首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pot experiment was conducted to evaluate native plant species associated with exogenous AMF for their suitability in the revegetation of iron mine tailings of Inner Mongolia grassland. Agropyron cristatum (L.) Gaertn. and Elymus dahuricus Turcz. associated with AMF, Glomus mosseae, or Glomus versiforme, were grown on iron mine tailings to assess the mycorrhizal effects on plant growth, mineral nutrition uptake, C:N:P stoichiometry, and heavy metals uptake. The symbiotic associations were successfully established between exogenous AMF and two native plants, and root colonization rates of G. versiforme were significantly (P?<?0.05) higher than those of G. mosseae. G. versiforme was more effective than G. mosseae in promoting plant growth by significantly (P?<?0.05) increasing the concentrations of N, P, and K and decreasing the ratios of C:N:P. The shoot and root dry weights of A. cristatum and E. dahuricus were increased by 51–103 %. The N, P, and K concentrations of shoots and roots of two plants were increased by 18–236 %. Inoculation with AMF also significantly (P?<?0.05) decreased concentrations of heavy metals in the shoots and increased those in the roots, indicating that AMF could confer some degree of heavy metal tolerance to plants. The results indicated that plant inoculation with G. versiforme was more suitable than inoculation with G. mosseae for the revegetation of iron mine tailings. The experiment provided evidence for the potential use of local plant species in combination with exogenous AMF for ecological restoration of metalliferous tailings in arid and semi-arid grassland.  相似文献   

2.
Rare earth elements (REE) of mine tailings have caused various ecological and environmental problems. Revegetation is one of the most cost-effective ways to overcome these problems, but it is difficult for plants to survive in polluted tailings. Arbuscular mycorrhizal fungi (AMF) can provide biotic and abiotic stress tolerance to its host plant and has widely adopted for the revegetation of degraded ecosystems. However, little is known about whether AMF plays role in facilitating the revegetation of REE of mine tailings. The objective was to investigate the uptake of nutrients and REE when plants are inoculated with AMF. A greenhouse pot experiment was conducted on the effects of Glomus mosseae and Glomus versiforme for the growth, nutritional status, and uptake of REE and heavy metals by maize (Zea mays L.) or sorghum (Sorghum bicolor L. Moench) grown in REE of mine tailings. The results indicated that symbiotic associations were successfully established between AMF and the two plant species. G. versiforme was more effective than G. mosseae at promoting plant growth by significantly increasing the uptake of nitrogen (N), phosphorus (P), and potassium (K) and decreasing carbon:nitrogen:phosphorus (C:N:P) stoichiometry. The shoot and root dry weights of the two plant species were increased by 211–387% with G. versiforme inoculation. Maize and sorghum exhibited significant differences in the REE concentrations in response to the colonization by AMF. The shoot and root lanthanum (La), cerium (Ce), praseodymium (Pr), and neodymium (Nd) concentrations of the maize inoculated with G. versiforme were decreased by approximately 70%, whereas those in the roots of sorghum were increased by approximately 70%. G. mosseae only significantly decreased the La, Ce, Pr, and Nd concentrations in the maize shoots. Inoculation with AMF also significantly decreased the concentration of certain heavy metals in the shoots and roots of maize and sorghum. These findings indicate that AMF can alleviate the effects of REE and heavy metal toxicity on plants and enhance the ability of plants to adapt to the composite adversity of REE in mine tailings.  相似文献   

3.
The effects of soil disturbance and residue retention on the functionality of the symbiosis between medic (Medicago truncatula L.) and arbuscular mycorrhizal fungi (AMF) were assessed in a two-stage experiment simulating a crop rotation of wheat (Triticum aestivum L.) followed by medic. Plants were inoculated or not with the AMF, Glomus intraradices and Gigaspora margarita, separately or together. The contribution of the arbuscular mycorrhizal (AM) pathway for P uptake was determined using 32P-labeled soil in a small hyphal compartment accessible only to hyphae of AMF. In general AM colonization was not affected by soil disturbance or residue application and disturbance did not affect hyphal length densities (HLDs) in soil. At 4 weeks disturbance had a negative effect on growth and phosphorus (P) uptake of plants inoculated with G. margarita, but not G. intraradices. By 7 weeks disturbance reduced growth of plants inoculated with G. margarita or AMF mix and total P uptake in all inoculated plants. With the exception of plants inoculated with G. margarita in disturbed soil at 4 weeks, the AM pathway made a significant contribution to P uptake in all AM plants at both harvests. Inoculation with both AMF together eliminated the negative effects of disturbance on AM P uptake and growth, showing that a fungus insensitive to disturbance can compensate for loss of contribution of a sensitive one. Application of residue increased growth and total P uptake of plants but decreased 32P in plants inoculated with the AMF mix in disturbed soil, compared with plants receiving no residue. The AMF responded differently to disturbance and G. intraradices, which was insensitive to disturbance, compensated for lack of contribution by the sensitive G. margarita when they were inoculated together. Colonization of roots and HLDs in soil were not good predictors of the outcomes of AM symbioses on plant growth, P uptake or P delivery via the AM pathway.  相似文献   

4.
Arbuscular Mycorrhizae Fungi (AMF) inoculations may improve growth and nutrient uptake of cotton (Gossypium hirsutum L.) plant. Although the importance of mycorrhizal symbioses for growth and nutrient acquisition of cotton plant is known, less is known about mycorrhizal dependency on P and Zn nutrition under low Zn fertile soil conditions. A greenhouse experiment was conducted to investigate the effect of different of P and Zn fertilizer addition on cotton plant growth as well as Zn and P uptake. Sterilized and non-sterilized low Zn fertile Konya series soil was treated with different levels of P and Zn. Soils were inoculated with two mycorrhizae species like Funneliformis mosseae and Claroideoglomus etunicatum after sterilization. Results showed that mycorrhizal inoculation on plant growth and nutrient uptake has significant effect when soil was sterilized. Cl. etunicatum mycorrhizae species has greater effect than Fu. mosseae mycorrhizae species. Root colonization increased 23–65% due to mycorrhizal amendment. The shoot: root ratio increased by 13 and 22% for non-sterile and sterile condition respectively in mycorrhiza amended soil. Mycorrhizal dependency varies 1–55% and 3–64% for non-sterile and sterile soil respectively on mycorrhizae, P and Zn amended soil. Mycorrhizal dependency analysis showed that cotton plant in both sterile and non-sterile soil conditions depends on mycorrhizae species, P nutrition, however is less depend on Zn nutrition. This study concluded that the inoculation of cotton plant with selected mycorrhizae is necessary under both sterile and non-sterile soil conditions.  相似文献   

5.
The effect of Bacillus thuringiensis (B.t.) inoculation on plant growth and on the intra- and extraradical mycorrhizal development of lettuce roots colonized by Glomus mosseae or Glomus intraradices was examined in an inert, soil-less substrate. Histochemical determination of succinate dehydrogenase (SDH) and alkaline phosphatase (ALP) activities which indicate active fungal metabolism was carried out at two phosphorus (P) levels. The presence of B.t. increased extra- and intraradical colonization [measured as frequency (%F), intensity (%I) and percentage of arbuscules (%A)] for both arbuscular mycorrhizal fungi (AMF) rather than plant growth or nutrition regardless P level. Under the lowest level of P fertilization, B.t. enhanced to a similar extent the extra- and intraradical development of both endophytes, but the proportion of fungal tissue showing SDH or ALP was increased in G. intraradices-colonized plants. [SDH: 458% (M) and 512% (A); ALP: 358% (M) and 300% (A)]. P supply decreased G. intraradices colonization to a higher extent than G. mosseae. Nevertheless, the totality of G. intraradices structures developed in P-amended medium showed intraradical o extraradical activity, while in G. mosseae-colonized roots, SDH and ALP activities highly decreased relative to fungal tissue determined by TB staining as affected by P. Our results show that bacterial inoculation compensates the negative effect of P on the intraradical fungal growth and vitality. P amendment reduced in a higher extent G. intraradices infection intensity (non-vital and vital staining) and G. mosseae activity (ALP staining). Thus, big differences in the proportion of SDH-active infection showing ALP activity in mycelium developed by each endophyte were noted at the highest P level. Physiological plant parameters such as photosynthetic activity did not explain specific changes on each arbuscular-mycorrhizal fungus as affected by P or B.t. inoculation. The increased extraradical mycelium development and metabolic fungal activity as a result of B.t. inoculation positively affected N and P plant content and photosynthetic rate in G. intraradices-colonized plants under the lowest P conditions. In general, the increased metabolically active fungal biomass in co-inoculated plants was irrespective of P level and was not related to the P plant uptake from the inert soil-less substrate. These results show the bacterial effect increasing the physiological and metabolic status of AM endophytes, which not only confirms but also extends previous findings on arbuscular mycorrhizae-bacteria interactions. The present study emphasizes the ecological and practical importance of rhizosphere free-living bacteria as mycorrhizae-helper microorganisms.  相似文献   

6.
The systemic effect of root colonization by the arbuscular mycorrhizal fungus (AMF) Glomus mosseae on the susceptibility of old and modern barley varieties to the soil-borne fungal pathogen Gaeumannomyces graminis var. tritici (Ggt) was studied in a split-root system. Plants were precolonized on one side of the split-root system with the AMF and thereafter the other side of the split-root system was inoculated with the pathogen. At the end of the experiment the level of bioprotection was estimated by quantifying lesioned roots and the determination of the root fresh weight. AM root colonization provided protection in some of the barley genotypes tested, but not in others. This protective effect seemed to vary in the oldest and the most modern barley variety tested.  相似文献   

7.
The spatial and temporal nature of the precise interactions between soil fungi and roots and their subsequent role in developing soil structure is still a subject where our understanding is limited. This research examines the relationship between three species of arbuscular mycorrhizal fungus (AMF) and soil structural characteristics. Plantago lanceolata was inoculated with one of: Glomus geosporum, Glomus mosseae or Glomus intraradices, and every combination of the fungal species. Infectivity was similar for each individual species, but G. mosseae and G. intraradices together resulted in the lowest per cent root length colonised. Despite the lower percentage colonisation, this combination induced the greatest mycorrhizal growth response. Aggregate stability and aggregate size distribution were unaffected by AMF but were increased by the presence of roots. Microbial biomass-C was also enhanced by roots. Pore size, pore size distribution and nearest neighbour distance were all reduced by G. mosseae and increased by G. intraradices. All AMF inocula containing G. intraradices resulted in greater distances between pores within the experimental soils. Porosity (%) was increased by G. mosseae suggesting that more, smaller pores with less distance between them enhanced overall porosity.  相似文献   

8.
This study evaluated the interactive effect of arbuscular mycorrhizal fungi (AMF) inoculation and exogenous phosphorus supply on soil phosphotases, plant growth, and nutrient uptake of Kandelia obovata (Sheue, Liu & Yong). We aimed to explore the ecophysiological function of AMF in mangrove wetland ecosystems, and to clarify the possible survival mechanism of mangrove species against nutrient deficiency. K. obovata seedlings with or without AMF inoculation (mixed mangrove AMF), were cultivated for six months in autoclaved sediment medium which was supplemented with KH2PO4 (0, 15, 30, 60, 120 mg kg−1). Then the plant growth, nitrogen and phosphorus content, root vitality, AMF colonization and soil phosphatase activity were analyzed. The inoculated AMF successfully infected K. obovata roots, developed intercellular hyphae, arbuscular (Arum-type), and vesicle structures. Arbuscular mycorrhizal fungi colonization ranged from 9.04 to 24.48%, with the highest value observed under 30 and 60 mg kg−1 P treatments. Soil P supply, in the form of KH2PO4, significantly promoted the height and biomass of K. obovata, enhanced root vitality and P uptake, while partially inhibiting soil acid (ACP) and alkaline phosphotase (ALP) activities. Without enhancing plant height, the biomass, root vitality and P uptake were further increased when inoculated with AMF, and the reduction on ACP and ALP activities were alleviated. Phosphorus supply resulted in the decrease of leaf N–P ratio in K. obovata, and AMF inoculation strengthened the reduction, thus alleviating P limitation in plant growth. Arbuscular mycorrhizal fungi inoculation and adequate P supply (30 mg kg−1 KH2PO4) enhanced root vitality, maintained soil ACP and ALP activities, increased plant N and P uptake, and resulted in greater biomass of K. obovata. Mutualistic symbiosis with AMF could explain the survival strategies of mangrove plants under a stressed environment (waterlogging and nutrient limitation) from a new perspective.  相似文献   

9.
The mycorrhizal enhancement of plant growth is generally attributed to increased nutrients uptake. A greenhouse experiment was conducted to investigate the effect of arbuscular mycorrhizal fungi (AMF) inoculation on the growth and nutrient uptake of directly seeded wetland rice. Seeds were germinated and inoculated with arbuscular mycorrhizal fungi or left uninoculated. The plants were grown at 60% of ‐0.03 MPa to establish the mycorrhizas. After 5 weeks, half of the pots were harvested and the rest were flooded with deionized water to maintain 3–5 cm of standing water until harvesting (122 days after sowing). Mycorrhizal fungal colonization of rice roots was 36.2% at harvest. Mycorrhizal fungi inoculated rice seedlings grew better compared to uninoculated seedlings and had increased grain yield (10%) at the harvesting stage. Shoot and root growth were effectively increased by AMF inoculation at the harvesting stage. The nitrogen (N) and phosphorus (P) acquisition of direct seeding wetland rice were significantly increased by AMF inoculation. The AMF enhanced N and P translocation through the hyphae from soils to roots/shoots to grains effectively.  相似文献   

10.
The growth of clover (Trifolium repens ) and its uptake of N, P and Ni were studied following inoculation of soil with Rhizobium trifolii, and combinations of two Ni-adapted indigenous bacterial isolates (one of them was Brevibacillus brevis) and an arbuscular mycorrhizal (AM) fungus (Glomus mosseae). Plant growth was measured in a pot experiment containing soil spiked with 30 (Ni I), 90 (Ni II) or 270 (Ni III) mg kg−1 Ni-sulphate (corresponding to 11.7, 27.6 and 65.8 mg kg−1 available Ni on a dry soil basis). Single inoculation with the most Ni-tolerant bacterial isolate (Brevibacillus brevis) was particularly effective in increasing shoot and root biomass at the three levels of Ni contamination in comparison with the other indigenous bacterial inoculated or control plants. Single colonisation of G. mosseae enhanced by 3 fold (Ni I), by 2.4 fold (Ni II) and by 2.2 fold (Ni III) T. repens dry weight and P-content of the shoots increased by 9.8 fold (Ni I), by 9.9 fold (Ni II) and by 5.1 fold (Ni III) concomitantly with a reduction in Ni concentration in the shoot compared with non-treated plants. Coinoculation of G. mosseae and the Ni-tolerant bacterial strain (B. brevis) achieved the highest plant dry biomass (shoot and root) and N and P content and the lowest Ni shoot concentration. Dual inoculation with the most Ni-tolerant autochthonous microorganisms (B. brevis and G. mosseae) increased shoot and root plant biomass and subtantially reduced the specific absorption rate (defined as the amount of metal absorbed per unit of root biomass) for nickel in comparison with plants grown in soil inoculated only with G. mosseae. B. brevis increased nodule number that was highly depressed in Ni I added soil or supressed in Ni II and Ni III supplemented soil. These results suggest that selected bacterial inoculation improved the mycorrhizal benefit in nutrients uptake and in decreasing Ni toxicity. Inoculation of adapted beneficial microorganisms (as autochthonous B. brevis and G. mosseae) may be used as a tool to enhance plant performance in soil contaminated with Ni.  相似文献   

11.
菌根对紫色土上间作玉米生长及磷素累积的影响   总被引:4,自引:2,他引:4  
丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)在土壤与植物系统的磷素循环中发挥着关键的作用。本文通过盆栽模拟试验研究了不同AMF接种状况[不接种(NM)、接种Glomus mosseae(GM)、接种G.etunicatum(GE)]和玉米/大豆间作体系不同根系分隔方式(不分隔、尼龙网分隔、塑料膜分隔)对间作玉米植株生长及磷素吸收累积的影响。研究结果表明:GM处理下的间作玉米根系侵染率在不同根系分隔方式之间的差异不显著,而GE处理则在塑料膜分隔处理下对玉米的侵染率最高。接种不同AMF对间作玉米促生效果不同,GM和GE处理在不同根系分隔情况下表现出各自的优势,与未接种处理相比,GM处理能使玉米生物量、株高有一定程度增加并在根系不分隔处理下玉米磷吸收较多、生长较好;GE处理能使植株生物量有一定程度增加并在尼龙网分隔处理下的玉米磷吸收较多、生长较好。间作体系不同根系分隔方式对玉米的影响也不同,其中玉米地上部生物量在根系分隔处理下普遍小于不分隔处理,但根系生物量的大小情况则刚好相反。另外,无论何种接种状况,玉米根系磷含量及吸收量均以尼龙网分隔处理显著较高。而根系磷吸收效率则以接种G.mosseae且不分隔根系处理显著高于分隔处理。所有复合处理中,以接种G.etunicatum与尼龙网分隔根系组合处理对间作玉米的生长及磷素累积的促进作用最好,若应用于滇池流域,可望有效控制坡耕地土壤磷素的迁移。  相似文献   

12.
The systemic effect of root colonization by the arbuscular mycorrhizal fungus Glomus mosseae on infection of barley by Gaeumannomyces graminis var. tritici (Ggt) was studied. In split-root systems of barley one side was inoculated with G. mosseae and the other side was inoculated with Ggt.Root infection by Ggt was systemically reduced when barley plants showed high degrees of mycorrhizal root colonization, whereas a low mycorrhizal root colonization exhibited no effect on Ggt infection. Our results show a clear systemic bioprotectional effect depending on the degree of root colonization by the mycorrhizal fungus. At a higher mycorrhizal colonization rate the concentration of salicylic acid (SA) was increased in roots colonized by the mycorrhizal fungus but no systemic increase of SA could be measured in non-mycorrhizal roots of mycorrhizal plants, indicating that the systemic bioprotectional effect against Ggt is not mediated by salicylic acid.  相似文献   

13.
The effect of inoculation with the saprophytic fungi Alternaria alternata or Fusarium equiseti on maize (Zea mays) and lettuce (Lactuca sativa) with or without arbuscular mycorrhizal (AM) colonization by Glomus mosseae was studied in a greenhouse trial. Plant dry weights of non-AM-inoculated maize and lettuce were unaffected by the presence of A. alternata and F. equiseti. In contrast, A. alternata and F. equiseti decreased plant dry weights and mycorrhization when inoculated to the rhizosphere before G. mosseae. The saprophytic fungi inoculated 2 weeks after G. mosseae did not affect the percentage of root length colonized by the AM endophyte, but did affect its metabolic activity assessed as succinate dehydrogenase activity. Although F. equiseti inoculated at the same time as G. mosseae did not affect mycorrhization of maize roots, its effect on AM colonization of lettuce roots was similar to that with A. alternata. In the rhizosphere of both plants, the population of saprophytic fungi decreased significantly, but was not affected by the presence of G. mosseae. Our results suggest that there may have been a direct effect of the saprophytic fungi on the mycorrhizal fungi in the extramatrical phase of the latter, and when the AM fungus was established in the root the AM fungus was less affected by the saprophytic fungi. Received: 16 January 1996  相似文献   

14.
Effectiveness of arbuscular mycorrhizal fungi (AMF) is crucial for maximum plant growth and acquisition of mineral nutrients under drought. The objective of this research was to determine effects of varied rates of AMF inoculum on plant growth and acquisition of phosphorus (P), zinc (Zn), copper (Cu), and manganese (Mn) by barley (Hordeum vulgare L. cv. SLB‐6) grown with and without drought stress (WS and nonWS). Plants inoculated with four inoculum rates [control (M0), 120 (M1), 240 (M2), and360 (M3) spores per 100 g dry soil] of Glomus mosseae were grown in a low P silty clay (Typic Xerochrept) soil (pH=8.0) mix in a greenhouse for 45 days. Root AMF colonization increased as inoculum rate increased in plants grown with WS and nonWS. Leaf area and shoot and root dry matter (DM) increased as inoculum rate increased up to M2 regardless of soil moisture. Shoot concentrations of P, Cu, and Mn were generally higher for mycorrhizal (AMF) than for nonmycorrhizal (nonAMF) plants grown with both WS and nonWS. Shoot contents of P, Zn, Cu, and Mn were higher for AMF than for nonAMF plants grown with nonWS, and shoot contents of P were higher for AMF than for nonAMF plants with WS. For plants grown with WS and nonWS, contents of P, Zn, Cu, and Mn were generally higher for plants inoculated with M2 compared to other rates of inoculum. The results of this study indicated that plant responses to root colonization with AMF were dependent on AMF rate and soil moisture. Based on enhancements in plant DM and mineral acquisition traits, M2 inoculum was the most effective rate of inoculation for this AMF isolate.  相似文献   

15.
The P efficiency, crop yield, and response of maize to arbuscular mycorrhizal fungus (AMF) Glomus caledonium were tested in an experimental field with long-term (18-year) fertilizer management. The experiment included five fertilizer treatments: organic amendment (OA), half organic amendment plus half mineral fertilizer (1/2 OM), mineral fertilizer NPK, mineral fertilizer NK, and the control (without fertilization). AMF inoculation responsiveness (MIRs) of plant growth and P-uptake of maize were estimated by comparing plants grown in unsterilized soil inoculated with G. caledonium and in untreated soil containing indigenous AMF. Soil total P, available P, microbial biomass P, alkaline phosphatase activity, plant biomass, crop yield and total P-uptake of maize were all significantly increased (P < 0.05) by the application of OA, 1/2 OM, and NPK, but not by the application of NK. Specifically, the individual crop yield of maize approached zero in the NK-fertilized soils, as well as in the control soils. All maize plants were colonized by indigenous AMF, and the root colonization at harvest time was not significantly influenced by fertilization. G. caledonium inoculation increased mycorrhizal colonization significantly (P < 0.05) only with the NK treatment, and produced low but demiurgic crop yield in the control and NK-fertilized soils. Compared to the inoculation in balanced-fertilized soils, G. caledonium inoculation in either the NK-fertilized soils or the control soils had significantly greater (P < 0.05) impacts on soil alkaline phosphatase activity, stem length, plant biomass, and total P-uptake of maize, indicating that AMF inoculation was likely more efficient in extremely P-limited soils. These results also showed that balanced mineral fertilizers and organic amendments did not differ significantly in their effects on MIRs in these soils.  相似文献   

16.
Earthworms and arbuscular mycorrhizal fungi (AMF) are important macrofauna and microorganisms of the rhizosphere. The effect of the inoculation of soil with earthworms (Aporrectodea trapezoides) and mycorrhiza (Rhizophagus intraradices) on the community structure of mycorrhizal fungi and plant nutrient uptake was determined with split plots in a maize field. Maize plants were inoculated or not inoculated with AMF, each treated with or without earthworms. Wheat straw was added as a feed source for earthworms. Inoculating AMF significantly increased maize yield (p?<?0.05), and the yield was further enhanced by the addition of earthworms. Alkaline phosphomonoesterase activities, soil microbial biomass carbon (SMBC) and nitrogen (SMBN) increased with the addition of both earthworms and AMF. Soil inorganic N and available K were positively affected by earthworms, while available P showed a negative relationship with AMF. Treatment with both AMF and earthworms increased shoot and root biomass as well as their N and P uptake by affecting soil phosphomonoesterase and urease activities, SMBC, SMBN, and the content of available nutrients in soil. The applied fungal inoculants were successfully traced by polymerase chain reaction with novel primers (AML1 and AML2) which target the small subunit rRNA gene. The amplicons were classified by restriction fragment length polymorphism and sequencing. Moreover, field inoculation with inocula of non-native isolates of R. intraradices appeared to have stimulated root colonization and yield of maize. Adding earthworms might influence native AMF community, and the corresponding abundance increased after earthworms were inoculated, which has positive effects on maize growth.  相似文献   

17.
A pot experiment was used to evaluate the effects of an arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae on plant growth performance, root-hair growth, and root hormone levels in trifoliate orange (Poncirus trifoliata) seedlings under well-watered (WW) and drought stress (DS). A 9-week mild DS treatment significantly reduced mycorrhizal colonization of 2nd- and 3rd-order lateral roots. Root mycorrhizal colonization was relatively higher in the 2nd- and 3rd-order lateral roots than in the taproot and the 1st-order lateral root under WW and DS. AMF seedlings exhibited significantly higher root-hair density, length (except for the taproot) and diameter in taproot and 1st-, 2nd-, and 3rd-order lateral roots under WW, and considerably higher root-hair density (except for 1st-order lateral root), length (except for 2nd-order lateral root) and diameter under DS. Mycorrhizal inoculation remarkably increased root abscisic acid (ABA), indole-3-acetic acid (IAA), methyl jasmonate, and brassinosteroids (BRs) concentrations under DS, in company with the decrease in root zeatin riboside and gibberellins levels and root IAA effluxes. Root-hair traits were significantly positively correlated with root colonization and root ABA and BRs levels. It is concluded that mycorrhizal plants possessed better root-hair growth to adapt mild DS, which is associated with mycorrhizal colonization and endogenous hormone changes.  相似文献   

18.
The effectiveness of reforestation programs on degraded soils in the Mediterranean region is frequently limited by a low soil availability and a poor plant uptake and assimilation of nutrients. While organic amendments can improve the nutrient supply, inoculation with mycorrhizal fungi can enhance plant nutrient uptake. A pot experiment was conducted in 2004 to study the influence of inoculation with an arbuscular mycorrhizal (AM) fungus (Glomus intraradices Schenck & Smith) or with a mixture of three AM fungi (G. intraradices, G. deserticola Trappe, Bloss. & Menge, and G. mosseae (Nicol & Gerd.) Gerd. & Trappe) and of an addition of composted sewage sludge or Aspergillus niger–treated dry‐olive‐cake residue on plant growth, nutrient uptake, mycorrhizal colonization, and nitrate reductase (NR) activity in shoot and roots of Juniperus oxycedrus L. Six months after planting, the inoculation of the seedlings with G. intraradices or a mixture of three AM fungi was the most effective treatment for stimulating growth of J. oxycedrus. There were no differences between the two mycorrhizal treatments. All treatments increased plant growth and foliar N and P contents compared to the control plants. Mycorrhizal inoculation and organic amendments, particularly fermented dry olive cake, increased significantly the NR activity in roots.  相似文献   

19.
Aluminum in acidic conditions is toxic to plants. Aluminum tolerance in some plant species has been ascribed to arbuscular mycorrhizal fungal symbiosis. In this study, the application of aluminum was found to inhibit mycelia development of saprobe fungi Fusarium concolor and Trichoderma koningii and the hyphal length of the arbuscular mycorrhizal fungi Glomus mosseae and Glomus deserticola in vitro. Several levels of aluminum were applied to Eucalyptus globulus plants and inoculated with arbuscular mycorrhizal fungi alone or together with both saprobe fungi. The application of 1,500 mg kg?1 decreased the shoot and root dry weight, chlorophyll content and total P, Mg, and Ca concentrations in the shoot of E. globulus. However, both mycorrhizal fungi G. mosseae and G. deserticola inoculated alone increased the shoot dry weight of Eucalyptus, compared with a non- arbuscular mycorrhizal inoculated control treated with 1,500 mg kg?1 of aluminum. When 1,500 mg kg?1 of aluminum was applied, T. koningii increased the effect of G. deserticola on the shoot weight of eucalyptus, whereas with 3,000 mg kg?1, shoot weight and arbuscular mycorrhizal colonization decreased in all treatments. With 1,500 mg kg?1, the highest accumulation of aluminum in the shoot was obtained when G. deserticola was inoculated together with T. koningii. The possibility of manipulating an arbuscular mycorrhizal inoculation together with a saprobe fungus confers a high aluminum resistance in E. globulus. The effect of such combined inoculation is particularly important in some Chilean volcanic acid soils, mainly those which have been intensively cropped and are without lime addition, which facilitates the increase of phytotoxic aluminum species and limits their agricultural use. Therefore, such dual inoculation in field conditions deserves further investigation. Overall, the arbuscular mycorrhizal and saprobe fungi contribute to the increase in resistance of E. globulus to aluminium.  相似文献   

20.
Drought stress greatly affects the growth and development of plants in coal mine spoils located in the Inner Mongolia grassland ecosystem. Arbuscular mycorrhizal fungi (AMF) can increase plant tolerance to drought. However, little is known regarding the contribution of AMF to plants that are grown in different types of coal mine spoils under drought stress. To evaluate the mycorrhizal effects on the drought tolerance of maize (Zea mays L.) grown in weathered (S1) and spontaneously combusted (S2) coal mine spoils, a greenhouse pot experiment was conducted to investigate the effects of inoculation with Rhizophagus intraradices on the growth, nutrient uptake, carbon:nitrogen:phosphorus (C:N:P) stoichiometry and water status of maize under well-watered, moderate and severe drought stress conditions. The results indicated that drought stress increased mycorrhizal colonization and decreased plant dry weights, nutrient contents, leaf moisture percentage of fresh weight (LMP), water use efficiency (WUE) and rehydration rate. A high level of AMF colonization ranging from 65 to 90% was observed, and the mean root colonization rates in S1 were lower than those in S2. In both substrates, inoculation with R. intraradices significantly improved the plant growth, P contents, LMP and WUE and decreased the C:P and N:P ratios of plants under drought stress. In addition, maize grown in S1 and S2 exhibited different wilting properties in response to AMF inoculation, and plant rehydration after drought stress occurred faster in mycorrhizal plants. The results suggested that inoculation with R. intraradices played a more positive role in improving the drought stress resistance of plants grown in S2 than those grown in S1. AMF inoculation has a beneficial effect on plant tolerance to drought and effectively facilitates the development of plants in different coal mine spoils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号