首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was performed to investigate the effects, in terms of nuclear material and actin cytoskeleton quantities (fluorescent pixel counts), of four different bovine blastocyst culturing techniques (in vitro, stepwise in vitro‐to‐in vivo, or purely in vivo). Cumulus oocyte complexes from abattoir‐sourced ovaries were matured in vitro and allocated to four groups: IVP‐group embryos developed up to blastocyst stage in vitro. Gamete intra‐fallopian transfer (GIFT)‐group oocytes were co‐incubated with semen for 4 h before transfer to oviducts of heifers. Following in vitro fertilization, cleaved embryos (day 2 of embryo development, day 2–7 group) were transferred into oviducts on day 2. Multiple ovulation embryo transfer (MOET)‐group embryos were obtained by superovulating and inseminating heifers; the heifers’ genital tracts were flushed at day 7 of blastocyst development. Within each group, ten blastocysts were selected to be differentially dyed (for nuclei and actin cytoskeleton) with fluorescent stains. A novel computer program (ColorAnalyzer) provided differential pixel counts representing organelle quantities. Blastocysts developed only in vivo (MOET group) showed significantly more nuclear material than did blastocysts produced by any other technique. In terms of actin cytoskeleton quantity, blastocysts produced by IVP and by day 2–7 transfer did not differ significantly from each other. Gamete intra‐fallopian transfer‐ and MOET‐group embryos showed significantly larger quantities of actin cytoskeleton when compared with any other group and differed significantly from each other. The results of this study indicate that culturing under in vitro conditions, even with part time in vivo techniques, may adversely affect the quantity of blastocyst nuclear material and actin cytoskeleton. The software employed may be useful for culture environment evaluation/developmental competence assessment.  相似文献   

2.
Cells are blessed with a group of stress protector molecules known as heat shock proteins (HSPs), amongst them HSP70, encoded by HSPA‐1A gene, is most abundant and highly conserved protein. Variety of stresses hampers the developmental competence of embryos under in vivo and in vitro conditions. Present work was designed to study the quantitative expression of HSPA‐1A mRNA in immature oocytes (IMO), matured oocytes (MO), in vitro produced (IVP) and in vivo‐derived (IVD) buffalo embryos to assess the level of stress to which embryos are exposed under in vivo and in vitro culture conditions. Further, HSPA‐1A gene sequence was analysed to determine its homology with other mammalian sequences. The mRNA expression analysis was carried out on 72 oocytes (40 IMO; 32 MO), 76 IVP and 55 IVD buffalo embryos. Expression of HSPA‐1A was found in oocytes and throughout the developmental stages of embryos examined irrespective of the embryo source; however, higher (p < 0.05) expression was observed in 8–16 cell, morula and blastocyst stages of IVP embryos as compared to IVD embryos. Phylogenetic analysis of bubaline HSPA‐1A revealed that it shares 91–98% identity with other mammalian sequences. It can be concluded that higher level of HSPA‐1A mRNA in IVP embryos in comparison with in vivo‐derived embryos is an indicator of cellular stress in IVP system. This study suggests need for further optimization of in vitro culture system in which HSPA‐1A gene could be used as a stress biomarker during pre‐implantation development.  相似文献   

3.
The present study evaluated the effects of genetic backgrounds on the developmental competence and thermotolerance of bovine in vitro‐produced (IVP) embryos. First, Holstein (Hol) and Japanese Black (JB) oocytes were fertilized with sperm from Hol, JB and a thermotolerant breed (Brahman), and in vitro development was evaluated when the embryos were exposed to heat shock on Day 2 (Day 0 = day of fertilization). Sperm genetic backgrounds affected the developmental competence in controls (P < 0.05). Second, the effect of sperm pre‐incubation for 4 h on subsequent in vitro fertilization was assessed using different sperm genetic backgrounds. The pre‐incubation of sperm did not decrease the embryonic development regardless of the breed of the sperm. A milder heat shock (40.0°C) effect on parthenotes (Hol and JB) and IVP embryos were evaluated. JB parthenotes showed developmental arrest after Day 4, and the rate of development to the blastocyst stage decreased by heat shock, but not in Hol parthenotes. Heat shock decreased developmental competence after cleavage of IVP embryos regardless of genetic background. The thermotolerance of IVP embryos would be controlled by both maternal and paternal factors but genetic involvement was still unclear. Further evaluation is needed to reveal the genetic contribution to thermotolerance.  相似文献   

4.
Interspecies somatic cell nuclear transfer (interspecies SCNT) has been explored in many domestic and non‐domestic animal species. However, problems arise during the development of these embryos, which may be related to species‐specific differences in nuclear–cytoplasmic communication. The objectives of this study were to investigate the possibility of producing bison embryos in vitro using interspecies SCNT and assess the developmental potential of these embryos. Treatment groups consisted of cattle in vitro fertilization (IVF) and cattle SCNT as controls and wood bison SCNT, plains bison SCNT and wisent SCNT as experimental groups. Cleavage and blastocyst rates were assessed, and blastocyst quality was determined using total cell number, apoptotic incidence and relative quantification of mitochondria‐related genes NRF1, MT‐CYB and TFAM. These results indicate that embryos can be produced by interspecies SCNT in all bison species/subspecies (13.34–33.54% blastocyst rates). Although increased incidence of apoptosis was observed in bison SCNT blastocysts compared to cattle SCNT controls (10.45–12.69 vs 8.76, respectively) that corresponded with significantly lower cell numbers (80–87 cells vs >100 cells, respectively), no major differences were observed in the expression of NRF1, MT‐CYB and TFAM. This study is the first to report the production of bison embryos by interspecies SCNT. Blastocyst development in all three bison species/subspecies was greater than the rates obtained in previous studies by IVF, which supports the potential role of SCNT for in vitro embryo production in this species. Yet, further investigation of developmental competence and the factors influencing blastocyst quality and viability is required.  相似文献   

5.
6.
Co‐culture of cumulus‐oocyte complexes (COCs) with denuded oocytes (DOs) during in vitro maturation (IVM) was reported to improve the developmental competence of oocytes via oocyte‐secreted factors in cattle. The aim of the present study was to investigate if addition of DOs during IVM can improve in vitro fertilization (IVF) and in vitro culture (IVC) results for oocytes in a defined in vitro production system in pigs. The maturation medium was porcine oocyte medium supplemented with gonadotropins, dbcAMP and β‐mercaptoethanol. Cumulus‐oocyte complexes were matured without DOs or with DOs in different ratios (9 COC, 9 COC+16 DO and 9 COC+36 DO). Consequently; oocytes were subjected to IVF as intact COCs or after denudation to examine if DO addition during IVM would affect cumulus or oocyte properties. After fertilization, penetration and normal fertilization rates of zygotes were not different between all tested groups irrespective of denudation before IVF. When zygotes were cultured for 6 days, no difference could be observed between all treatment groups in cleavage rate, blastocyst rate and cell number per blastocyst. In conclusion, irrespective of the ratio, co‐culture with DOs during IVM did not improve fertilization parameters and embryo development of cumulus‐enclosed porcine oocytes in a defined system.  相似文献   

7.
Currently, in vitro‐produced embryos derived by ovum pick up (OPU) and in vitro fertilization (IVF) technologies represent approximately one‐third of the embryos worldwide in cattle. Nevertheless, the culture of small groups of embryos from an individual egg donor is an issue that OPU‐IVF laboratories have to face. In this work, we tested whether the development and quality of the preimplantation embryos in vitro cultured in low numbers (five embryos) could be improved by the addition of epidermal growth factor, insulin, transferrin and selenium (EGF‐ITS) or by the WOW system. With this aim, immature oocytes recovered from slaughtered heifers were in vitro matured and in vitro fertilized. Presumptive zygotes were then randomly cultured in four culture conditions: one large group (LG) (50 embryos/500 μl medium) and three smaller groups [five embryos/50 μl medium without (control) or with EGF‐ITS (EGF‐ITS) and five embryos per microwell in the WOW system (WOW)]. Embryos cultured in LG showed a greater ability to develop to blastocyst stage than embryos cultured in smaller groups, while the blastocyst rate of WOW group was significantly higher than in control. The number of cells/blastocyst in LG was higher than control or WOW, whereas the apoptosis rate per blastocyst was lower. On the other hand, the addition of EGF‐ITS significantly improved both parameters compared to the control and resulted in similar embryo quality to LG. In conclusion, the WOW system improved embryo development, while the addition of EGF‐ITS improved the embryo quality when smaller groups of embryos were cultured.  相似文献   

8.
This study examined the presence of immunoreactivity and mRNA for different nitric oxide synthase (NOS) isoforms in immature and in vitro matured oocytes and in embryos at two‐, four‐ and eight‐cell, and morula and blastocyst stages in buffalo. Oocytes obtained from slaughterhouse buffalo ovaries were subjected to in vitro maturation in TCM‐199 + 10% FBS + 5 μg/ml pFSH + 1 μg/ml estradiol‐17β + 0.81 mm sodium pyruvate + 10% buffalo follicular fluid + 50 μg/ml gentamycin sulphate for 24 h in a CO2 incubator (5% CO2 in air) at 38.5°C. Following in vitro fertilization carried out by incubating them with 2–4 million spermatozoa/ml for 18 h, the presumed zygotes were cultured in mCR2aa medium containing 0.6% BSA and 10% FBS for up to 8 days post insemination. Immunofluorescence staining of NOS using antibodies that cross‐reacted either with all the NOS isoforms i.e., universal (uNOS) or specifically with inducible (iNOS) or endothelial (eNOS) isoforms revealed that NOS was present in oocytes and embryos at all the stages examined. Examination of the semi‐quantitative expression of NOS genes by RT‐PCR revealed that the iNOS, eNOS and nNOS mRNA was present in the immature and mature oocytes and in all the embryonic stages examined. In conclusion, it was demonstrated in the present study that immunoreactivity and mRNA for different NOS isoforms was present in buffalo oocytes and pre‐implantation stage embryos.  相似文献   

9.
Bovine somatic cell nuclear transfer (SCNT) embryos can develop to the blastocyst stage at a rate similar to that of embryos produced by in vitro fertilization. However, the full‐term developmental rate of SCNT embryos is very low, owing to the high embryonic and fetal losses after embryo transfer. In addition, increased birth weight and postnatal mortality are observed at high rates in cloned calves. The low efficiency of SCNT is probably attributed to incomplete reprogramming of the donor nucleus and most of the developmental problems of clones are thought to be caused by epigenetic defects. Applications of SCNT will depend on improvement in the efficiency of production of healthy cloned calves. In this review, we discuss problems and recent progress in bovine SCNT.  相似文献   

10.
Galli  C.  Duchi  R.  Crotti  G.  Turini  P.  Ponderato  N.  Colleoni  S.  Lagutina  I.  Lazzari  G. 《Veterinary research communications》2004,28(1):121-126
Many factors influence the efficiency of the in vitro embryo production technology in cattle but the most important are the physiological conditions of the donor and the culture protocols for oocyte maturation and fertilization and for embryo culture from zygote to blastocyst. Therefore, general factors such as age, body conditions and herd management play a pivotal role together with more specific factors such as reproductive soundness and ovarian cyclicity. Given that good quality and competent oocytes are available a complex series of processes, including oocyte maturation, fertilization and culture of the derived zygotes, must be completed to generate viable embryos.  相似文献   

11.
Since BSE testing of slaughtered cattle is obligatory in Japan, storage of ovaries at 15-20 C overnight in phosphate buffered saline has become a routine protocol in in vitro production (IVP) of cattle embryos. Ovary storage is known to reduce developmental competence of oocytes; however, its effects on oocyte gene expression have not been clarified yet. This study compared oocytes collected from stored slaughterhouse-derived ovaries with those collected by Ovum Pick-Up (OPU) in terms of the expression of 20 selected genes to determine if ovary storage affects cellular processes at the molecular level. Expression of mRNA in oocytes was assayed before and after in vitro maturation (IVM) by real-time quantitative PCR. Maternal mRNA levels of genes were investigated in 2-cell stage embryos obtained from slaughterhouse oocytes to assess their roles for blastocyst formation. In immature OPU oocytes, genes related to metabolism (GAPDH), transporters (GLUT8, ATP1A1) and stress resistance protein (HSP70) showed significantly higher expression compared with oocytes derived from stored ovaries. During IVM, the expression of GDF9, GLUT8, CTNNB1 and PMSB1 was significantly decreased irrespective of oocyte source. Two-cell stage embryos cleaving at 22-25 h after in vitro fertilization (IVF) showed a significantly higher blastocyst formation rate and ATP1A1 gene expression level compared with those cleaving at 27-30 h after IVF. Our results reveal that storage of ovaries alters mRNA levels in oocytes. Correlation of Na/K ATPase ATP1A1 expression in IVP embryos at the 2-cell and 8-cell stages with their developmental ability to the blastocyst stage may suggest the importance of maternal mRNA of this gene during blastulation in embryos derived from slaughterhouse oocytes.  相似文献   

12.
Developmental competence of porcine blastocysts produced in vitro   总被引:1,自引:0,他引:1  
The establishment of in vitro embryo production (IVP) system in pigs enables us to generate viable embryos with a quality equal to that of in vivo derived embryos. This technology contributes not only to developments in reproductive physiology and agriculture but also to biotechnologies for producing cloned or genetically modified pigs. The birth of piglets from in vitro matured and fertilized embryos at the two- to 4-cell stage was first achieved about 10 years ago, but it was only quite recently that piglets were produced after the transfer of IVP blastocysts. This improvement to the blastocyst stage of the in vitro culture system after in vitro maturation and fertilization can be expected to play a part in the development of an advanced IVP system. Here, we discuss the developmental ability of porcine embryos produced by our improved IVP system and the utilization of this technique in the new biotechnology.  相似文献   

13.
The recent upgrade in IVP technology seen in cattle can be adapted to embryo production in small ruminants to overcome limitations exhibited by surgical procedures on preserving the reproductive potential of donors and the efficiency of embryo production. The aim of the present study was to assess the current procedures used in cattle for the production of IVP embryos in goats and sheep based on laparoscopic-aided ovum pick-up (LOPU) supplied oocytes. Sexually matured goat and sheep donors were treated during the breeding season with FSH and subjected to laparoscopic-guided follicular puncture under general anaesthesia. The collected cumulus-oocyte complexes were matured in medium 199 and fertilized by frozen-thawed spermatozoa using Talp medium supplemented with heparin and oestrus-sheep serum. Cleaved ova were either cultured in sheep in vitro fertilization medium plus amino acids or transferred to sheep oviducts. Blastocyst rate, hatching rate and development rate up to term were used as markers of embryo function. The results obtained for goat and sheep involving 30 and 35 donors respectively (10 and 9 LOPU sessions) were 81.2% and 85.2% of oocyte collection rate; 88.3% and 98.6% oocyte incubation rate; 85.6% and 76.0% fertilization rate; 82.4% and 93.4% of cleavage rate; 50.0% and 61.5% IVP blastocyst rate; 42.1% and 45.5% blastocyst rate in oviducts; 73.0% and 66.7% embryo survival up to term, respectively. The results are comparable to those obtained in small ruminants and in bovines suggesting that requirements for embryo production and development are similar.  相似文献   

14.
This study was conducted to determine the adequate medium for a serum‐free culture system of domestic cat embryos produced by in vitro maturation (IVM) and fertilization (IVF). Cumulusoocyte complexes recovered from cat ovaries were matured in vitro for 24 h, and then inseminated in vitro for 12 h. After insemination, the oocytes were cultured in five media [Ham's F10, Waymouth 752/1 (Waymouth), TCM199, modified Earle's balanced salt solution (MK‐1) and CR1aa], each of which contained 0.4% bovine serum albumin. There were no significant differences among the rates of fertilization of oocytes cultured in five media following IVF. The rate of oocytes/embryos developed to at least the morula stage was significantly lower (p < 0.05) in Waymouth than in MK‐1, TCM199 and CR1aa. Moreover, none of the embryos cultured in Ham's F10 and Waymouth developed to the blastocyst stage. There were no differences among the rates of development to the blastocyst stage of oocytes/embryos cultured in MK‐1, TCM199 and CR1aa. These results indicate that the type of serum‐free medium has a major impact on in vitro development of domestic cat embryos derived from IVM/IVF, and MK‐1, TCM199 and CR1aa media are suitable for in vitro culture of cat embryos in a serum‐free culture system.  相似文献   

15.
This study aimed to examine the effects of sericin supplementation during in vitro oocyte maturation on the nuclear maturation, fertilization and development of porcine oocytes. Cumulus‐oocyte complexes (COCs) were cultured in maturation medium supplemented with 0 (control), 0.1, 0.5, 1.0, 2.5 or 5.0% sericin and were then subjected to in vitro fertilization and embryo culture. More COCs matured with 1.0% sericin underwent germinal vesicle breakdown and reached metaphase II compared with the control COCs matured without sericin (p < 0.01). The proportions of oocytes with DNA‐fragmented nuclei did not differ between the groups, regardless of the sericin level. The total fertilization rate of oocytes matured with 1.0% sericin was higher (p < 0.05) than that of oocytes matured with 0.1%, 2.5% and 5.0% sericin. Supplementation with more than 1.0% sericin decreased the DNA fragmentation index of the blastocysts compared with the control group (p < 0.05). However, the supplementation of the maturation medium with sericin had no beneficial effects on the cleavage, development to the blastocyst stage and the total cell number of the embryos. Our findings indicate that supplementation with 1.0% sericin during maturation culture may improve the nuclear maturation and the quality of the embryos but does not affect blastocyst formation.  相似文献   

16.
Studies were conducted to examine the possibility of preserving slaughterhouse‐derived buffalo ovaries at 4°C for 0 (control), 12 and 24 h to maintain the developmental competence of the oocytes (experiment 1), to assess the effect of incubation temperature during oocyte maturation on rates of in vitro maturation (IVM) and in vitro fertilization (IVF) of buffalo oocytes and embryo development (experiment 2), and to examine the effect of storage at 25°C for 0 (control), 4 and 8 h of frozen–thawed buffalo sperm and BO and H‐TALP as sperm processing and fertilization media on cleavage and embryo development in vitro of buffalo oocytes (experiment 3) in order to optimize the IVF technology in buffalo. Results suggested that storage of ovaries at 4°C for 12 or 24 h significantly (p < 0.05) reduced the developmental potential of oocytes. Incubation temperatures during the IVM influenced the fertilization rate but had no significant effect on maturation and subsequent embryo development. The incubation temperature of 38.5°C during IVM was found to be optimum for embryo production in vitro. Storage of frozen–thawed sperm at 25°C for 8 h significantly (p < 0.05) decreased its ability to cleave the oocytes. Sperm processed in BO medium had significantly (p < 0.05) higher ability to cleave the oocytes than the H‐TALP medium.  相似文献   

17.
Our study was conducted to assess the follicular development and availability of sound ovarian oocytes for in vitro production (IVP) of embryos in pre‐pubertal cats. The relationship between body and ovarian weight was examined in 93 cats. The results revealed that ovarian weight rapidly increased until 100 days of estimated age. By histological evaluation of ovaries obtained from 11 pre‐pubertal cats with estimated age of <20, 20–40 and 100–120 days, it was clarified that the increase in ovarian weight during kitten growth accompanied the increase in the number and size of antral follicles. The follicular diameter and percentage of normal oocytes in secondary/antral follicles also increased as estimated age (body weight) increased. The oocytes obtained from pre‐pubertal cats with 100–120 days of estimated age were used for IVP of embryos. The results showed that the success rates of in vitro maturation, in vitro fertilization and development to blastocysts after in vitro culture in pre‐pubertal cats were lower than in sexually mature cats. However, the percentage of blastocysts based on the cleaved embryos and cell number of blastocysts in pre‐pubertal cats were comparable to those in mature cats. In conclusion, these results suggest that the ovaries of pre‐pubertal cats with ≥100 days of age contain oocytes with in vitro developmental competence to blastocysts.  相似文献   

18.
Chlorogenic acid (CGA) is a quinic acid conjugate of caffeic acid, and a phytochemical found in many fruits and beverages that acts as an antioxidant. The present study investigated the effects of CGA supplementation during in vitro maturation (IVM), on in vitro development of porcine oocytes, to improve the porcine in vitro production (IVP) system. Oocytes were matured either without (control) or with CGA (10, 50, 100 and 200 μM). Subsequently, the matured oocytes were fertilized and cultured in vitro for 7 day. The rates of maturation, fertilization and blastocyst formation of oocytes matured with 50 μM CGA were significantly (< .05) higher than those of the control oocytes. Hydrogen peroxide (H2O2) is one of the reactive oxygen species and induces DNA damage in porcine oocytes. When oocytes were matured with 1 mM H2O2 to assess the protective effect of CGA, 50 μM CGA supplementation improved the maturation rate and the proportion of DNA‐fragmented nuclei in oocytes compared with control oocytes matured without CGA. Moreover, when oocytes were matured with either 50 μM CGA (control) or caffeic acid (10, 50 and 100 μM), the rates of maturation, fertilization and the blastocyst formation of oocytes matured with 50 μM CGA were similar to those of oocytes matured with 10 and 50 μM caffeic acid. Our results suggest that CGA has comparable effects to caffeic acid, and IVM with 50 μM CGA is particularly beneficial to IVP of porcine embryos and protects oocytes from DNA damage induced by oxidative stress. Supplementation of CGA to the maturation medium has a potential to improve porcine IVP system.  相似文献   

19.
This study was aimed to optimize glucose level at different stages of buffalo in vitro embryo production procedure. Three glucose levels (1.5, 5.6 and 10 mm ) along with a control (0 mm ) were used at three phases of in vitro fertilisation (IVF) procedure viz. in vitro maturation (IVM), in vitro culture (IVC‐I) (12–72 hpi) and IVC‐II (72 hpi to 7 dpi). Maturation rate of oocytes was found different under different glucose concentrations, and significantly more number of oocytes reached to MII under 5.6 mm glucose. The glucose levels at each phase (IVM, IVC‐I and IVC‐II) individually had significant effect on blastocyst rate, and the level used at one phase had significant effect on the outcome of next phase. Complete withdrawal of glucose from any of these stages irrespective of concentrations used at subsequent stage/s resulted in significantly lower number of blastocysts. However, the changing levels of glucose had differential effects during different phases of IVF steps. The most prominent effect of glucose level was observed during IVM. The presence of 5.6 mm glucose at all stages was most effective to yield highest blastocyst rate in buffalo IVF system.  相似文献   

20.
The association of bovine immunodeficiency virus (BIV) with embryos derived by in vitro fertilization from oocytes of experimentally infected heifers or oocytes/embryos exposed to the virus in vitro was investigated. Using a nested-PCR assay, proviral DNA of BIV was not detected in follicular fluid or in embryos derived from BIV-infected donors. In vitro exposure of oocytes to BIV during maturation or insemination with BIV-infected semen resulted in zona pellucida-intact embryos testing negative for BIV provirus. However, exposure of zona pellucida-free day-7 embryos to the virus resulted in a positive BIV assay for 28% of the batches of embryos, suggesting that the zona pellucida has a role in protecting against BIV infection. The presence of BIV in the IVF system had no apparent effect on the development of bovine embryos to the blastocyst stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号