首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cartilage repair is a challenge in bone tissue reconstruction. In this study, silk fibroin (SF), chondroitin sulfate (CS) and hyaluronic acid (HA) were employed to fabricate scaffolds for tissue engineered cartilage by freeze drying technique. The secondary pores were formed in the main pores of SF/CS/HA scaffold which improved the pore connectivity and equilibrium swelling of the scaffold. Furthermore, rat bone marrow mesenchymal stem cells were seeded on the scaffolds to evaluate the cell adhesion and proliferation. Results of hematoxylin/eosin staining and cell counting kit-8 assay showed that the cells migration and differentiation of SF/CS/HA (80/15/5) scaffold were better than that of SF/CS/HA scaffolds with different ratios after 7 days culture. Moreover, immunohistochemistry and scanning electron microscope demonstrated that large amounts of collagen II and proteoglycans of the cells were expressed in the SF/CS/HA 3D scaffold, while the expression of collagen I was barely visible by immunohistochemistry. Abound of extracellular matrix was formed to morphologically round and distributed uniformly throughout the scaffolds. The 3D ternary scaffold could promote the cells chondrogenic differentiation without using any inductive agent and offer potential for cartilage tissue regeneration.  相似文献   

2.
Fabrication of three-dimensional (3D) scaffolds using natural biomaterials introduces valuable opportunities in bone tissue reconstruction and regeneration. The current study aimed at the development of paste-like 3D printing inks with an extracellular matrix-inspired formulation based on marine materials: sodium alginate (SA), cuttlebone (CB), and fish gelatin (FG). Macroporous scaffolds with microporous biocomposite filaments were obtained by 3D printing combined with post-printing crosslinking. CB fragments were used for their potential to stimulate biomineralization. Alginate enhanced CB embedding within the polymer matrix as confirmed by scanning electron microscopy (ESEM) and micro-computer tomography (micro-CT) and improved the deformation under controlled compression as revealed by micro-CT. SA addition resulted in a modulation of the bulk and surface mechanical behavior, and lead to more elongated cell morphology as imaged by confocal microscopy and ESEM after the adhesion of MC3T3-E1 preosteoblasts at 48 h. Formation of a new mineral phase was detected on the scaffold’s surface after cell cultures. All the results were correlated with the scaffolds’ compositions. Overall, the study reveals the potential of the marine materials-containing inks to deliver 3D scaffolds with potential for bone regeneration applications.  相似文献   

3.
Suberin oligomers, isolated from cork (Quercus suber L.), were used as additives in ‘Waterless’ and vegetable-oil ink formulations, in the range of 2–10% w/w. The rheological behaviour of the suberin oligomers as well as of the inks, with and without suberin, were investigated as a function of temperature. It was shown that the addition of suberin induces a decrease of viscosity of both inks. The tack of pristine inks, suberin oligomers and their mixtures were determined at different temperatures: the variation of this parameter as a function of time provided information about the drying kinetics of these formulations. The tack of the ‘Waterless’ ink was found to increase with the introduction of suberin, whereas that of vegetable-oil based counterparts decreased. All the trends observed were interpreted in terms of the differences in composition between the two types of inks. Preliminary printing tests were carried out with the various suberin-containing inks.  相似文献   

4.
The aim of this study was to compare physical, mechanical and biological properties of 3-dimensional scaffolds prepared from Bombyx mori silk fibroin (SF), fibroin blended with collagen (SF/C), and fibroin blended with gelatin (SF/G) using a freeze-drying technique. The prepared scaffolds were sponge-like structure that exhibited homogeneous porosity with highly interconnected pores. Average pore size of these scaffolds ranged from 65–147 μm. All biodegradable scaffolds were capable of water absorption of 90 %. The degradation behavior of these scaffolds could be controlled by varying the amount of blended polymer. The SF/C and SF/G scaffolds showed higher compressive modulus than that of SF scaffolds which could be attributed to the thicker pore wall observed in the blended constructs. The less crystalline SF structure was observed in SF/G scaffolds as compared to SF/C scaffolds. Thus, the highest compressive modulus was observed on SF/C matrix. To investigate the feasibility of the scaffolds for cartilage tissue engineering application, rat articular chondrocytes were seeded onto the scaffolds. The MTT assay demonstrated that blending collagen or gelatin into SF sponge facilitated cell attachment and proliferation better than SF scaffolds. The blended SF scaffolds possessed superior physical, mechanical and biological properties in comparison to SF scaffolds and showed high potential for application in cartilage tissue engineering.  相似文献   

5.
In this study, a three-dimensional (3D) poly(lactide-co-glycolide) (PLGA) microfibrous scaffold with high porosity (ca. 90 % porosity) was developed for evaluating its performance in tissue engineering application. A dope solution of PLGA/polyethylene oxide (PEO) blend was electrospun into a methanol coagulation bath for fabricating highly porous 3D PLGA scaffold and a salt leaching method was used for making interconnected pores of 100?C200 ??m size inside the scaffold. The morphological structure, pore size and porosity of the microfibrous scaffold were determined, and compared with twodimensional (2D) mat-type and 3D sponge-type of PLGA scaffold. Also, swelling ratio, water uptake and compressive strength were compared in order to elucidate the structure-property relationships of different types of the scaffolds, especially in a wet condition. As a result of scanning electron microscopy (SEM) observation, normal human dermal fibroblasts (nHDF) were migrated, attached, and proliferated well inside the 3D scaffold. MTT assay confirmed that the highly porous 3D PLGA microfibrous scaffold had superior cell adhesion and proliferation abilities due to fibrous structure of large specific surface area, and interconnected pore structure. Therefore, this high performance 3D PLGA scaffold can have a high potentiality for application in tissue engineering in comparison with conventional PLGA scaffolds.  相似文献   

6.
The formation of thrombosis has limited the applications of small diameter vascular in cardiovascular diseases. In order to improve the anticoagulant activities of scaffolds, this study combined fucoidan with CS/PVA and investigated the complete physicochemical and mechanical characterization of the scaffolds to evaluate the feasibility of Fucoidan/CS/PVA scaffolds used in vascular tissue engineering. The SEM graphs show a well defined and interconnected pore structure and the nanofiber diameters are ranging from 341 nm to 482 nm. After immersing in PBS for 5 days, the tensile strength of the crosslinked scaffolds was 722±38 kPa while the elongation at break was 35.5±1.6 %. Besides, added with fucoidan, the scafflolds showed lower rate of plate adhesion (14.75±2.10 %) and markedly prolonged the APTT and TT. Furthermore, owing to the great water uptake ability, sufficient porosity, enhanced drug release and low cytotoxicity, the Fucoidan/CS/PVA scaffolds might be used for vascular tissue engineering with good prospect.  相似文献   

7.
The main idea of this work is to study the different phenomena of spreading, evaporation, and diffusion that bound to the ink-jet printing. The coating film is studied as well as its drying morphologies and its wetting behavior. Then the drop water spreading on coated fabric is investigated. At that time spreading kinetic is characterized by the digidrop 3S which permits to measure precisely the various parameters such as contact angle, diameter, height, volume and drop profile in contact with the support during wetting phenomenon. This survey shows, on the one hand, that the coating film structure is deeply affected by drying morphologies. On the other hand, drying conditions influence different parameters of kinetic drop spreading on virgin glass and cotton material. Then the increasing of coating film thickness encourages the drop spreading.  相似文献   

8.
Herein we report successful synthesis of silk fibroin (SF) three dimensional scaffolds (SF 3D-scaffold) from SF sponge and SF nanofibers. Both the nanofibers and sponge were prepared from Bombyx mori fibroin. The SF 3D-scaffold was prepared by electrospinning the fibroin nanofibers over the sponge. Surface morphology was determined by scanning electron microscopy (SEM), while nanofiber diameter and pore size were measured using imageJ software. Effect of spinning time on the pore size and cell adhesion was determined. Average diameter of the SF nanofibers was measured to be 320 nm and pore size was found to reduce with increasing spinning time, such that, for 1 h spinning time pore size was 231 µm and the same for 3.5 h was 4.1 µm. However, the number of pores increased with spinning time. The results confirmed adhesion of MC3T3-E1 cells on the SF sponge, SF nanofibers and SF three dimensional scaffolds. Higher cell adhesion was found on the three dimensional scaffold in comparison to the nanofibers and sponge, possibly due to highly porous structure with very small and numerous pores in the resultant composite; hence more cell adhesion sites. The cell adhesion result confirmed biocompatibility of the SF 3D-scaffold and hence its suitability for applications in tissue engineering.  相似文献   

9.
As a biomaterial, besides excellent biocompatibility and biodegradability, suitable macropores and pores structure should be provided to guide cell extension and migration. In present study, the silk fibroin (SF) scaffold with uniaxial channels was prepared by directional temperature field freezing technique. The average pore diameter, pore density and porosity of the scaffold with oriented channels are ~128.7 µm, ~158 mm?2 and ~91.4 %, respectively. By controlling of the temperature gradient direction, the oriented multichannels of the scaffolds were formed in longitudinal easily. In process of the scaffolds fabrication, the directional growth of ice crystal could shear and draft to the silk fibroin molecule segments, which resulted in the new crystal nucleus formation in new zone and increase of β-sheet components in the scaffolds. In vitro, L929 cells were seeded on the scaffolds with oriented channels to evaluate the effect on cell behavior. Cell viability, adhesion and morphology were determined by methyl thiazolyl tetrazolium, confocal microscope and scanning electron microscope. The results showed that the cells anchored on the oriented channels, spread along the direction of the channels and hold a higher viability on the scaffolds with oriented channels. These new oriented multichannel scaffold could guide the adhesion and proliferation of L929 cells, which hold a potential in tissue engineering.  相似文献   

10.
Two water based disperse inkjet inks for polyester textile printing with antibacterial properties were prepared. The antibacterial activity was due to the presence of polyhexamethylene bisguanidine (PHMBG). The surface tension, pH, viscosity and conductivity of all inks formulations were monitored over a period of time for the evaluation of ink stability and suitability. The inks were used for application on polyester and polyamide samples by exhaustion (dyeing) and wash, light fastness and colour measurements were made on the dyed samples. The optimum application level required to give long lasting antimicrobial protection was determined by carrying out a series of antimicrobial testing.  相似文献   

11.
Particular attention has been given to axonal outgrowth of neurons to understand how topographical surface cues influence attachment and subsequent directional migration and growth. In present study, the silk fibroin (SF) scaffold with uniaxial channels was prepared by directional freeze-drying processes. The average pore diameter, the porosity, and pore density of the scaffold are 120 µm, 88 %, and 203 mm?2, respectively. Further, hippocampal neurons were seeded onto the scaffold and the hippocampal neurons morphology was investigated. Cell-cell networks and cell-matrix interactions had been established by newly formed axons and the diversity of neurons was much higher after culturing 7 days. The neurons expressed β-III-tubulin and nerve filament, while glial fibrillary acidic protein immunofluorescence was barely above background. These results indicated that the SF scaffolds with uniaxial multichannels could be guided axons of neurons spread along the channels. SF scaffolds with oriented pores have a potential for nerve tissue regeneration.  相似文献   

12.
The complex nature of spinal cord injuries has provided much inspiration for the design of novel biomaterials and scaffolds which are capable of stimulating neural tissue repair strategies. Recently, conductive polymers have gained much attention for improving the nerve regeneration. In our previous study, a three-dimensional (3D) structure with reliable performance was achieved for electrospun scaffolds. The main purpose in the current study is formation of electrical excitable 3D scaffolds by appending polyaniline (PANI) to biocompatible polymers. In this paper, an attempt was made to develop conductive nanofibrous scaffolds, which can simultaneously present both electrical and topographical cues to cells. By using a proper 3D structure, two kinds of conductive scaffolds are compared with a non-conductive scaffold. The 3D nanofibrous core-sheath scaffolds, which are conductive, were prepared with nanorough sheath and aligned core. Two different sheath polymers, including poly(lactic-co-glycolic acid) PLGA and PLGA/PANI, with identical PCL/PANI cores were fabricated. Nanofibers of PCL and PLGA blends with PANI have fiber diameters of 234±60.8 nm and 770±166.6 nm, and conductivity of 3.17×10-5 S/cm and 4.29×10-5 S/cm, respectively. The cell proliferation evaluation of nerve cells on these two conductive scaffolds and previous non-conductive scaffolds (PLGA) indicate that the first conductive scaffold (PCL/ PANI-PLGA) could be more effective for nerve tissue regeneration. Locomotor scores of grafted animals by developed scaffolds showed significant performance of non-conductive 3D scaffolds. Moreover, the animal studies indicated the ability of two new types of conductive scaffolds as spinal cord regeneration candidates.  相似文献   

13.
Background:One of the main challenges with conventional scaffold fabrication methods is the inability to control scaffold architecture. Recently, scaffolds with controlled shape and architecture have been fabricated using 3D-printing. Herein, we aimed to determine whether the much tighter control of microstructure of 3DP PLGA/β-TCP scaffolds is more effective in promoting osteogenesis than porous scaffolds produced by solvent casting/porogen leaching. Methods:Physical and mechanical properties of porous and 3DP scaffolds were studied. The response of pre-osteoblasts to the scaffolds was analyzed after 14 days. Results:The 3DP scaffolds had a smoother surface (Ra: 22 ± 3 µm) relative to the highly rough surface of porous scaffolds (Ra: 110 ± 15 µm). Water contact angle was 112 ± 4° on porous and 76 ± 6° on 3DP scaffolds. Porous and 3DP scaffolds had the pore size of 408 ± 90 and 315 ± 17 µm and porosity of 85 ± 5% and 39 ± 7%, respectively. Compressive strength of 3DP scaffolds (4.0 ± 0.3 MPa) was higher than porous scaffolds (1.7 ± 0.2 MPa). Collagenous matrix deposition was similar on both scaffolds. Cells proliferated from day 1 to day 14 by fourfold in porous and by 3.8-fold in 3DP scaffolds. ALP activity was 21-fold higher in 3DP scaffolds than porous scaffolds. Conclusion:The 3DP scaffolds show enhanced mechanical properties and ALP activity compared to porous scaffolds in vitro, suggesting that 3DP PLGA/β-TCP scaffolds are possibly more favorable for bone formation. Key Words: Alkaline phosphatase, β-tricalcium phosphate, Poly(lactic-co-glycolic) acid copolymer  相似文献   

14.
The use of silk protein as a biomaterial has been studied for decades. In this study, silk fibroin (SF)/hyaluronic acid (HA) blend scaffolds were prepared by freeze-drying technique. The structure and properties of the blend scaffolds were examined and analyzed. The results demonstrated that the secondary structures of the SF/HA scaffolds were mainly amorphous and β-sheet structures. The pore radius and porosity of the scaffolds decreased with a decrease in the freezing temperature decrease and an increase in the HA ratio. The pore radius and porosity were regulated from 32.22 μm to 290.76 μm and from 74.1 % to 91.15 %, respectively. In vitro, the SF/HA scaffolds could support the fibroblast cell adhesion and proliferation and showed good cytocompatibility. In vivo, the SF/HA scaffolds were implanted into the dorsum of Sprague Dawley rats to evaluate their bioactivity for dermal tissue reconstruction. The vascular-like structures appeared more rapidly in SF/HA scaffolds than that in the PVA group, and a new dermal layer was formed, as determined by histological analysis. The SF/HA porous scaffolds have promise as a dermal substitute.  相似文献   

15.
Over the last few years, significant research has been conducted in the construction of artificial bone scaffolds. In the present study, different types of polymer scaffolds, such as chitosan-alginate (Chi-Alg) and chitosan-alginate with fucoidan (Chi-Alg-fucoidan), were developed by a freeze-drying method, and each was characterized as a bone graft substitute. The porosity, water uptake and retention ability of the prepared scaffolds showed similar efficacy. The pore size of the Chi-Alg and Chi-Alg-fucoidan scaffolds were measured from scanning electron microscopy and found to be 62–490 and 56–437 µm, respectively. In vitro studies using the MG-63 cell line revealed profound cytocompatibility, increased cell proliferation and enhanced alkaline phosphatase secretion in the Chi-Alg-fucoidan scaffold compared to the Chi-Alg scaffold. Further, protein adsorption and mineralization were about two times greater in the Chi-Alg-fucoidan scaffold than the Chi-Alg scaffold. Hence, we suggest that Chi-Alg-fucoidan will be a promising biomaterial for bone tissue regeneration.  相似文献   

16.
The beneficial effects of graduated compression stockings (GCS) in prophylaxis and treatment of venous disorders of human lower extremity have been recognized. However, their pressure functional performances are variable and unstable in practical applications, and the exact mechanisms of action remain controversial. Direct surface pressure measurements and indirect material properties testing are not enough for fully understanding the interaction between stocking and leg. A three-dimensional (3D) biomechanical mathematical model for numerically simulating the interaction between leg and GCS in dynamic wear was developed based on the actual geometry of the female leg obtained from 3D reconstruction of MR images and the real size and mechanical properties of the compression stocking prototype. The biomechanical solid leg model consists of bones and soft tissues, and an orthotropic shell model is built for the stocking hose. The dynamic putting-on process is simulated by defining the contact of finite relative sliding between the two objects. The surface pressure magnitude and distribution along the different height levels of the leg and stress profiles of stockings were simulated. As well, their dynamic alterations with time processing were quantitatively analyzed. Through validation, the simulated results showed a reasonable agreement with the experimental measurements, and the simulated pressure gradient distribution from the ankle to the thigh (100:67:30) accorded with the advised criterion by the European committee for standardization. The developed model can be used to predict and visualize the dynamic pressure and stress performances exerted by compression stocking in wear, and to optimize the material mechanical properties in stocking design, thus, helping us understand mechanisms of compression action and improving medical functions of GCS.  相似文献   

17.
采用凝聚法,以鲜胶乳为原料制备粉末天然橡胶(PNR),研究了胶乳凝聚影响因素、产品粒径分布和产品干燥条件,并测试了其性能。结果表明,胶乳的pH值为9.3~9.4,硫酸铝用量为3.70%~3.77%为宜,胶乳浓度对产品收率影响不大;隔离剂纳米二氧化硅的用量在2~3份为宜,产品粒径处于1.0~4.0 mm的比例在83%以上。与酸凝天然橡胶相比,制备的PNR的灰分含量、氮含量、挥发物含量、P o和PRI都较高,丙酮溶物含量和门尼粘度较低;PNR混炼胶的M min较小,Δt30相差不大;PNR混炼胶的M L和V M较小,t10和t90较大,硫化速率较慢;PNR硫化胶的拉伸强度、300%定伸应力和500%定伸应力较高,扯断伸长率较低。  相似文献   

18.
This study examined the effects of the total porosity, pore size, and cover factor on the moisture and thermal permeability of woven fabrics made from DTY (draw textured yarns) and ATY (air jet textured yarns) composite yarns with hollow PET (polyethylene terephthalate) yarns. The wicking of the hollow composite yarn fabrics was found to be superior to that of the high twisted yarn fabrics, which may be due to the high porosity in the hollow composites yarns, but this was not related to the cover factor. The drying characteristics of the hollow composite yarn fabric with high porosity were inferior compared to the high twisted yarn fabrics due to the large amounts of liquid water in the large pores, which resulted in a longer drying time of the fabric. The thermal conductivity of the hollow composite yarn fabrics decreased with increasing measured pore diameter due to the bulky yarn structure. The effects of the hollowness of the yarn on the thermal conductivity were more dominant than those of the yarn structural parameters. The air permeability increased with increasing measured pore diameter but the effects of the cover factor on the air permeability were not observed in the hollow composite yarn fabrics. The effects of porosity on the moisture and thermal permeability of the woven fabrics made from the hollow composite filaments were found to be critical, i.e., wicking and air permeability increase with increasing porosity. In addition, the drying rate increased with increasing porosity and the thermal conductivity decreased with increasing pore diameter, but were independent of the cover factor.  相似文献   

19.
Three new bis azo reactive dyes of different metallic salts (Na, K, Li) were synthesized. The synthesis was obtained by diazotization of 4-amino-2:5 di methoxy phenylene-beta hydroxyl ethyl sulphone sulphate ester and coupling with 1-amino-8-hydroxynaphthalene-3,6-disulfonic acid (H-acid) (moles ratio 2:1). The dyes were purified-concentrated by ultrafiltration technology, characterized and applied on cotton, wool and nylon 6,6 fabric by exhaustion (dyeing) and by ink-jet printing. Fastness properties of the dyeings were measured. Wash fastness was investigated according to international standard methods and was found to be very good to excellent in all cases, while light fastness values were medium to low. Ink-jet ink formulations were prepared using the ultra filtrated reactive blue dyes UF RB(a-c) and their properties pH, conductivity, surface tension and viscosity were monitored over a period of 90 days. The inks were used to print digitally cotton and nylon 6,6 samples and wash- and light fastness properties of the prints were measured. Wash fastness properties were excellent while light fastness values are low Colour measurements of the dyeings and prints were conducted.  相似文献   

20.
In the field of textiles, introducing pH-sensitive dyes onto fibrous materials is a promising approach for the development of flexible sensor. In this study, poly(ethylene terephthalate) (PET) textile surface with halochromic properties was fabricated by plasma-assisted sol-gel coating, followed by immobilization of two different azo pH-indicator dyes; namely Brilliant yellow and Congo red by conventional printing technique of fabrics. 3-aminopropyltriethoxysilane (APTES) was used as a coupling agent for attaching the pH-sensitive dyes through its terminal amines. The surface immobilization of APTES on PET fabric was conducted by the pad-dry-cure method. Moreover, the influence of oxygen plasma pre-treatment and the method of post-treatment either by oxygen plasma or by thermal treatment on the stability of sol-gel based matrix was investigated. The morphology and chemistry of 3-aminopropyltriethoxysilane coated PET surfaces were examined by using surface sensitive methods including electrokinetic and time-dependent contact angle measurements as well as X-ray photoelectron spectroscopy (XPS). In addition, fastness tests of the printed fabrics and color strength were carried out to assess the effectiveness of the fabric surface modification. Results indicate that sol-gel matrix exhibited a more stability by thermal post-treatment at 150 C for 5 min. Also, the results revealed that the printed fabrics with halochromic properties demonstrated sufficient stability against leaching by washing. The current work opens up a novel opportunity to develop flexible sensors based on fibrous materials, which have the potential to be employed in variable industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号