMA)和冷场发射扫描电子显微镜(SEM)测定了不同热压温度下复合材料的物理力学性能、动态热力学性能以及胶接界面结构的变化。结果表明:热压温度为140~150 ℃时,复合材料的界面结合力较弱,胶接界面层存在明显的缝隙。当热压温度达到160 ℃时,硅烷化杨木单板与HDPE大分子自由基发生充分有效的胶合,形成能有效提高复合材料性能的胶接界面结构。当热压温度从140 ℃升高到160 ℃时,胶合强度、静曲强度(MOR)和弹性模量(MOE)分别由1.27 MPa,63.90 MPa和5 970.00 MPa增加到1.89 MPa ,72.20 MPa和6 710.00 MPa,但热压温度继续增加,胶合强度和抗弯性能均降低。当热压温度从140 ℃增加到170 ℃时,复合材料24 h吸水率(WA)和吸水厚度膨胀率(TS)分别从72.41%和4.98%降至54.22%和4.09%。复合材料的储能模量保留率E′(130 ℃)由62.31%提高到92.01%,到达tanδmax的温度点从144 ℃延后至200 ℃。复合材料的耐高温破坏能力随着热压温度增加逐渐增强。图5参15  相似文献   

4.
人造板热压过程中板坯内部环境的研究进展   总被引:3,自引:0,他引:3  
板坯内部环境的研究及模拟能够为最优热压工艺的选择提供最基本的信息 .该文论述了国内外对人造板热压过程中板坯内部环境变化的研究及结果 ,重点阐述了板坯内部的温度场和气压变化及规律 .分析表明 :板坯内部的温度变化分为 3个阶段 ,即快速升温阶段、温度稳定阶段和后期的慢速升温阶段 ;内部气压由水蒸气分压和空气分压组成 .并针对国内外学者普遍将热压过程简化成一维非稳态导热过程进行研究的情况 ,提出了新的研究方案 .  相似文献   

5.
本文以日本柳杉和杉木小径圆柱材为研究对象,对常规干燥过程中木材内部的温度和含水率进行试验。结果表明:人工林日本柳杉和杉木小径圆柱材在干燥过程中木材内部温度形成了外高内低的整体性温度场,含水率在试件断面上形成了里高外低近抛物线分布。  相似文献   

6.
采用先进的温度在线测试方法,在不施加胶黏剂的情况下,研究热压板坯的密度对软木板热压过程中传热的影响。结果表明,软木板热压过程中芯层温度变化曲线可分为4段,即温度几乎不上升的短暂恒温段、水分汽化前的快速升温段、水分汽化时的恒温段、水分汽化后的慢速升温段;随着板材密度的增加恒温段持续时间延长;快速升温段表芯层中心点的温度随着密度的增加,升温速度变慢但程度不同;随着密度的增加板材芯层汽化温度升高,汽化段时间延长;芯层中心点达到100℃的时间也随密度的增加而增加。  相似文献   

7.
竹柳Salix discolor枝桠材的直径小,是重组木的好原材料。试验结果表明:在竹柳重组木为密度0.9 g·cm-3,脲醛树脂(UF)施胶量15%,枝桠材直径5~10 mm,木束长度150和450 mm,热压温度140℃,加压时间20 min,木束含水率6%条件下制得的竹柳重组木静曲强度为102.04 MPa,内结合强度1.99 MPa,2 h吸水厚度膨胀率3.78%,其值均达到或超过LY/T 1984-2011《重组木地板》行业标准的要求;扫描电子显微镜(SEM)图像表明:用脲醛树脂压制的竹柳重组木的管孔被压缩成椭圆形,但细胞壁本身并没有被压溃,仍然保持了其完整性,木束表面附着的胶黏剂均匀;X射线能谱(EDAX)表明枝桠材直径≥10 mm制得的重组木的碳氧比为0.55,枝桠材直径5~10 mm为0.60,枝桠材直径为≤5 mm为0.62。说明枝桠材直径对碳氧比有影响;且枝桠材制成的重组木的碳氧比高于枝桠材本身的碳氧比(0.41)。  相似文献   

8.
目的对热压干燥过程中杨木锯材芯层温度和压力进行测试,探究热压板温度对热压干燥过程中杨木锯材芯层温度和压力等参数及水分状态的影响,为热压干燥机理研究提供依据。方法采用集成探针同步测量并记录热压干燥过程中杨木锯材芯层温度和压力,通过对杨木锯材芯层压力测量值与测量温度对应的饱和蒸汽压力值(压力理论值)进行对比分析,进而推测热压板温度对热压干燥过程中杨木锯材水分状态的影响。结果当热压板温度从120℃升高到140℃时,杨木锯材芯层压力峰值从146.4kPa增大到213.1kPa,相应温度峰值从102.8℃升高到123.7℃,温度和压力同时达到峰值,到达峰值时间从17.5min缩短到11.6min。当热压板温度为120和130℃时,含水率高于纤维饱和点的杨木锯材芯层水分为过压的未饱和水,热压干燥后杨木锯材芯层终含水率(48.55%和49.88%)高于纤维饱和点;当热压板温度升高到140℃时,杨木锯材芯层自由水受热汽化形成水蒸气,并随着蒸汽温度的升高由饱和状态转化为过热状态,热压干燥后杨木锯材芯层终含水率(27.70%)低于纤维饱和点。结论热压干燥过程中热压板温度越高,杨木锯材芯层温度和压力达到的峰值越高,峰值持续时间越短。热压干燥过程中含水率高于纤维饱和点的杨木锯材水分状态根据热压板温度不同,可为液态水(过压的未饱和水)、饱和水蒸气或过热蒸汽状态。   相似文献   

9.
以定向刨花板厂的大片杨木刨花经简易粉碎设备粉碎分选得到的刨花和42.5强度等级的普通硅酸盐水泥为原料,Na2SiO3为添加剂,通过热压制板的方法,研究了热压温度和养护时间对快速固化水泥刨花板性能的影响。结果表明:①在85~95℃范围内,热压温度对厚板(20 mm)的物理力学性能无显著影响,而对薄板(12 mm)的弹性模量和吸水厚度膨胀率影响显著。②水泥刨花板卸出压机后的自然养护时间对快速固化水泥刨花板物理力学性能的影响主要取决于板在养护期间水泥的水化情况。厚板卸出压机后的含水率高,养护期间水泥水化好,养护时间对性能的影响显著;薄板卸出压机后含水率低,养护期间水泥水化不如厚板好,养护时间对性能无显著影响。表7参10  相似文献   

10.
以马尾松为试验对象,研究了微波干燥过程中,初含水率对木材内部温度、水蒸气压力的影响,旨在为微波干燥过程中木材干燥质量的控制提供依据。研究结果表明:在微波辐射功率相同的条件下,不同初含水率的木材内部蒸汽达到最大值的时间很接近,并且木材初含水率越高,木材内部蒸汽压力上升越快,压力峰值越大,最大压力值保持的时间越短,蒸汽压力下降的越迅速。木材在微波加热过程中,木材温度达到恒温段之前,压力上升比较缓慢,达到恒温段之后,压力迅速上升,很快达到最大压力值。木材初含水率高,压力峰值大,其相应的温度也高。  相似文献   

11.
对1998年至2008年间生的毛竹进行了8个年份的材性测试,主要研究了毛竹材质老化过程中各年龄段的生材含水率、基本密度、全干干缩系数与竹龄及生长部位的关系.研究表明,毛竹不同出生年份的生材含水率、全干干缩率和吸水率这三方面的性能总体上呈现出两端高中间低的"u"型,而在基本密度表现为上"n"型,竹龄4~10年为这两个相反型的谷底和峰高两个转折点,则表现为4~10年为材质稳定期.10年以上毛竹的老化则表现出基本密度的下降和干缩性的增大及吸水率的增高.4~10年生毛竹在材用上可以选用,在此范围内,竹子越老,基本密度的值也越大,差异千缩小,则原竹的抗裂性越好,可以直接用于建筑用原竹的原料.
Abstract:
The basic physical properties,including green moisture content,basic density,solute shrinkage coefficient and water absorption ratio,of moso bamboo(Phyllostachys pubescens)were measured from1998 to 2008 every year.The results indicated that the relation between green moisture content,solute shrinkage coefficient and water absorption ration of bamboo and age showed a U-shaped curve,while the relation between basic density of bamboo and age showed a ∩-shaped curve.Both the valley bottom of basic density and valley peak occurred from 4-year-old to 10-year-old,illustrating that the period from 4 to10 years is the period of stability of its quality Moso bamboo 10 years old or more showed increased water absorption ratio and solute shrinkage coefficient and decreased basic density.Bamboo with an age of 4-10years is suitable material for green buildings,for it has high basic density and resistance to shrinkage and crack.  相似文献   

12.
微波真空干燥过程中木材内部的温度分布   总被引:4,自引:2,他引:2  
该文以马尾松木材为研究对象,对微波真空干燥过程中木材内部的温度分布进行了研究.结果表明:在一定的辐射功率(160 kW/m3)和厚度(60 mm)范围内,木材内的温度分布比较均匀,基本不呈现出整体性的温度梯度;在干燥的后期,木材内温度分布的局部不均匀性有加大的趋势;在微波真空干燥过程中,木材内部的温度差是由于微波场和湿木材本身不同部位介电特性的差异引起的,这种不均匀性以局部的形式存在于木材中.   相似文献   

13.
竹柳Salix discolor作为一种速生木材在人造板的应用方面具有较大的潜力。运用扫描电子显微镜、红外吸收光谱仪对竹柳枝丫材的纤维形态、化学成分、胶接界面进行了分析, 并测定了竹柳枝丫材的接触角。结果表明:竹柳纤维的平均长度为0.781 mm, 壁腔比小于1, 是很好的纤维原料, 总纤维素含量高, 润湿性较好。在此基础上研究了重组木的密度和酚醛树脂胶黏剂的浸胶时间对板材性能的影响。结果表明:竹柳枝丫材重组木的密度为0.9 g·cm-3, 浸胶时间为20 s时制得的板材的性能最佳。  相似文献   

14.
利用热重红外联用技术(TG-FTIR)研究了竹材综纤维素在不同升温速率下(5.0, 10.0, 15.0, 20.0和30.0℃·min-1)的热解特性和热解动力学。热重分析/热重一次微分曲线(TG/DTG)表明:竹材综纤维素热解可分为干燥、快速裂解和慢速裂解等3个阶段; 随着升温速率增加, TG/DTG曲线往高温一侧移动; 竹综纤维素热解过程发生复杂的化学反应, 包括多重、平行和连续反应; 热解挥发分主要由小分子CO, H2O, CH4和CO2, 以及一些醛类、酮类、酸类、烷烃、醇类和酚类等有机物组成。利用无模式函数积分法, 即Flynn-Wall-Ozawa(FWO)和Kissinger-Akahira-Sunose(KAS)积分法, 对其热解动力学进行研究。结果表明:竹材综纤维素的活化能随着转化率的升高先增大后减小再增大, 活化能数值的变化与纤维素/半纤维素不同的热解特性有紧密联系。  相似文献   

15.
以精刨竹碎料和酚醛树脂为原料,采用高温真空炭化烧结工艺制备了竹材陶瓷,研究了烧结工艺对竹材陶瓷性能、物相组成和微观结构等的影响。结果表明:①烧结温度对竹材陶瓷的尺寸收缩率有较大影响,当烧结温度为600~1 200 ℃时,竹材陶瓷的尺寸收缩率大于20%范围内;②竹材陶瓷的密度减少率在600~1 000 ℃范围内,随着烧结温度的升高逐渐降低,在1 000~1 200 ℃范围内,随着烧结温度的升高逐渐增加;③随着烧结温度的升高,竹材陶瓷的炭得率降低、静曲强度和弹性模量升高、石墨化程度逐渐增强;④酚醛树脂经高温炭化后形成的硬质玻璃碳对竹材细胞起填充、强化作用;⑤竹材陶瓷的较佳烧结温度范围为800~1 000 ℃。图7参15  相似文献   

16.
常压高温热处理对红竹竹材物理力学性能的影响   总被引:1,自引:0,他引:1  
以红竹Phyllostachys iridescins为研究对象,研究了常压高温热处理温度(110,130,150,170℃)与处理时间(1,2,3 h)对红竹竹材物理力学性能的影响。结果表明:热处理后红竹材的物理力学性能优于未处理竹材,热处理温度是影响竹材性能的主要因素;在110,130,150,170℃热处理温度下,圆竹材顺纹抗压强度增长率为35.90%~52.01%,圆竹材顺纹抗剪强度增长率43.24%~90.99%,圆竹材抗弯强度增长率42.47%~122.58%,圆竹材径向环刚度增长率2.14%~52.55%;170℃热处理竹材的各项干缩性能较好;130℃和150℃热处理竹材的力学性能相近。综合各因素,适宜原竹家具用材红竹竹材的热处理工艺为温度130℃,时间2 h。  相似文献   

17.
微波干燥过程中木材内蒸汽压力与温度的变化特性   总被引:1,自引:1,他引:0  
该研究利用T型聚四氟乙烯连接装置将温度传感器和压力传感器与被干材内部的待测点相连,实现了微波干燥过程中对木材内部同一点温度、蒸汽压力的同步测定.主要分析了木材内温度、蒸汽压力在微波场中的变化特性及其相互关系,并对温度、蒸汽压力的变化与微波干燥中出现的内裂、炭化等干燥缺陷的相关性进行了初步探讨.研究结果表明, 木材在微波干燥过程中,温度的变化大致分为3个阶段:快速升温段,恒温段和后期升温段;微波辐射功率增高,升温速度加快,恒温段温度提高,恒温段时间缩短;微波辐射功率提高,木材内部蒸汽压力上升速度相应加快,压力峰值也相应变大,最大压力值保持的时间变短.压力上升速度伴随着温升速度的加快而加快,当温度升高到恒温段时,压力也同时达到最大值.内裂通常出现在木材干燥恒温段初期,主要由于高含水率木材内部过高的蒸汽压力造成;炭化通常出现在木材干燥后期,主要由于低含水率木材高温点的介电特性造成.   相似文献   

18.
马尾松Pinus massoniana是中国重要的速生人工林树种。采用热化学转化法,可制取生物质燃气、生物质炭和生物油等高品质燃料。采用固定床热解反应器,开展了热解温度(400,500,600和700 ℃)对马尾松慢速热解过程产物产率和基本特性的影响研究。结果表明:随着反应温度的升高,气体产率逐渐增加,炭产率和生物油产率逐渐减少;在700 ℃时,可燃气的最高热值为12.11 MJN-1m-3,气体成分及其体积分数为二氧化碳CO2(24.00%),一氧化碳CO(25.00%),甲烷CH4(15.50%),氢气H2(25.50%)和烃类气体CnHm(2n4)(0.97%);炭的最高低位热值和比表面积分为31.8 MJkg-1和536.13 m2g-1;生物油中乙酸(5.30%),1-羟基-2-丁酮(4.11%),乙酰甲醇(8.46%),苯酚(2.66%)和甲基苯酚(3.87%)的相对含量最高。图3表3参18  相似文献   

19.
以废弃杨木水泥模板纤维为原料制造纤维板, 实现杨木的循环利用。对水泥模板以及分离好的纤维性能进行测试分析, 并分别以废弃杨木水泥模板纤维、新鲜杨木纤维为原料制造不同密度的纤维板, 讨论原料特性和施胶量对板材性能的影响。研究结果表明:废弃杨木水泥模板表面碳元素含量高于杨木单板表面, 而水泥模板表面的氧元素含量较低; 废弃杨木水泥模板纤维的堆积密度与新鲜杨木纤维基本相同; 当用水泥模板制得的纤维板密度达到0.75 g·cm-3时, 板材的力学性能和吸水厚度膨胀率(TS)值均优于其他密度的板材, 当施胶量大于等于12.0%时, 板材的弹性模量(MOE), 静曲强度(MOR), 内结合强度(IB)性能均能满足国家标准值的要求。因此, 废弃杨木水泥模板完全可以替代普通杨木制造纤维板。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号