首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
为了发掘影响小麦旗叶相关性状的QTL,以小麦骨干亲本周8425B与优良品种小偃81构建的包含102个家系的重组自交系(Recombinant inbred line,RIL)为材料,采用小麦90KSNP基因芯片技术和SSR标记对其进行分子标记检测,构建含有全基因组SNP和SSR标记的高密度遗传图谱,并在4个环境下对小麦旗叶相关性状QTL进行检测。结果表明,所构建图谱含有6 949对多态性标记,其中,SNP标记6 910对,SSR标记39对,覆盖染色体总长度4 839.9cM,标记间平均距离0.7cM;A、B和D染色体组分别有2 085、4 677和187对标记,分别占总标记数的30.0%、67.5%和2.7%,标记间平均距离分别为1.0、0.6和0.8cM。采用完备复合区间作图法共检测到22个旗叶性状加性效应QTL,10个旗叶长QTL分布于2A、3B、4B、5A、6B和7B染色体上,解释表型变异7.900%~24.098%,除Qfll2A-1能在2个环境中检测到外,其余均为单环境QTL;4个旗叶宽QTL分布于2A、3A和5B染色体上,解释表型变异9.080%~16.540%,其中,Qflw2A-1在3个环境中均能检测到,解释表型变异12.483%~16.540%,为1个稳定的主效QTL;8个旗叶面积QTL分布于2A、3B、4B、5A、6B和7A染色体上,解释表型变异9.310%~30.498%,其中,3个QTL位于5A染色体上。此外,鉴定出3个分布于2A、5A和6B染色体上的QTL富集区段。  相似文献   

2.
为了发掘更多控制小麦旗叶大小及穗部相关性状的QTL,以兰考906和小偃81创制的133个F6~F7重组自交系为试验材料,在6个环境下利用SSR标记对旗叶大小及穗部相关性状进行QTL定位。结果表明,有202对SSR标记被用于构建遗传连锁图谱,图谱覆盖小麦21条染色体,全长1 678.93cM,标记间平均距离8.30cM。采用完备区间作图法共检测到30个QTL,分布在1B、2A、3D、4A、4B、4D、5D、6A、6B、6D和7D染色体上。其中,旗叶宽QTL有7个,穗长QTL有9个,小穗数QTL有5个,穗粒数QTL有5个,小穗着生密度QTL有4个,不同环境下单个QTL可解释的表型变异率为4.94%~23.14%,有14个QTL的表型贡献率大于10%,有8个QTL可在2个或2个以上环境中被检测到。其中,Qflw-4A在3个环境中被检测到,贡献率为10.13%~20.77%,是控制旗叶宽的稳定主效QTL;Qsl-4D.2在4个环境中被检测到,贡献率为12.58%~23.14%,是控制穗长的稳定主效QTL;Qker-5D在2个环境中被检测到,贡献率为11.44%~14.32%,是控制穗粒数的稳定主效QTL。这3个稳定主效QTL可作为改良叶宽和增加穗粒数的功能QTL作进一步研究。  相似文献   

3.
为完善小麦遗传图谱并对小麦主要品质性状进行QTL定位,以小麦京771和Pm97034及其173个后代重组自交系(RIL)为作图群体,利用906对SSR引物筛选出RIL群体双亲表现多态性的引物270对,多态性频率为29.8%.利用这270对引物对RIL群体进行分析,共检测到184个多态性标记位点,利用其中的129个标记构建小麦分子的遗传连锁图谱.用Mapmaker 3.0和Mapdraw V2.1软件将129个SSR位点绘在小麦遗传连锁图上,该图谱覆盖小麦基因组全长2 106.2 cM,标记间的平均遗传距离为16.32 cM.  相似文献   

4.
小麦熟期相关性状的QTL定位分析   总被引:2,自引:0,他引:2  
抽穗期、始花期和开花期是衡量小麦成熟期的重要指标,对其进行QTL定位并分析其遗传效应,对小麦品种改良至关重要。为了给小麦分子标记辅助选择育种提供参考,本研究以波兰小麦和普通小麦品系中13杂交后代的F8重组自交系为作图群体,构建由A染色体组和B染色体组共14个连锁群构成的遗传连锁图谱,包含115个SSR标记位点,图谱全长822.9cM,标记间的平均遗传距离为7.16cM;利用复合区间作图法在两年的环境中检测到分别位于1A、5A、6A、7A、2B、4B、5B和6B染色体上的8个抽穗期QTL,5个始花期QTL和6个开花期QTL。表型变异解释率分别为10.12%~31.51%、11.98%~19.75%和9.64%~20.27%。无论是抽穗期、始花期或开花期,都在4B染色体上检测出了与其相关的QTL,说明4B染色体与小麦成熟期关系密切。另外,在1A染色体上检测出2个控制抽穗期的QTL,对表型变异的贡献率分别达到28.13%和31.48%,说明1A染色体控制小麦抽穗期的作用较大。本研究检测出多个成熟期相关的QTL与连锁标记间的遗传距离仅0.01cM,近乎共分离,可在育种中直接用于成熟期的分子辅助选择。  相似文献   

5.
为解析调控大麦旗叶大小的遗传机制,以1个大麦重组自交系(RIL)群体(由J36528和BMJ89为亲本构建,包含125个F10代)为材料,利用447个DArT和8个SSR标记绘制遗传连锁图谱,结合4年2点共6个生态环境下测得的旗叶长和宽表型数据,鉴定旗叶长和宽相关的QTL。结果表明,所构建的遗传图谱包含7个连锁群,总长1 034.96 cM,平均每条染色体147.85 cM,标记密度为2.27 cM。共检测到7个旗叶长QTL和5个旗叶宽QTL,分布在2H、4H、5H、6H和7H染色体上。其中,有2个旗叶长主效位点 QFll.sicau-JB-5H.2 QFll.sicau-JB-6H.1,能够在多环境下稳定表达,表型变异解释率范围分别为12.02%~  19.95%和16.69%~16.99%;二者累加对旗叶长具有增加效应,聚合这2个位点对大麦旗叶长的调控和产量提升具有潜在价值。另外,有1个旗叶宽主效位点 QFlw.sicau-JB-4H在多环境下能够稳定表达,表型变异解释率为15.03%~23.99%。将主效QTL锚定到大麦参考基因组后比对发现, QFll.sicau-JB-6H.1可能为新位点,而 QFll.sicau-JB-5H.2可能与小麦第五部分同源群检测到的旗叶长位点具有同源性。本研究鉴定获得的与旗叶长和宽相关的稳定表达的主效QTL对大麦不同旗叶形态基因的精细定位和分子辅助育种提供了依据。  相似文献   

6.
为了解小麦穗长性状的遗传特性,并将其应用于分子标记辅助育种,以大穗材料高麦1号/密小穗的292个植株的F2群体为材料,利用SSR标记对穗长进行了QTL定位分析.结果表明,选用500对SSR引物对高麦1号和密小穗两个亲本进行多态性检测,共获得180对在双亲问有多态性的引物,多态性引物检出率为36.0%.利用这180对引物进一步进行F2群体筛选,有96对引物在群体中表现出多态性,占多态性标记的53.3%.利用QTL_IciMapping软件构建出小麦染色体组的8个连锁群图谱,并将96对SSR引物定位到遗传连锁图谱上.图谱全长1 383.29 cM,标记间的平均遗传距离15.37 cM.平均每个连锁群有11.25个标记,含有标记最多的是4A和6B染色体,各有17个标记,其次是3A和7B染色体,含有9~14个标记,1B和5D染色体含有的标记最少,只有5~7个.共检测出7个与穗长相关的QTL位点,包括6个加性QTL和1个加性+显性QTL.7个QTL的加性效应值均为正值,单个QTL的贡献率为2.04%~15.26%.其中3A染色体上的QTL位点距离其最近标记只有0.58 cM,为连锁最紧密的一个位点,并且其加性效应值最大,可解释表型变异的15.26%.因此,3A染色体上存在控制穗长的主效基因.  相似文献   

7.
大豆胞囊线虫病3号生理小种抗性QTL定位的研究   总被引:1,自引:0,他引:1  
利用感大豆胞囊线虫病品种合丰25与抗病品种抗线2号杂交获210个F2代群体,利用150对SSR引物,并采用Windows QTL Cartographer V2.1复合区间法对抗大豆胞囊线虫病的基因进行定位。结果表明:其中有多态性SSR标记为67个,占44.67%;以LOD值大于2.0作为QTL存在的阈值,检测到2个抗大豆胞囊线虫3号生理小种基因相关的QTL:Qscn-1(Satt163~Satt309),Qscn-2(Sat440~Satt148),分别定位在MLG G和MLG I上,且遗传贡献率分别为10.1%和7.6%,与SSR标记Satt309和Satt148的遗传距离分别为7.2 cM和5.6 cM。  相似文献   

8.
甘蓝型油菜遗传图谱的构建及开花期的QTL分析   总被引:6,自引:0,他引:6  
在由两个春性甘蓝型油菜双低品种DH401(早花)和Q2(迟花)的F1代植株通过小孢子培养所获得的DH(doubled haploid)群体中,应用SSR、SRAP及AFLP标记构建了一张遗传连锁图谱,并对开花期性状进行了数量性状座位(QTL)分析。在亲本间共检测到263个有多态性的遗传标记,其中SSR标记有88个、SRAP标记101个及AFLP标记74个。其中248个标记分布于19个连锁群,总遗传距离为1634.7 cM,标记间平均遗传距离为6.6 cM,标记偏分离比例达到27.4% (p<0.01)且主要集中在第4、5连锁群。应用QTLMAPPER 1.6在武汉、和政分别检测到2个和4个控制开花期的主效QTL位点,分别解释了68.63%和75.83的开花期表型变异,其中有2个主效QTL位点在这两地同时被检测到。另外也分析了影响开花期的上位效应并探讨了本研究结果在实际育种中的意义。  相似文献   

9.
小麦成熟期对粮食周年丰产具有重要的决定作用。为了给小麦分子标记辅助育种提供可用的分子标记,本研究以人工合成六倍体小麦(Turtur)和T.spelta L.衍生系(Bubo)为亲本创制的包含186个家系的RIL群体(F6)为材料,构建了包含5 301个标记(4 120个DArT标记、621个SNP标记和560个传统DArT标记),总长为2 464cM的遗传连锁图谱,利用Windows QTL Cartographer 2.5软件的复合区间作图法对在3年4点环境下的成熟期性状进行QTL检测,在LOD2.5水平下,共定位到15个QTL,分布于小麦的1A、2B、2D、3A、4A、4B、5B、7A和7B染色体上,可解释4.42~12.67的表型变异。其中在1A染色体上控制小麦成熟期的QTL贡献率最大;4B染色体的1215714-1068877F0-44CG区间内3年3点均检测到的QTL与1215714标记遗传距离为0.01cM,近乎共分离,为下一步分子标记辅助选择的精准性提供了坚实的基础。  相似文献   

10.
为了解小麦穗长性状的遗传特性,并将其应用于分子标记辅助育种,以大穗材料高麦1号/密小穗的292个植株的F2群体为材料,利用SSR标记对穗长进行了QTL定位分析。结果表明,选用500对SSR引物对高麦1号和密小穗两个亲本进行多态性检测,共获得180对在双亲间有多态性的引物,多态性引物检出率为36.0%。利用这180对引物进一步进行F2群体筛选,有96对引物在群体中表现出多态性,占多态性标记的53.3%。利用QTL_IciMapping软件构建出小麦染色体组的8个连锁群图谱,并将96对SSR引物定位到遗传连锁图谱上。图谱全长1 383.29cM,标记间的平均遗传距离15.37cM。平均每个连锁群有11.25个标记,含有标记最多的是4A和6B染色体,各有17个标记,其次是3A和7B染色体,含有9~14个标记,1B和5D染色体含有的标记最少,只有5~7个。共检测出7个与穗长相关的QTL位点,包括6个加性QTL和1个加性+显性QTL。7个QTL的加性效应值均为正值,单个QTL的贡献率为2.04%~15.26%。其中3A染色体上的QTL位点距离其最近标记只有0.58cM,为连锁最紧密的一个位点,并且其加性效应值最大,可解释表型变异的15.26%。因此,3A染色体上存在控制穗长的主效基因。  相似文献   

11.
春小麦旗叶大小相关性状的QTL定位分析   总被引:1,自引:0,他引:1  
为了发掘控制春小麦旗叶大小相关性状的QTL,以宁春4号/Drasdale构建的包含148个家系的RIL群体F8代为试验材料,在正常灌溉和不同干旱胁迫共3种处理下对小麦开花期旗叶长、宽、面积和周长进行了QTL定位。结果表明,共检测到相关加性QTL 22个,其中,控制旗叶面积的QTL有3个,控制旗叶长的QTL有5个,控制旗叶宽的QTL有9个,控制旗叶周长的QTL有5个,分布于1B、2D、3B、4B、7A、7B和7D染色体上,单个QTL的贡献率在6.58%~39.83%之间。其中,qFLW-2D-2.T1在T1和T3处理下均能够检测到,qFLW-7D.T1在T1和T2处理下也均能够检测到,说明这2个QTL表达不依赖于水分条件,属于稳定表达的QTL。其他QTL只在一种处理下能够检测到,说明其表达依赖于水分条件。同时,本研究也检测到了在不同处理下同时控制2种或3种性状的QTL,推测这些区域的QTL可能为一因多效QTL,但有待于进一步验证。  相似文献   

12.
为挖掘控制小麦幼苗性状与旗叶性状的QTL,并探讨两者的遗传基础,以京冬8号和矮抗58构建的RIL群体(207个家系)为材料,田间试验测定旗叶相关性状,水培试验测定幼苗期相关性状,通过完备区间作图对这些性状进行QTL研究。结果共检测到10个控制旗叶性状的QTL,单个QTL可解释1.98%~9.89%的表型变异,其中有6个QTL为主效QTL,分别位于1A、4D和5D染色体上;共检测到22个控制幼苗性状的QTL,单个QTL可解释1.14%~10.52%的表型变异,仅有2个QTL为主效QTL,分别位于1A和4D染色体上。除3D染色体上控制幼苗根长的QTL以及5D染色体上控制旗叶面积和旗叶宽的QTL表现为部分显性效应外,与其他性状有关的QTL均表现为超显性效应。1A、2D、4D、5A、5D和7A染色体上的分子标记存在多效性,其中2D(wmc170)和4D(barc308)染色体上与幼苗性状QTL紧密连锁的分子标记(wmc170和barc308)也与旗叶性状QTL紧密连锁。  相似文献   

13.
旗叶相关性状是影响小麦植株结构、光合能力和产量潜力的重要因素。为发掘控制小麦旗叶性状相关的数量性状位点(QTL),以品冬34和MY11847为亲本构建的含有356个株系的F7:8重组自交系(recombinant inbred line, RIL)群体为材料,基于本课题组前期利用简化基因组测序(specific-locus amplified fragment sequencing, SLAF-seq)结合传统分群分析法(bulk segregant analysis, BSA)技术构建的高密度遗传连锁图谱,对小麦灌浆期旗叶长、旗叶宽和旗叶面积进行QTL定位。结果表明,共检测到9个旗叶长QTL、7个旗叶宽QTL和8个旗叶面积QTL,可解释1.71%~14.71%的表型变异。其中,旗叶长位点QFLL.nwafu-3D和QFLL.nwafu-2D.1、旗叶宽位点QFLW.nwafu-6B以及旗叶面积位点QFLA.nwafu-3D的表型贡献率均大于10%,为主效QTL,且QFLL.nwafu-3D和QFLA.nwafu-3D共定位于相同遗传区间。  相似文献   

14.
为发掘小麦旗叶性状相关基因位点,以384个小麦品种(系)为材料,对2个年份获得的旗叶长、宽、面积、长宽比和55K SNP芯片分型数据进行全基因组关联分析。结果发现,共检测到60个与旗叶性状显著关联的SNP,分布于除了1D、2A、4D和6D外的17对染色体上,解释表型变异的4.11%~9.70%,平均为5.64%。与旗叶长、宽、面积、长宽比相关的位点分别有12、24、18和16个,其中10个SNP为多性状相关位点。旗叶长相关SNP中,7D染色体上的3个SNP(AX-110826147、AX-111061288和AX-111843581)与2个年份旗叶长及其平均值均显著相关,1个SNP(AX-108882010)与2018年旗叶长及2个年份平均值均显著相关,这4个SNP位于7D染色体63.48~67.45 Mb区段,SNP标记间R2的平均值为0.78(P<0.000 1),呈现较大的连锁不平衡。遗传效应分析发现,该区段存在8种单倍型,其中单倍型III和IV在2个年份的旗叶长基本一致,分别为18.30和18.20 cm,高于其他6种单倍型的旗叶长;这2种单倍型分别占供试材料的40.36%和2.08%,可能是一个新的控制旗叶长的基因位点。  相似文献   

15.
【目的】通过对水稻剑叶性状的综合评价,明确剑叶相关性状间及与6个农艺性状的关系。检测剑叶相关性状的QTL,为优良株型品种选育,剑叶性状基因的精细定位和克隆奠定基础。【方法】以日本优质粳稻品种越光和葡萄牙粳稻地方种Bertone构建的回交群体两个世代为实验材料,利用BC3F1群体基因型构建遗传连锁图谱;测定亲本和BC3F2群体各株系剑叶SPAD、剑叶长、剑叶宽,计算剑叶长宽比、剑叶面积;利用隶属函数和标准差系数赋予权重法获得剑叶性状综合评价值(D值),分析其与6个农艺性状间的关系。分别利用单标记分析(SPA)和区间作图(IM)检测水稻剑叶相关性状QTL。【结果】在抽穗灌浆期,两亲本剑叶SPAD值呈现先升高后降低的动态变化。BC3F2群体的5个剑叶相关性状变异丰富,总体表现趋向轮回亲本越光。4个剑叶形态性状间相关性均达到极显著水平,与剑叶SPAD的相关性不显著。主成分和逐步线性回归分析表明剑叶宽、剑叶SPAD、剑叶长、剑叶面积是影响剑叶综合评价值(D值)的主要因子。高D值株系的株高、穗长、茎基粗和单株产量均极显著高于低D值株系,两者的分蘖数和有效穗数差异不显著。共检测到18个控制剑叶性状的QTL,分布在水稻第1、4、7和8染色体上,贡献率分布范围为4.00%~28.00%(SPA)和3.41%~27.00%(IM),除qFLSPAD1之外的17个QTL增效基因均来自Bertone。在第8染色体上的RM22720-RM404区间发现1个QTL簇,含6个主效QTL,分别为qFLL8.1qFLL8.2qFLA8.1qFLA8.2qD8.1qD8.2。【结论】获得了剑叶宽、剑叶SPAD、剑叶长和剑叶面积4个评价剑叶性状的关键指标;明确了剑叶性状与单株产量之间的正相关关系;检测到18个剑叶相关性状QTL,位于第8染色体RM22720-RM404区间的QTL簇,是影响剑叶性状的1个重要染色体区域。  相似文献   

16.
基于粳稻F2和F2:6群体的连锁图谱及剑叶性状QTL比较分析   总被引:1,自引:0,他引:1  
 以粳稻沈农265和丽江新团黑谷 (LTH) 为亲本,分别构建了F2群体和F2:6群体,分析并比较了两群体的遗传信息和控制剑叶相关性状(剑叶长、宽和比叶重)的数量性状基因座。结果表明:1)多数标记在染色体上的顺序相同,但标记间距不同。F2群体中30个标记显著偏离预期的1∶2∶1孟德尔分离比例,13个标记极显著偏离预期的1∶2∶1孟德尔分离比例,其中19个偏向沈农265,11个偏向LTH。F2:6群体中62个标记显著偏离预期的1∶1孟德尔分离比例,38个标记极显著偏离预期的1∶1孟德尔分离比例,其中43个偏向沈农265,19个偏向LTH。偏分离标记共形成10个偏分离区域,其中有6个区域同时出现在两个群体中。2) F2:6群体检测QTL的能力强于F2群体。F2群体共检测到7个控制剑叶性状的QTL (2个控制剑叶长,4个控制剑叶宽,1个控制比叶重),而F2:6群体共检测到17个控制剑叶性状的QTL (7个控制剑叶长,5个控制剑叶宽,5个控制比叶重),其中有4个QTL在两群体中同时检测到,分别是第9染色体上控制剑叶长的qFLL9,第4染色体上控制剑叶宽的qFLW4,第12染色体上控制剑叶宽的qFLW12.1和第6染色体上控制比叶重的qSLW6。其中,控制比叶重的qSLW6 (加性效应值为1.956 mg/cm2),极富研究与应用价值。  相似文献   

17.
粳稻大剑叶角资源的发现及剑叶角度的遗传分析与QTL定位   总被引:2,自引:0,他引:2  
 利用粳稻保持系863B(P1)与A7444(P2)进行配组,构建了P1、P2、F1、B1(F1/P1)、B2(F2/P2)和F2 6个世代,并对剑叶角度进行遗传分析。调查了P1与P2及BC1F1世代141个单株SSR标记基因型和剑叶角度,构建该组合的SSR标记连锁图谱并定位剑叶角度的QTL。该连锁图谱由79个多态位点构成,全长441.6 cM,相邻标记的平均图距为5.6 cM。主基因加多基因的遗传模型分析结果表明,剑叶角度受2对主基因+多基因控制,以主基因遗传为主。单标记分析显示有15个标记与剑叶角度呈极显著相关。利用两种分析软件WinQTLCart 2.5和QTL Network 2.0共同检测到2个控制剑叶角度的QTL(qFLA2、qFLA8)。qFLA2位于RM300-RM145区间,qFLA8位于RM6215-RM8265区间,这两个QTL增效等位基因都来自A7444。  相似文献   

18.
Very few efforts have been made to improve the nutritional quality of groundnut, as biochemical estimation of quality traits is laborious and uneconomic; hence, it is difficult to improve them through traditional breeding alone. Identification of molecular markers for quality traits will have a great impact in molecular breeding. An attempt was made to identify microsatellite or simple sequence repeat (SSR) markers for important nutritional traits (protein content, oil content and oil quality in terms of oleic acid, linoleic acid and oleic/linoleic acid ratio) in a mapping population consisting of 146 recombinant inbreed lines (RILs) of a cross TG26 × GPBD4. Phenotyping data analysis for quality traits showed significant variation in the population and environment, genotype × environment interaction and high heritability was observed for all the traits. Negative correlation between protein content and oil content, oleic acid and linoleic acid indicated their antagonistic nature. After screening >1000 SSR markers, a partial genetic linkage map comprising of 45 SSR loci on 8 linkage groups with an average inter-marker distance of 14.62 cM was developed. QTL analysis based on single marker analysis (SMA) and composite interval mapping identified some candidate SSR markers associated with major QTLs as well as several minor QTLs for the nutritional traits. Validation of these major QTLs using a wider genetic background may provide the markers for molecular breeding for improving groundnut for nutritional traits.  相似文献   

19.
水稻剑叶全氮含量及其变化的遗传分析   总被引:3,自引:0,他引:3  
 以籼稻品种IR24 和粳稻品种Asominori 及其染色体片段置换系(CSSLs)群体为遗传研究材料, 在抽穗后5个不同时期分别测定剑叶全氮含量,并结合水稻RFLP分子标记连锁图谱,对水稻剑叶全氮含量性状进行QTL的动态定位,探讨了控制剑叶全氮含量基因在水稻发育过程中的时序表达方式。在抽穗后各时期共检测到7个QTL, 位于第2和第11染色体上的2个QTL(QN 2、QN 11)增效基因来自粳稻品种Asominori,其他QTL的增效基因来自籼稻IR24;抽穗后2周内检测到2个QTL,即QN 3和QN 8b, 其加性效应值较大, 解释表型变异的贡献率较高;后期检测到的QTL加性效应和贡献率较低,位于第2染色体上R3393的QN 2位点的基因在抽穗后第3周内表达, 位于第8染色体上G1149的QN 8位点的基因在抽穗后第4周内表达,位于第11染色体上G1465的QN 11位点的基因在抽穗后4周和5周持续表达。控制剑叶全氮含量的基因在抽穗后早期表达较为活跃,可以应用于改良水稻品种的剑叶光合功能;在测定末期检测到的控制剑叶全氮含量的QTL,则可以用于延缓叶片早衰的育种改良。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号