首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

BACKGROUND

As the population and range of wild pigs (Sus scrofa) continue to grow across North America, there has been an increase in environmental and economic damages caused by this invasive species, and control efforts to reduce damages have increased concomitantly. Despite the expanding impacts and costs associated with population control of wild pigs, the extent to which wild pig control reduces populations and diminishes environmental and agricultural damages are rarely quantified. The goal of this study is to quantify changes in wild pig relative abundance and subsequent changes in damages caused by invasive wild pigs in response to control.

RESULTS

Using a combination of wild pig population surveys, agricultural damage assessments, and environmental rooting surveys across 19 mixed forest-agricultural properties in South Carolina, USA, we quantified changes in wild pig relative abundance and associated damages over a 3-year period following implementation of a professional control program. Following implementation of control efforts, both the number of wild pig detections and estimated abundance decreased markedly. Within 24 months relative abundance was reduced by an average of ~70%, which resulted in a corresponding decline in environmental rooting damage by ~99%.

CONCLUSION

Our findings suggest that sustained wild pig control efforts can substantially reduce wild pig relative abundance, which in turn resulted in a reduction in environmental rooting damage by wild pigs. Ultimately this study will help fill critical knowledge gaps regarding the efficacy of wild pig control programs and the effort needed to reduce impacts to native ecosystems, livestock, and crops. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

2.

BACKGROUND

Trapping is commonly used as the primary management tool in attempts to reduce invasive wild pigs (Sus scrofa), but traditional trapping techniques are often ineffective. However, recently developed traps permit the capture of entire social groups (sounders) of wild pigs, and the strategy of whole-sounder removal may achieve more effective control. Our objective was to experimentally compare traditional control (TC; primarily traditional trapping, but including hunting with dogs, and opportunistic shooting) and whole-sounder removal (WSR) strategies by assessing density reduction and removal rate after 1 and 2 years of treatment.

RESULTS

After 1 year of trapping, average wild pig density on WSR units declined 53% and remained stable after the second year, whereas on TC units, pig density did not differ after trapping, although it declined 33% and remained stable after the second year of trapping. The median removal rate (percentage of uniquely marked pigs present at the beginning of each year that were removed) was 42.5% for WSR units and 0.0% for TC units during 2018 and were 29.6% from WSR units and 5.3% from TC units during 2019.

CONCLUSIONS

WSR removal was more effective at reducing wild pig density than TC, but factors such as previous exposure of this population to traditional traps and the lack of barriers to recolonization from surrounding areas may have reduced WSR efficacy. WSR can effectively reduce wild pig density to a greater extent than TC, but managers should recognize the additional time and expense necessary for implementation. Published 2023. This article is a U.S. Government work and is in the public domain in the USA. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

3.

BACKGROUND

The sterile insect technique (SIT) is a green and species-specific insect pest control technique that suppresses target populations by releasing factory-reared, radiosterilized males into the wild. Once released, it is important to be able to distinguish the released males from the wild males for monitoring purposes. Several methods to mark the sterile males exist. However, most have limitations due to monetary, process efficiency, or insect quality. Aedes albopictus is naturally infected with Wolbachia at a high prevalence, therefore the elimination of Wolbachia can serve as a biomarker to distinguish factory-reared male mosquitoes from wild conspecifics.

RESULTS

In this study, a Wolbachia-free Ae. albopictus GT strain was developed and its fitness evaluated, which was found to be comparable to the wild GUA strain. In addition, GT male mosquitoes were irradiated at the adult stage and a dose of 20 Gy or more induced over 99% sterility. Moreover, a dose of 30 Gy (almost completely sterilizing male and female mosquitoes) had limited effects on the mating competitiveness of GT males and the vector competence of GT females, respectively. However, radiation reduced mosquito longevity, regardless of sex.

CONCLUSION

Our results indicate that the Ae. albopictus GT strain can be distinguished from wild mosquitoes based on Wolbachia status and shows similar fitness, radio-sensitivity and arbovirus susceptibility to the GUA strain, indicating that it is feasible to use the GT strain to suppress Ae. albopictus populations for SIT programmes. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

4.

BACKGROUND

Incompatible insect technique (IIT) is a population suppression approach based on the release of males with manipulated Wolbachia infection inducing egg inviability in wild females. We here present results of multiple field releases of incompatible ARwP males carried out in 2019 in a 2.7-ha green area within urban Rome (Italy) to assess the effect on Aedes albopictus egg viability. Data are compared with results obtained in 2018, when the approach was tested for the first time in Europe.

RESULTS

An average of 4674 ARwP males were released weekly for 7 weeks, resulting in a mean ARwP:wild male ratio of 1.1:1 (versus 0.7:1 in 2018). Egg-viability dynamics in ovitraps significantly varied between treated and control sites, with an estimated overall reduction of 35% (versus 15% in 2018). The estimated proportion of females classified as mated with ARwP males was 41.8% and the viability rate of eggs laid by these females (9.5%) was on average significantly lower than that of females only mated with wild males (87.8%); however, high variability in fertility was observed. Values of ARwP male competitiveness were 0.36 and 0.73 based on the overall viability rate of eggs in ovitraps and on female fertility, respectively; thus, well above the conventional 0.2 threshold for an effective suppressive impact in the field.

CONCLUSIONS

Results further support the potential of IIT as a tool to contribute to Ae. albopictus control in the urban context, stressing the need for larger field trials to evaluate the cost-efficacy of the approach in temperate regions. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

5.
Experiments were conducted in a growth cabinet to investigate the absorption and translocation of 14C-3, 6-dichloropicolinic acid by Cirsium arvense (L.) Scop. (Canada thistle, creeping thistle), a sensitive species. Applications were made, either to the middle four leaves of 12-cm-tall vegetative plants grown under low (40%) and/or high (>95%) relative humidity (r.h.), or to four upper or lower leaves of 30-cm-tall flowering plants grown under low r.h. Following application to vegetative plants, absorption and translocation of 14C-3,6-dichloropicolinic acid was rapid and was approximately doubled by high r.h. High r.h. increased the amount of radioactivity retained by the treated leaves or translocated to the shoots but did not affect greatly the amount retained in the roots. The herbicide was highly mobile, with over half of that absorbed, translocated out of the treated leaves after two days. The apex accumulated most of the radioactivity, while approximately 8% was recovered from the roots. The absorption and translocation patterns were similar to those reported in the literature for picloram in C. arvense. Absorption of 3,6-dichloropicolinic acid was greater in vegetative than in flowering C. arvense plants, and placement of herbicide on lower leaves tended to decrease the amount of radioactivity recovered from shoot apex and increase the amount recovered from the roots. Approximately 15% of the applied radioactivity could not be recovered from treated plants by 2 days after treatment.  相似文献   

6.
Two populations of Hordeum leporinum have evolved resistance to paraquat within a small area in central Tasmania, Australia. One population (THL1) was more than 80-fold resistant to paraquat when treated in winter, compared with a susceptible population (THL4) collected nearby, whereas the other population (THL2) was only 19-fold resistant. Translocation of paraquat was examined in all three populations at warm and cool temperature regimes. Herbicide was applied to a basal section of the second leaf of plants kept in the dark and translocation measured after 16 h of dark and during a subsequent light period. Paraquat absorption into the treated leaf was uniformly high in susceptible and resistant populations, with >93% of the applied herbicide absorbed within 16 h in the dark at both temperatures. Translocation of paraquat out of the treated leaf was low in the dark, with <4% of the herbicide translocated to the remainder of the plant. More herbicide was translocated out of the treated leaves in susceptible plants in the dark, compared with resistant plants at both temperature regimes and more paraquat was translocated at warmer temperatures. Extensive basipetal translocation of paraquat to the rest of the plant occurred in susceptible plants following exposure of the treated plants to light. However, basipetal translocation was much reduced in resistant plants in the light and corresponded to the degree of resistance. Resistance to paraquat in H. leporinum is the result of reduced translocation of paraquat out of the treated leaves.  相似文献   

7.
Imazapyr absorption, translocation, root release and metabolism were examined in leafy spurge (Euphorbia esula L.). Leafy spurge plants were propagated from root cuttings and [14C]imazapyr was applied to growth-chambergrown plants in a water + 28% urea ammonium nitrate + nonionic surfactant solution (98.75 + 1 + 0.25 by volume). Plants were harvested two and eight days after herbicide treatment (DAT) and divided into: treated leaf, stem and leaves above treated leaf, stem and leaves below the treated leaf, crown, root, dormant and elongated adventitious shoot buds. Imazapyr absorption increased from 62.5% 2 DAT to 80.0% 8 DAT. Herbicide translocation out of the treated leaf and accumulation in roots and adventitious shoot buds was apparent 2 DAT. By the end of the eight-day translocation period only 14% of applied 14C remained in the treated leaf, while 17% had translocated into the root system. Elongated and dormant adventitious shoot buds accumulated 3.2- and 1.8-fold more 14C, respectively, 8 DAT than did root tissue based on Bq g?1 dry weight. Root release of 14C was evident 2 DAT, and by 8 DAT 19.4% of the 14C reaching the root system was released into the rooting medium. There was no metabolism of imazapyr in crown, root or adventitious shoot buds 2 DAT; however, imazapyr metabolism was evident in the treated leaf 2 and 8 DAT. Imazapyr phytotoxicity to leafy spurge appears to result from high imazapyr absorption, translocation to underground meristematic areas (roots and adventitious shoot buds), and a slow rate of metabolism.  相似文献   

8.
The pattern and extent of 14C-glyphosate [N-(phosphonomethyl)glycine] translocation from the treated leaf and metabolism of 14C-glyphosate were studied in field bindweed (Convolvulus arvensis L.), hedge bindweed (Convolvulus sepium L.). Canada thistle [Cirsium arvense (L.) Scop.] tall morning glory [lpomoea purpurea (L.) Roth.] and wild buckwheat (Polygonum convolvulus L.). 14C was translocated throughout the plants within 3 days with accumulation in the meristematic tips of the roots and shoots evident. Cross and longitudinal sections of stems and roots showed that the 14C was localized in the phloem. Field bindweed translocated 3–5% of the applied 14C from the treated leaf, hedge bindweed 21.6%, Canada thistle 7.8%, tall morningglory 6.5%, and wild buckwheat 5%. Field bindweed, Canada thistle, and tall morningglory metabolized the parent glyphosate to aminomethylphosphonic acid to a limited extent. This metabolite made up less than 15% of the total 14C. Of the total 14C applied to excised leaves, 50% had disappeared within 25 days.  相似文献   

9.
The uptake and translocation of 14C-isoproturon (3-p-cumenyl-1-1,-dimethylurea) in wheat (tolerant) and backgrass (sensitive) following foliar treatment under controlled environmental conditions were examined. The amount of 14C-isoproturon translocated through the xylem was about 10 times that translocated through the phloem in both wheat and blackgrass. However, 25.5% of the applied 14C-isoproturon was translocated in the xylem in blackgrass, compared with 8.9% in wheat. 14C-isoproturon did not respond significantly to induced sink-demand in either species. Leaf-disc autoradiograms revealed the absorption of 14C-isoproturon by the minor veins and translocation into the cut vein endings. No significant differences were found in between wheat and blackgrass in this respect.  相似文献   

10.
Resistance to glyphosate and paraquat has evolved in some populations of Conyza spp. from California, USA. This study evaluated whether herbicide absorption and translocation were involved in the mechanism of resistance to both herbicides. Three lines of each species were used: glyphosate‐paraquat‐susceptible (GPS), glyphosate‐resistant (GR) and glyphosate‐paraquat‐resistant (GPR). Radiolabelled herbicide was applied to a fully expanded leaf, and absorption and movement out of the treated leaf were monitored for up to 24 h for paraquat and 72 h for glyphosate. Plants treated with paraquat were incubated in darkness for the first 16 h and then subjected to light conditions. More glyphosate was absorbed in C. bonariensis (52.9–58.3%) compared with C. canadensis (28.5–37.6%), but no differences in absorption were observed among lines within a species. However, in both species, the GR and GPR lines translocated less glyphosate out of the treated leaf when compared with their respective GPS lines. Paraquat absorption was similar among lines and across species (71.3–77.6%). Only a fraction of paraquat was translocated in the GPR lines (3% or less) when compared with their respective GPS or GR lines (20% or more) in both species. Taken together, these results indicate that reduced translocation is involved in the mechanism of resistance to glyphosate and paraquat in C. bonariensis and C. canadensis.  相似文献   

11.
The relationship between the hydrophobicity of certain herbicidal compounds and the bleaching pattern caused on radish cotyledons was investigated. Seed treatment with diphenylpyridones, as well as with established herbicides, produced three types of bleaching pattern according to their hydrophobicity. The less hydrophobic compounds caused complete bleaching of both cotyledons, but the compounds with more hydrophobicity caused only partial bleaching. The critical points for whole or partial bleaching were in the range of log Kow 4–5 (Kow: octanol/water partition coefficient), and these values were changed slightly with their chemical classes. Uptake of compounds into the seed coat took place rapidly; these compounds were then translocated slowly from the seed coat to the embryo, namely, radicle, abaxial surface of one cotyledon and marginal areas of both cotyledons. Application of these compounds to roots resulted in initial translocation to marginal areas of both cotyledons, with subsequent translocation to the middle area. It is believed that compounds taken up into the radicle were translocated to both cotyledons in a manner similar to that following application to roots. These effects following uptake by seeds can be used as a translaminal and lateral transport assay for bleaching herbicidal compounds in cotyledons.  相似文献   

12.

BACKGROUND

Classical biological control has been identified as the most promising approach to limit the impact of the invasive pest species Halyomorpha halys (Heteroptera: Pentatomidae). This study investigated the parasitism rate at sites where the biocontrol agent Trissolcus japonicus (Hymenoptera: Scelionidae) was released and where its unintentional introduction took place, in the Trentino–South Tyrol region. The effect of land-use composition was studied to understand which factors favor the establishment of hosts and parasitoids, including native and exotic species.

RESULTS

The released T. japonicus were detected a year after the start of the program, with a significant parasitoid impact and discovery, compared to control sites. Trissolcus japonicus was the most abundant H. halys parasitoid, and Trissolcus mitsukurii and Anastatus bifasciatus were recorded also. The efficacy of T. mitsukurii was lower in sites where T. japonicus was successfully established, suggesting a possible competitive interaction. Parasitism level by T. japonicus at the release sites was 12.5% in 2020 and 16.4% in 2021. The combined effect of predation and parasitization increased H. halys mortality up to 50% at the release sites. Landscape composition analysis showed that both H. halys and T. japonicus were more likely to be found at sites with lower altitude and with permanent crops, whereas other hosts and parasitoids preferred different conditions.

CONCLUSION

Trissolcus japonicus showed a promising impact on H. halys, at release and adventive sites, with minor nontarget effects, mediated by landscape heterogeneity. The prevalence of T. japonicus in landscapes with permanent crops could support IPM in the future. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

13.
W. MERSIE 《Weed Research》1995,35(1):15-18
Witloof chicory (Cichorium intybus L.) is tolerant to propyzamide and common amaranth (Amaranthus retroflexus L.) is sensitive. The absorption, translocation, and metabolism of propyzamide was studied in seedlings of witloof chicory and common amaranth to determine if differences in these processes cause the differential sensitivity. At 24,48, and 72 h after root treatment, there was no difference in the concentration of 14C (g?1 plant dry wt) in com-mon amaranth and witloof chicory. Approximately 50% of the absorbed 14C was translocated out of the roots to shoots of both species at 24 and 48 h after treatment. After 72 h about 55 and 74% of the absorbed 14C was translocated to shoots of witloof chicory and common amaranth, respectively. Distribution of 14C (g?1 plant dry wt) in plant parts of witloof chicory and common amaranth seedlings was similar. Roots of both species accumulated the highest concentration of total 14C, whereas shoots contained the lowest. Thin layer chromatography revealed that the herbicide was metabolized in neither species 48 h after treatment. No differences were found in absorption, translocation, or metabolism between witloof chicory and common amaranth with regard to propyzamide.  相似文献   

14.

BACKGROUND

Pesticides are one of the most important anthropogenic-related stressors. In times of global pollinator decline, the role of integrated farming and urban gardens in supporting wild pollinators is becoming increasingly important. We circulated an online questionnaire to survey plant protection practices among Hungarian farmers and garden owners with a particular emphasis on pollinator protection.

RESULTS

We found that plant growers rely heavily on pesticide use, and pesticides are used widely in otherwise pollinator-friendly gardens. Whether pesticide use practices were driven by expert opinion and respondent gender were the best predictors of pesticide use. Although most respondents supported pollinators, pesticides are also used widely among home garden owners, which can pose a non-evident ecological trap for pollinator populations in the gardens.

CONCLUSION

Special attention should be paid to implementing measures to reduce pesticide use not only in farmland, but also in home gardens. Environmental education and financial support through agroecological schemes could efficiently promote the transition away from pesticide use. However, whereas farmers can be encouraged to reduce pesticide use mostly by expert advice, garden owners are likely to rely on more conventional information channels. The attitudes of Hungarian plant growers can provide an insight into pesticide use practices of Central and Eastern European countries, but similar surveys are needed across Europe for a complete understanding of broad-scale processes. This work lays the foundations for similar studies that can inform and facilitate the transformation to pesticide-free farming and gardening. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

15.
Absorption, translocation and distribution of 14C-glyphosate were examined in Agropyron repens (L.) Beauv. plants growing under field conditions in the autumn. Glyphosate absorption did not increase beyond 3 days after application, whereas translocation to the rhizomes continued up to 7 days after application. The translocated glyphosate accumulated more in new rhizomes than in older parts of the rhizomes. Ten per cent of the glyphosate translocated out of the treated shoot was recovered in younger shoots 7 days after application. Plants harvested the following spring contained less than 20% of the glyphosate originally applied. Although a growth cabinet experiment indicated that 34% of the glyphosate in the rhizomes of treated plants could be remobi-lized into new aerial shoots, considerably less was recovered in new, aerial shoots in the spring in the field-grown plants. Freezing experiments showed that glyphosate translocation to the rhizomes was only prevented when cold treatment caused visible damage to A. repens foliage.  相似文献   

16.
A series of 14C-labelled benzoic acids, chosen to permit assessment of the role of pKa and lipophilicity in determining movement in plants of these herbicide analogues, was synthesised and their phloem translocation investigated. Following application of substituted benzoic acids to castor bean, Ricinus communis L., by injection into the petioles, the compounds of intermediate lipophilicity (2-fluoro-, 4-chloro- and 3,4-dichlorobenzoic acids) gave highest concentrations in phloem exudates; 4-methyl-2,3,5,6-tetrafluoro- and pentafluorobenzoic acids were less well translocated, perhaps because their pKa values are much less than those of the other benzoic acids studied. The polar 4-ureidobenzoic acid and the lipophilic 3-(4-methylphenoxy)benzoic acid were much less efficiently translocated in phloem. These results are similar to those previously obtained for phenoxyacetic acids, and provide further support for the role of ionisation in the accumulation and retention of chemicals in phloem sieve tubes.  相似文献   

17.
The uptake, movement and metabolism of fluroxypyr* is compared in two contrasting weed species, Stellaria media (susceptible) and Viola arvensis (moderately resistant). Similar rates of uptake occurred in both species, with a rapid cuticular uptake of 50% of that applied within 4 h. Total uptake by the underlying leaf tissue reached 66.6% and 70.8% in S. media and V. arvensis after 7 days. In translocation studies, in which 14C-fluroxypyr was applied to previously sprayed plants, 5.1% of applied 14C-activity was translocated from the treated leaves of S. media after 1 day, which increased to 42.2% after 7 days, recovered mainly from the stem tissue. In V. arvensis translocation was similar after 24 h however, after 7 days over 40% of applied 14C-activity remained in the treated leaves and only 9.7% was translocated, mainly to the developing leaves and apical tissue. 14C-activity extracted from the cuticle was the methylheptyl ester of fluroxypyr in both species. In the treated leaves and apical tissue, 14C-activity was the free acid of fluroxypyr and polar conjugates with a significantly greater proportion of the acid in S. media. It is concluded that the resistance or V. arvensis is partially due to reduced translocation and greater conjugation than in the susceptible S. media.  相似文献   

18.
Alloxydim-sodium, methyl 3-[1-(allyloxyimino)butyl]-4-hydroxy-6,6-dimethyl-2-oxocyclohex-3-enecarboxylate sodium salt, is a selective herbicide which controls grass weeds in a wide range of broad-leaf crops. Spray retention, tested at two growth stages, was generally greater for the broad-leaf crops (cotton, sugarbeet, flax, beans and peas) than for wild oat (Avena fatua L.), blackgrass (Alopecurus myosuroides Huds), barley and couch grass [Agropyron repens (L.) Beauv.], and did not contribute to selectivity between susceptible and tolerant species. Broad-leaf crops tolerated 2820 g alloxydim-sodium ha?1, three times the recommended rate used to control annual grasses. Differential uptake and translocation were not factors contributing to selectivity. In wild oat, blackgrass and sugarbeet, uptake and translocation of 14C continued during a period of 14 days after treatment with [14C]alloxydim-sodium. Translocation in susceptible and tolerant species was predominately symplastic. Over 40% of the applied 14C was eliminated from treated wild oat, blackgrass and sugarbeet plants within 7 days, due to degradation and volatilisation. A greater proportion of the methanol-soluble radioactivity extracted from leaves and roots was present as water-soluble polar metabolites in sugarbeet, than in wild oats, 7 days after treatment. The proportion of unaltered alloxydim in the organo-soluble fraction of a methanol extract was greater in wild oat than in sugarbeet. Differential metabolism appears to be one of the factors contributing to alloxydim-sodium selectivity between sugarbeet and wild oat.  相似文献   

19.
Studies of the absorption and translocation of 14C-2,4-D in Chenopodium album L., Galinsoga parviflora Cav., Datura stramonium L. and Galium aparine L. in relation to their susceptibility gave the following results: In G aparine (resistant) there was little transport of 2,4-D applied to the leaves, and a probable relationship between resistance and the immediate binding of the 2,4-D in the treated leaf. D. stramonium (relatively resistant) transported 2,4-D in considerable amounts alter uptake through the leaf, while C. album (very susceptible) and G. parviflora (susceptible) were intermediate in respect of 2,4-D translocation. No relationship between susceptibility of these four species and 2,4-D uptake and translocation from the leaves could be established. After application to the root systems of the four species, 2,4-D was taken up and translocated in the shoot to varying extents. In G. aparine much 2,4-D was taken up and translocated. In contrast to leaf application, the herbicide was not immediately converted into a strongly-held immobile form. In C. album, G. parviflora and D. stramonium, however, no 2,4-D was translocated in the shoot. There was thus no correlation between susceptibility and shoot transport of 2,4-D in the four species studied. Distribution du 2,4-D marqué au 14C dans des espèces de mauvaises herbes présentant des sensibilités diverses  相似文献   

20.
The uptake and translocation of 14C-labelled ethofumesate [(±)-2-ethoxy-2,3-dihydro-3,3-dimethylbenzofuran-5-yl methanesulphonate] was studied in sugar-beet seedlings following soil and foliar applications. After soil applications, the roots absorbed and translocated to the foliage more ethofumesate or its metabolites than did the emerging hypocotyls. Ethofumesate or its metabolites did not accumulate in either roots or hypocotyls after exposure to treated soil. When sugar-beet leaves were treated with the herbicide at the two-leaf stage, acropetal translocation was rapid but there was no translocation out of the treated leaves. Furthermore, ethofumesate or its metabolites were not translocated basipetally after either soil or foliar application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号