首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of 50% shading and NO3:NH4 ratio (0:100, 75:25, 50:50, and 25:75) in the nutrient solution on growth, yield, quality and N metabolism in hydroponically grown strawberry (Fragaria × ananassa var Camarosa) was evaluated. Both fresh and dry weights of leaves were significantly lower when a high concentration of either NO3 (100%) or NH4 (75%) was the sole N source in the nutrient solution. In unshaded plants, increasing of both NH4 and NO3 ratio in the nutrient solution reduced photosynthetic (Pn) rate, however in shaded plants the reduction of Pn became more pronounced at a higher ratio of NH4 in the nutrient solution. The yield in terms of fresh and dry weight of fruit per plant was significantly increased at the 75:25 and 50:50 (NO3:NH4) treatments. Fruit size was significantly affected by the treatments, so that the biggest fruits in both shaded and unshaded plants were obtained under the 75:25 and 50:50 (NO3:NH4) treatments. Total soluble solid (TSS) in unshaded plants was increased with increasing NH4 ratio in the nutrient solution, however in shaded plants it was reduced at high NH4 ratio in the nutrient solution. In both shaded and unshaded plants, higher concentration of NH4 significantly reduced the post-harvest life of the fruits. The increase of tissue N concentration was nearly proportional to the NH4 concentration in the nutrient solution. The activity of nitrate reductase (NR) was increased by increasing NH4 from 0 to 50% and then reduced at a higher ratio of NH4 in the solution. Shading increased NH4 concentration so that the shaded plant had nearly twice as high NH4 concentration in the leaves. The increase of NH4 concentration induced by shading could be partially the reduction of NH4 assimilate because of the shortage of carbohydrate.  相似文献   

2.
Different N sources (NO3, NH4+, or NH4NO3) at different relative addition rates (RAR) were supplied to cucumber (Cucumis sativus L.), a species sensitive to NH4+ toxicity. For comparison, cucumber plants were also grown at constant concentrations of 1 and 5 mM NH4+ or 5 mM NO3. The fresh weight of NH4+-fed plants at RAR 0.15 and RAR 0.25 day−1 was similar to that of NO3-fed plants, while at RAR 0.35 or RAR 0.45 day−1 growth reduction occurred. When available as a constant concentration, NH4+ decreased plant growth at 5 mM. It is concluded that at low rates of N supply the relative addition rate technique can be used for growing cucumber plants with NH4+ as sole N source without deleterious effects.  相似文献   

3.
Two field experiments (Experiment I in 2003–2005 and Experiment II in 2004–2005) with carrot c.v. ‘Kazan F1’ were conducted at Trzciana village (50°06′N, 21°85′E). The experiments were arranged in a split-plot design with four replications. Two sub-blocks were identified in both experiments: I, without foliar nutrition; II, receiving plant foliar nutrition. The plants were sprayed three times alternately with: 2% urea solution, 1% solution of multi-component ‘Supervit R’ fertilizer (produced by Intermag, Poland) and again with 2% urea solution. Combinations with diversified nitrogen fertilization were distinguished within both sub-blocks. Experiment I comprised of: (1) Control, (2) Ca(NO3)2 70, (3) Ca(NO3)2 70 + 70, (4) (NH4)2SO4 70 and (5) (NH4)2SO4 70 + 70. Experiment II included: (1) Control, (2) ENTEC-26 35 + 35, (3) ENTEC-26 70 + 70, (4) ENTEC 26 105 + 105, (5) NH4NO3 35 + 35, (6) NH4NO3 70 + 70, (7) NH4NO3 105 + 105. Where 70 kg N ha−1 was used before sowing, whereas 35 + 35, 70 + 70 and 105 + 105 kg N ha−1 were applied before sowing and as top dressing. Solid nitrogen fertilizer was added to the soil (produced by): Ca(NO3)2, Yara International ASA (Hydro); (NH4)2SO4, Zak?ady Azotowe in Tarnów, Poland; NH4NO3, Zak?ady Azotowe in Pu?awy, Poland; and ENTEC-26, COMPO GmbH & Co. KG, Germany. The research aimed at determining the effect of diversified nitrogen fertilization and foliar nutrition on NO3, NH4+, N-total and dry matter (d.m.) concentrations in carrot, and N uptake by storage roots. In Experiment I, nitrogen fertilization did not affect NO3 concentration, whereas in Experiment II, the applied N treatment increased NO3 concentration in carrot in relation to the control, except for the storage roots of plants fertilized with ENTEC-26 35 + 35. Nitrogen fertilization applied in both experiments caused a significant increase in N-total concentration in carrot and N uptake by storage roots in comparison with the control plants. In both experiments, nitrogen fertilization had a different effect on the concentrations of NH4+ and d.m. in carrot. What is more, foliar nutrition treatments in both experiments had a different effect on the concentrations on NO3, N-total, d.m. in carrot and N uptake by carrot storage roots.  相似文献   

4.
Three greenhouse experiments were carried out to determine the growth, yield, nitrate, total N and S concentration in shoots, and water uptake of hydroponically grown Brassica rapa L. subsp. nipposinica var. chinoleifera and Brassica juncea L. In each experiment, daily photosynthetically active radiation (PAR) level was 5.0 mol m−2 (low), 6.8 mol m−2 (medium) or 9.0 mol m−2 (high). Plants were supplied with nutrient solutions having equal N concentrations of 11 mM in different forms: 100% NH4, 50% NH4 + 50% NO3, and 100% NO3. Nitrogen supplied as 100% NH4 reduced fresh and dry shoot biomass, leaf area, and leaf number in both Brassica species, especially at low and medium PAR levels. In both Brassica species, S concentrations were highest, while nitrate concentrations were lowest in leaves of plants grown at N supplied as 100% NH4. No differences in leaf nitrate concentrations were observed between 50% NH4 + 50% NO3 and 100% NO3 treatments. Low and high PAR levels increased the nitrate concentrations and decreased the N/S ratio in leaves of both crops compared to medium PAR level. Fresh shoot biomass was maximized in Brassica rapa when PAR level was above the medium value and nitrate was supplied in the nutrient solution as NO3 or as a mixture of 50% NO3 and 50% NH4. The highest fresh shoot biomass of Brassica juncea was observed in all nutrient solution treatments at high PAR level.  相似文献   

5.
In a laboratory experiment, addition of increasing rates of Ca(OH)2 to ZnSO4 spray solution caused a decrease in soluble Zn concentration and an increase in its pH. The soluble Zn concentration in 0.15% neutralized ZnSO4 solution was 7 times higher than in the 0.60% neutralized ZnSO4 solution. The spray solutions containing 0.15 and 0.45% of 65ZnSO4 in combination with 0.0, 0.0375, 0.0750, 0.1125 and 0.225% of Ca(OH)2 were applied to sweet orange (Citrus sinensis Osbeck) leaves. The increasing rates of Ca(OH)2 in the ZnSO4 spray solution decreased 65Zn absorption by the leaves and this effect decreased with increasing rates of 65ZnSO4 in the solution. This has resulted from the decrease in Zn concentration in the spray solution. Thus addition or presence of any ion in the solution that forms a precipitate with Zn would cause a decrease in the efficiency of the spray solution as a result of a lower amount of Zn available from solution per unit area of the leaf.  相似文献   

6.
The aim of this research was to determine the influence of various forms, diverse doses, and dates of application of nitrogen fertilizers and foliar nutrition on the concentration of sugars, carotenoids and phenolics compound in carrot. Two field experiments (Experiment I in 2003–2005 and Experiment II in 2004–2005) with carrot ‘Kazan F1’ were conducted in Trzciana (50°06′N; 21°85′E) in Poland. Both experiments were arranged in a split-plot design with four replications. Two sub-blocks were identified in both experiments: sub-block (A) without foliar nutrition and sub-block (B) with plant foliar nutrition. In sub-block (B), plants were sprayed three-times with: 2% (w/v) urea, a 1% (v/v) solution of multi-component ‘Supervit R’ fertilizer, and again with 2% (w/v) urea. Combinations with diversified nitrogen fertilization were distinguished within both sub-blocks. The treatments in Experiment I consisted of: (1) Control, (2) 70 kg N ha−1 as Ca(NO3)2, (3) 70 + 70 kg N ha−1 as Ca(NO3)2, (4) 70 kg N ha−1 as (NH4)2SO4 and (5) 70 + 70 kg N ha−1 as (NH4)2SO4, where 70 kg N ha−1 was used preplant and 70 + 70 kg N ha−1 was applied preplant and as a top dressing, respectively. The treatments in Experiment II consisted of: (1) Control, (2) 35 + 35 kg N ha−1 as ENTEC-26, (3) 70 + 70 kg N ha−1 as ENTEC-26, (4) 105 + 105 kg N ha−1 as ENTEC-26, (5) 35 + 35 kg N ha−1 as NH4NO3, (6) 70 + 70 kg N ha−1 as NH4NO3, (7) 105 + 105 kg N ha−1 as NH4NO3, where 35 + 35, 70 + 70, 105 + 105 kg N ha−1 was applied preplant and as top dressing, respectively. Solid nitrogen fertilizer was added to the soil, as produced: Ca(NO3)2—Yara International ASA (Hydro), (NH4)2SO4—Zak?ady Azotowe w Tarnowie, Poland, NH4NO3—Zak?ady Azotowe w Pu?awach, Poland and ENTEC-26–COMPO GmbH & Co., KG, Germany. In Experiment I, the highest sugar concentrations were found in carrot fertilized with (NH4)2SO4 70, while in Experiment II in the control and after fertilization with ENTEC-26 35 + 35 kg N ha−1. In both experiments N-fertilization affected an increase in phenolic compound concentrations in comparison with the control. Experiment I revealed no significant effect of N-fertilization on carotenoid concentrations in carrot, however in Experiment II the highest concentration of these compounds was characteristic for the control plants and carrot fertilized with ENTEC-26 35 + 35. The foliar nutrition applied in Experiment I caused a decline in sugar concentration and an elevated carotenoid concentration, however it had no influence on the phenolic compound concentrations in carrot. Yet the foliar nutrition in Experiment II led to a decrease in phenolic and carotenoid compound concentrations, but it did not affect sugar concentration in carrot.  相似文献   

7.
Applications of 0.85, 1.70 or 2.55 kg N m?3 were made to Ilex crenata Thunb. Hetzi. Nitrogen sources included weekly applications of liquid fertilizer (NH4NO3) and single application of TVA's Sulfur coated urea (SCUT), Gold N (SCUG), Nitroform (NITR), isobutylidene diurea (IBDU), and an experimental N-containing Osmocote (OSCN). Shoot dry matter and leaf N from recently matured leaves were determined. Analyses of NH4-N and NO3-N were also conducted on the monthly leachates collected from the containers. Most controlled-release fertilizers (CRFs) produced greater dry weights at 1.70 kg N, while NH4NO3 produced more dry weight than CRF's at 0.85 or 2.55 kg N. Initially, for CRF's ammonium was more abundant than nitrate in the leachate; subsequently, nitrate became the dominant N form for most of the growing-season. All urea-based fertilizers had higher NH4 levels in the leachate when compared with NH4NO3-based fertilizers.  相似文献   

8.
《Scientia Horticulturae》2005,106(3):330-340
In this study, effects of ammonium sulphate (AS) and urea fertilizers on NO3 and NO2 accumulation, N, P, K, Ca, Mg, Fe, Cu, Zn, Mn contents and some yield criteria in spinach were investigated. Increments in nitrogen doses of AS and urea from 0 (control) to 150 kg N level ha−1 increased NO3, NO2, total N contents and yield of spinach significantly, but usually decreased P, Zn and Mn contents. NO3 contents of spinach in 120 and 150 kg N ha−1 of urea applications were higher than that of AS applications, while the NO3 contents of spinach in the lower application doses of AS were higher than that of urea applications. Increasing phosphorus availability in the higher doses of AS applications due to possibility of decreasing soil pH might be decrease NO3 accumulation in spinach by assimilating NO3 in protein form. NO3 and NO2 contents also gave the significant negative relationships with yield and P content in spinach. Decreasing micronutrient contents in spinach at the higher nitrogen doses might be due to dilution effect by increasing the plant biomass.  相似文献   

9.
Two field experiments were carried out at the Experimental Field, Department of Food Science (TE, Italy) in 2004 and 2005 to evaluate the effects of genotypes, different N forms and N rates on yield, safety and nutritional features of processing spinach. Experiment 1, as treatments, included spinach genotypes and N forms (CO(NH2)2; Agricote; NH4NO3); experiment 2 included three N forms (Ca(NO3)2; (NH4)2SO4; NH4NO3) applied at rates of 0, 75, 150, 200 kg N ha−1. This research work confirmed differences among spinach genotypes in terms of efficiency in N use and oxalate and nitrate accumulation. Spinach accumulated much more nitrate in petioles and much more oxalate in blades indicating that nitrate and oxalate might play a counterrole to each other. Fertilizers containing N under forms not readily available to the crop, i.e. Agricote, CO(NH2)2 and (NH4)2SO4, increased nitrate and oxalate accumulations less than fast N-release fertilizers, but their effect on yield was limited. Highest yield with contents of nitrate and oxalate lower than the limits imposed to avoid health problems, were achieved with Ca(NO3)2, at rates of 130 and 150 kg N ha−1 NH4NO3.  相似文献   

10.
South African Proteaceae are adapted to the low soil phosphorus (P) concentrations of the Cape Floristic Region. The efficient P uptake by Proteaceae means that these plants experience phosphorus (P) toxicity at lower rhizosphere [P] than crop plants. This is only problematic when cultivating Proteaceae (and many plants from this region) on previously agricultural land with high residual soil [P]. In this study we hypothesize that P toxicity will result in element imbalances in leaves of Proteaceae and information from this study aims to facilitate ameliorative treatments. Phosphorus toxicity was induced on-farm in Leucadendron ‘Safari Sunset’ (Proteaceae) with subsequent mapping of element distribution in non-necrotic leaf tissue using micro particle-induced X-ray emission spectrometry. Phosphate supply up to 0.01 mM in a fertigation solution resulted in increased stem length of Leucadendron ‘Safari Sunset’ while P concentrations in excess of this resulted in decreased stem length, increased leaf [P] up to 0.25% (w/w) and, between 1 mM and 5 mM P supply, typical P toxicity symptoms were observed. High P supply (5 mM P) resulted in increased leaf [P] in most leaf tissues including the epidermis, where calculations from an equilibrium speciation model indicated that there was 30% more dissolved PO43− in the epidermis compared to leaves at low P supply (0 mM added P on soil with 34 mg P kg−1). Concomitantly, bundle sheath and epidermal [Ca] were reduced and 10% more Ca was predicted to be adsorbed and precipitated as hydrapatite at high P supply. High P supply resulted in increased leaf [Cl] and [Mn] in all tissues studied; decreased total leaf [Fe], bundle sheath, xylem, phloem and epidermal [Fe] and decreased total leaf [Zn] and xylem and phloem [Zn]. The observed symptoms of P toxicity in Leucadendron ‘Safari Sunset’ (necrosis in some plants, chlorosis and leaf rosetting) co-occurred with (1) excess PO43−, which may bind Ca in the epidermis (leading eventually to necrosis); (2) reduced [Fe] and increased [Mn] (leading to chlorosis) and (3) reduced total and vascular [Zn] (leading to leaf rosetting).  相似文献   

11.
The effect of nutrient solution electrical conductivity (EC) and sulfur (S), magnesium (Mg), and phosphorus (P) levels on the content of the primary sesquiterpene lactones (SLs), lactucin, 8-deoxylactucin, and lactucopicrin, in hydroponically grown lettuce was assessed. Lettuce grown at 4 EC levels (0.5, 1.0, 2.0, and 3.0 dS m−1) displayed significant differences in leaf area index, number of leaves, plant height, fresh weight per plant, and chlorophyll content that were highest at EC 2.0 dS m−1. Lactucin (5.5 μg g−1 dry weight), 8-deoxylactucin (7.5), lactucopicrin (35.8), and total SLs (48.7) concentraions were highest at EC 0.5 dS m−1. Four S (8, 16, 48, and 80 mg L−1) and Mg (6, 12, 36, and 60 mg L−1) levels and 3 P (8, 16, and 48 mg L−1) levels were assessed for their effect on individual and total SLs. S and P had the greatest effect on SL levels. Plants in the lowest S level had significantly higher lactucin, lactucopicrin and total SLs. Each of the SLs was higher in the highest P level while Mg influenced only the lactucopicrin level in a quadratic manner. The results indicate that solution culture conditions can strongly influence the SL concentration and therefore bitterness and acceptability of lettuce.  相似文献   

12.
设施果类蔬菜土壤EC 值动态及盐害敏感性分析   总被引:1,自引:0,他引:1  
在建立饱和及土水比1∶5(m∶v)条件下ECe 与EC1:5 相关关系的基础上,建立EC1:5 的土壤盐分分级指标,评价了传统管理条件下设施越冬长茬和春茬的土壤盐分动态。结果表明:设施菜田土壤ECe 与EC1:5 呈极显著正相关,在京郊土壤条件下换算公式为EC1:5 =0.105 ECe;果类蔬菜中茄子和辣椒属敏感蔬菜作物,苗期和全生育期耐盐性根层土壤EC1∶5 临界值分别为0.10 dS·m -1 和0.30 dS·m -1,当季根层土壤EC1∶5 可接受调控范围为0.30~0.50 dS·m -1;番茄和黄瓜属非敏感蔬菜作物,苗期和全生育期耐盐性根层土壤EC1:5 临界值分别为0.30 dS·m -1 和0.60 dS·m -1,当季根层土壤EC1∶5 可接受调控范围为0.60~0.90 dS·m -1;日光温室越冬长茬土壤EC1:5 均值从定植至翌年3 月一直稳定在0.30~0.34 dS·m -1 之间,之后逐渐下降,7 月降至0.15 dS·m -1;塑料大棚春茬定植后根层土壤EC1:5 逐渐下降,4 月之前为0.29~0.30 dS·m -1,7 月降至0.20 dS·m -1;结合蔬菜作物耐盐指标发现,传统管理条件下日光温室越冬长茬和塑料大棚春茬蔬菜作物在苗期易出现盐害问题;越冬长茬敏感蔬菜作物从定植至翌年3 月期间,土壤盐度易超过其耐盐临界值,需要合理水肥调控以防盐害。  相似文献   

13.
Relative salt tolerance of selected herbaceous perennials and groundcovers   总被引:1,自引:0,他引:1  
In order to use reclaimed water to irrigate landscape plants and minimize damage and loss, salinity tolerance of commonly used landscape plants needs to be determined and characterized. Eight herbaceous perennials and groundcovers were obtained from a local nursery, transplanted to 2.6-L plastic containers and grown in the greenhouse for 2 weeks before saline irrigation at electrical conductivity (EC) of 0.8 (tap water), 3.2, 6.4, or 12 dS m−1 were initiated. Plants were irrigated with measured amount of saline solutions to obtain 30% leaching when approximately 50% water had been depleted. After 12 weeks, four plants in each treatment were destructively harvested and dry weights of shoots and roots were determined. Three Penstemon species (P. eatonii A. Gray, P. pseudospectabilis M.E. Jones, and P. strictus Benth.) and Lavandula angustifolia Mill. at 6.4 and 12 dS m−1 and most at 3.2 dS m−1 did not survive. Shoot dry weight of Delosperma cooperi (Hook.f.) L. Bolus decreased by 25% at 12 dS m−1, but there were no significant differences among the rest of the treatments. All plants of Teucrium chamaedrys L. survived but growth was reduced significantly with lower visual scores as salinity of irrigation water increased. Although growth was reduced in Gazania rigens (L.) Gaertn. as salinity increased, no other signs of stress or injury were observed. Ceratostigma plumbaginoides Bunge had reduced growth at 3.2 dS m−1 and higher EC levels compared to the control, older leaves showed reddish pigmentation at 6.4 dS m−1, whereas those at 12 dS m−1 did not survive. Ion concentrations of shoot and root tissue at the end of the experiment on surviving plants were also affected by salinity levels and varied among species. Among the tested species, D. cooperi and G. rigen indicated a relatively high tolerance to salinity, T. chamaedrys and C. plumbaginoides were moderately tolerant, and the rest were less tolerant.  相似文献   

14.
Calcium chloride, calcium hydroxide, potassium carbonate and the alkylpolyglycoside surfactants Glucopon 215 CSUP and Plantacare 12 UP are salts applied to leaves as foliar nutrients and fungicides. These chemicals were sprayed on apple (Malus domestica BORKH.) and broad bean (Vicia faba L.) leaves. Stomatal conductance and rates of net photosynthesis were measured continuously in the light and in the dark using a Portable Photosynthesis System CIRAS-1. All compounds with the exception of Ca(OH)2 affected stomatal conductance and net photosynthesis, albeit to different degrees. In light, Plantacare either alone (0.2 g l−1) or in combination with CaCl2·2H2O (5 g l−1) or K2CO3 (5 g l−1) caused a rapid initial increase in stomatal conductance during the first 1–3 h after spraying on the leaves, maximum conductances were observed about 6 h after application. A rather high stomatal conductance was observed during the dark period when Glucopon (0.2 g l−1) was applied either alone or in combination with Ca(OH)2. The combination CaCl2·2H2O + Glucopon did not cause this elevated stomatal conductance during the dark. CaCl2·2H2O reduced stomatal conductance in combination with both Glucopon and Plantacare. The surfactant Plantacare reduced net photosynthesis during the first light period (12 h), if applied alone or in combination with CaCl2·2H2O. Treatment of broad bean leaves with K2CO3 + Plantacare resulted in a rapid decrease in net photosynthesis during the first hour, and then the rates of net photosynthesis increased rapidly and approached to those of the water control. The effects of surfactants and salts on net photosynthesis had nearly disappeared by the beginning of the second light period. Non-specific glycosidases presumably cleaved the glycosidic bond between the alkyl and the sugar moieties during the preceding night. Our data showed that foliar applications of CaCl2·2H2O and K2CO3 together with alkyl polyglycoside surfactants can affect gas exchange. However, the effects of the chemicals at the concentrations used in our study were not very large and were transient. They practically vanished within 24 h and a detrimental effect on growth and development of crops was not likely.  相似文献   

15.
The objectives of this study were to evaluate the efficiency of ultrasonic transducers in a nutrient mist bioreactor by analyzing the chemical constituents (carbohydrates and inorganic elements) of the mists produced by ultrasonic transducers from a liquid sucrose-supplemented Murashige and Skoog (MS) medium. The ultrasonic transducer oscillation frequency with an input power of 2.8 MHz and at 17.5 W was the optimum condition since the contents of glucose, sucrose, total soluble carbohydrate, macro-elements (NH4+-N, NO3-N, P, K, Mg, Ca and S), micro-elements (Na, Fe, Mn, Zn, B, I, Mo and Co), and pH value were similar to those in the MS medium after autoclaving. Further, when MS medium was replaced by Gamborg et al. medium (B-5) or woody plant medium (WPM) in this bioreactor at the same transducer settings, the NH4+-N and NO3-N contents in nutrient mist generated were also similar to those in B5 or WPM after autoclaving, respectively. The results of this research represent a significant contribution towards development of a functional nutrient mist bioreactor.  相似文献   

16.
等渗Ca(NO3)2和NaCl对番茄幼苗生长的影响   总被引:49,自引:1,他引:49  
 等渗Ca(NO3)2和NaCl溶液对番茄幼苗具有不同的盐效应。28、56 mmol/L Ca (NO3)2溶液对其生长的抑制作用小于等渗的NaCl 溶液, 而84 mmol/L Ca (NO3)2溶液对幼苗生长的抑制程度与等渗的NaCl 溶液无显著差异。Ca(NO3)2主要通过渗透胁迫影响植株生长;而NaCl主要通过离子胁迫抑制植株的生长, 包括细胞质膜结构的破坏和K吸收的减少。  相似文献   

17.
This work examined the effect of nitrogen source and medium buffering on the micropropagation of Eucalyptus marginata Donn ex Sm. The number of shoots was increased when media contained 2-(N-morpholino) ethanesulfonic acid (MES) but this increase was minor and only applied to one of the two clones tested. Highest root production was obtained when the medium contained 7.5 mM nitrogen in a ratio of 2NO3:1NH4+ and was buffered with 10 mM MES. In the rooting medium the pH was influenced most significantly by the nitrogen source, and then whether the medium was buffered. The media pH remained relatively constant when nitrate was the sole nitrogen source and this was assisted by the addition of 10 mM MES. Lower concentrations (<10 mM) of MES were less effective in buffering media over a four-week culture period in both shoot multiplication and rooting medium.  相似文献   

18.
《Scientia Horticulturae》2005,105(2):269-282
The fertilization of anthurium grown in soilless culture in tropical countries is often empirically based. The methods used generally lead the grower to overestimate plant needs and to apply excessive quantities of nutrients. Mineral elements, and thus money, are wasted and there is a risk of pollution of groundwater and watercourses. In order to improve our knowledge of plant requirements, we measured, over 2 1/2 years, the growth and yield of anthurium plants receiving nutrient solutions with different total nitrogen, potassium and calcium concentrations and different NH4+/NO3 ratios. Mineral analyses of plant parts, of nutrient, leachate and substrate solutions and of the solid substrate were carried out throughout plant development. Plants receiving 4.5 mmol N/l and 1.6 mmol K/l in the nutrient solution had significantly slower growth and lower yield compared to those receiving 8.9 mmol N/l and 3.2 mmol K/l. For these latter N and K concentrations, a N–NH4+/N–NO3 ratio of 0.37 and a calcium concentration of 1.15 mmol/l gave better plant growth, development and yield than a ratio of 0.24 and a calcium concentration of 2.25 mmol/l. Applying the nutrient solution containing 8.9 mmol N/l and 3.2 mmol K/l with a N–NH4+/N–NO3 ratio of 0.37 resulted in a shorter vegetative period and more and larger flower production. The calculated mineral balances of the crop showed that more than 60% of the supplied nutrients were lost in the leachate. Suitable nutrient solutions are proposed in order to match plant absorption at different crop growth stages. The volume of nutrient solution supplied can be reduced to limit the amount of leachate, but as water demand is high, there must be at least 30% of leaching to avoid salt accumulation in the substrate. Adjusting the nutrient solution volume and composition to match plant requirements is the first step for flower yield improvement, fertilizer efficiency and reduction of pollution.  相似文献   

19.
The effect of 80 mmol L−1 stress by excess of calcium nitrate [Ca(NO3)2] on biomass production, oxidative damage, antioxidant enzymes activities and polyamine contents in leaves of grafted and non-grafted eggplant (Solanum melongena L.) seedlings were studied, in which grafted plants were grafted on a salinity tolerant rootstock (Solanum torvum Swartz). The results showed that on the 15th day of treatment, the biomass production reduction of non-grafted seedlings was significantly higher than that of grafted seedlings. Under stress by excess of Ca(NO3)2, superoxide anion radical (O2) producing rate, electrolyte leakage percentage, contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) of non-grafted seedlings were significantly higher than those of grafted seedlings, but activities of superoxide dismutase (SOD, EC 1.15.1.1), peroxidase (POD, EC 1.11.1.7), ascorbate peroxidase (APX, EC 1.11.1.11) and glutathione reductase (GR, EC 1.6.4.2) of grafted seedlings were significantly higher than those of non-grafted seedlings, moreover, contents of free, soluble conjugated and insoluble bound polyamines of grafted seedlings were significantly higher than those of non-grafted seedlings, and activities of diamine oxidase (DAO, EC 1.4.3.6) and polyamine oxidase (PAO, EC 1.5.3.3) of grafted seedlings were significantly lower than those of non-grafted seedlings. The possible roles of antioxidant enzymes and polyamines in protective mechanism of grafted eggplant seedlings to stress by excess of Ca(NO3)2 were discussed.  相似文献   

20.
This study examines the feasibility of using saline irrigation water for commercial pot cultivation of three ornamentals: Calceolaria hybrida, Calendula officinalis and Petunia hybrida. Two saline treatments were assayed: irrigation with low saline tap water (electrical conductivity = 1.16 dS m−1), and irrigation with a high saline solution of NaCl 100 mM + CaSO4 10 mM + MgSO4 2.5 mM (electrical conductivity = 12.5 dS m−1). When the control plants reached marketable size the watering was stopped and the plant response to drought was studied. Petunia and Calceolaria were tolerant to salinity. Petunia saline-treated plants reduced their growth slightly and increased N and chlorophyll contents in the leaves. Calceolaria experienced a strong reduction in growth and a delay in flowering but no toxicity symptoms or mortality was recorded. These species were moderate NaCl accumulators. Calendula was sensitive to salinity: 16% of the plants died and the surviving ones experienced a heavy reduction of growth, a decrease in chlorophyll and a large accumulation of NaCl in the leaves. Saline pre-conditioned plants of Calceolaria and Petunia were tolerant to drought. In these plants, leaf water content and, specifically, leaf relative water content were sustained longer than in non-pre-conditioned plants throughout the drought period. In Calendula, leaf relative water content decreased at the same rate in pre-conditioned and non-pre-conditioned plants. Consequently, salinization did not confer drought resistance upon this species. Possible factors determining the tolerance to drought in saline pre-conditioned plants are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号