首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
中国燃料乙醇生产用原料的多元化探索   总被引:5,自引:2,他引:3  
该文分析了中国燃料乙醇生产原料多元化的必要性,阐述了可用于燃料乙醇生产的淀粉质、糖质和纤维质3大类非粮原料的种类、性质、利用及研究现状,对这些非粮原料的种植情况、燃料乙醇生产性能等进行了对比分析,归纳了中国非粮原料用于生产燃料乙醇时所存在的问题,提出了相应的解决对策,最后对中国可用于燃料乙醇生产的非粮原料的供应前景作出了展望.  相似文献   

2.
甜高粱茎秆固态发酵制取燃料乙醇中试项目经济评价   总被引:2,自引:1,他引:1  
对建立在中国山东省威海市的甜高粱茎秆固态发酵制燃料乙醇中试项目工艺进行了描述,采用成本效益法对该项目进行了技术经济评价。该项目采用固态发酵法,乙醇转化率达到理论值的95.8%,剩余酒糟渣再进行发酵,获得含粗蛋白8%左右的发酵蛋白饲料。成本效益分析表明,无水乙醇的生产成本为5033.8元/t,蛋白饲料的生产成本为101元/t。现金流分析表明,当社会折现率取10%时,项目的净现值为281.75万元,内部收益率为16.05%;益本比为0.953,动态投资回收期为9~10 a,项目具有一定的获利能力。敏感性分析表明,内部收益率对产品价格和运行成本变化的敏感性最高,对初始投资的敏感性较低,在现有规模和工艺条件下,该项目的市场风险主要来自产品价格。  相似文献   

3.
该文对比分析了乙醇、柴油混合组成乙醇柴油混合燃料的方法,采用生物质作助溶剂配制了乙醇柴油混合燃料。在单缸柴油机上分别使用纯柴油和乙醇柴油混合燃料,进行了改变供油提前角对发动机燃料经济性影响的试验。结果表明:使用乙醇柴油混合燃料时,供油提前角的改变对燃料经济性的影响比较敏感,且相对使用纯柴油,适当减小供油提前角对提高燃料经济性有利。  相似文献   

4.
中国生物质燃料乙醇项目能量生产效率评估   总被引:11,自引:3,他引:8  
为了对玉米和木薯乙醇的能量和可再生能量生产效率进行评估,该文统计了玉米和木薯乙醇生命周期能耗,并用市场价值量法按照主副产品的能耗进行了分配。计算出玉米和木薯燃料乙醇的净能量和净可再生能量。并计算了单产和化肥用量变化时的净能量和净可再生能量的变化。计算结果显示,玉米、木薯乙醇的净能量分别为1.472 MJ/L和2.417 MJ/L,净可再生能量分别为1.474 MJ/L和2.459 MJ/L。使用玉米、木薯生产燃料乙醇在能量生产和再生能量生产上都是可行的,木薯乙醇比玉米乙醇可行性更高,单产和化肥用量是提高能源利用和再生能源的关键因素,加强副产品的开发和使用有机肥代替化肥有利于提高系统的能效,提高系统的可再生性。  相似文献   

5.
约束条件下燃料项目发展的模型及分析框架   总被引:1,自引:1,他引:0       下载免费PDF全文
预期液态化石能源存在减排压力,发展以燃料乙醇为代表的液态生物质能源能够促进中国的减排进程与缓解粮食安全危机。该文建立一个以燃料乙醇为例的理论模型及分析框架,分别在短期动态均衡、长期动态均衡情况下分析生物质能源的发展对中国减排路径和粮食安全的可能影响。研究结果表明,要实现减排目标,中国政府应主动承担能源结构调整的成本,通过对非粮能源作物原料种植、燃料乙醇生产和乙醇汽油消费等三大环节进行有力补贴来支撑燃料乙醇产业的持续发展,从而达到缓解减排阻力和粮食安全威胁的目的。  相似文献   

6.
农作物乙醇燃料的综合效益分析   总被引:5,自引:2,他引:3  
乙醇作为化石燃料的替代品,对于能源需求日趋紧张的中国来说具有非常重要的意义.然而,农作物乙醇作为燃料其生命周期、经济效益及环境效益如何将直接影响其推广使用.文章就农作物乙醇作为燃料的综合效益进行了全面分析,得出了除甜高梁外多数农作物作为燃料乙醇原料具有较低的能效转换率之结论.而且在目前情况下,由于生产成本较高,所产生的经济效益也较差.但其对于解缓能源紧张问题、提高农民收入、促进人员就业具有良好的社会效益,同时对机动车辆的废气污染排放有所改善.  相似文献   

7.
中国生物质能产业发展现状及趋势分析   总被引:63,自引:35,他引:63       下载免费PDF全文
该文在综合评价中国生物质能资源、产业发展和政策环境的基础上,分析未来生物质能产业发展趋势。中国具有丰富的生物质资源,生物质能产业初具规模:沼气产业基本形成,燃料乙醇年生产能力已达到102万t,开发了甜高粱茎秆等非粮作物生产燃料乙醇的技术,秸秆直燃发电示范工程正式并网运行;促进生物质能产业发展的宏观政策环境逐渐形成。因此得出结论:未来中国生物质能产业发展的重点是沼气及沼气发电、液体燃料、生物质固体成型燃料以及生物质发电;促进生物质能产业发展的政策环境将进一步完善;技术水平进一步提高;将有更多的大型企业参与;生物质能产业必将成为中国国民经济新的增长点。  相似文献   

8.
瘤胃真菌与酿酒酵母仿生共培养提升秸秆发酵产乙醇量   总被引:1,自引:1,他引:0  
玉米秸秆中具有较高的纤维素、半纤维素含量,是一种具有稳定产率、可集中处理、可代替木材作制浆原料的生物质材料。为了研究厌氧微生物与酵母共培养预处理玉米秸秆的产物,该研究模拟反刍动物消化玉米秸秆的过程,从羊瘤胃液中分离出厌氧真菌(Pecoramyces sp.)。以玉米秸秆茎皮碎为底物,与厌氧真菌、酿酒酵母菌S1145在39℃进行共培养72 h,分析发酵对秸秆茎皮降解及其代谢产物的影响。结果表明,在瘤胃真菌作用下,添加不同量的酿酒酵母可对代谢产物中乙醇含量产生影响,其中添加5 mL酿酒酵母时产生的乙醇含量最高,占总代谢产物比例为32.09%,相对于未添加酿酒酵母的对照组,乙醇含量提高了23.04百分点。研究表明,在厌氧真菌与酿酒酵母共培养预处理玉米秸秆茎皮的过程中,添加酿酒酵母可提高乙醇产量,为玉米秸秆高效资源化处理和生物质燃料生产提供了一种可靠的方法。  相似文献   

9.
甜高粱茎秆固态发酵制取燃料乙醇中试项目能耗分析   总被引:2,自引:1,他引:1  
对以甜高粱茎秆为原料燃料乙醇中试项目的工艺进行了描述,对乙醇及副产品生产进行了能耗分析。该项目采用固态发酵工艺,乙醇转化率达到理论值的95.8%,并对剩余的茎秆渣进行综合利用,实现了余热回收利用,具有低排放的环保特性。项目年产无水乙醇1000t/a、发酵秸秆蛋白饲料1500t/a和秸秆纤维纸浆5000t/a。能耗分析表明,在考虑余热回收情况下,系统全年生产总能耗为4.31×106kW·h/a,无水乙醇的单位生产能耗为2759.67kW·h/t,蛋白饲料的单位生产能耗为36.86kW·h/t,秸秆纤维纸浆的单位生产能耗为298.41kW·h/t。无水乙醇生产工艺中回收余热量8.9×105kW·h/a。该系统中乙醇生产能量回收率为62.9%,高于以玉米等粮食原料生产乙醇的能量回收率。  相似文献   

10.
目前,应用农业模型去寻找改进农业生态系统的最佳农艺措施被认为是比单一的田间试验更为有效的途径之一。在应用和引进模型当中,一个很关键的环节是确定模型的输入参数对产量和土壤养分的敏感性,因为在一个地区的敏感性并不能保证在其它地区具有同样的影响。正因为如此,本文对农业技术转化决策系统(DSSAT)模型的农业管理参数进行敏感性分析。在吉林省黑土 (ollisols) 地区,于2008年田间试验条件下进行玉米 (ea mays L.)生长模拟(叶面积指数,地上干物质,籽粒重量)应用当地平均产量和生长期对玉米品种参数进行校验。模拟结果的综合分析表明,玉米提前播种8~10d比正常播种减产大约10%。玉米产量随播种密度呈现抛物线趋势;既当低密度下,产量曲线递增,但是当密度大于5株m-2时,产量增加平缓。产量和氮肥施用量呈典型的效应递减曲线,最佳施氮量为200~240 kg hm-2。最佳追肥时间为6月15日至6月28日。本研究证明DSSAT模型能够用于中国其它地区的玉米生长模拟,并且,本研究建立的敏感性分析方法能够用于其它作物,如水稻和小麦。进一步的研究需要包括测试土壤有机碳氮对作物生长管理参数的敏感性。  相似文献   

11.
Lactobacillus casei CRL 705 was screened, among other meat isolates, for its proteinase and aminopeptidase activities toward synthetic substrates and, according to that, selected for specific assays on muscle proteins. The hydrolytic effects of whole cells, cell free extracts (CFE), and the combination of both on muscle sarcoplasmic and myofibrillar protein extracts was evaluated by SDS-PAGE and reverse phase HPLC analyses. The proteinase activity of whole cells caused the degradation of a great number of sarcoplasmic protein bands. A partial hydrolysis was also associated with CFE that when combined with whole cells showed an important additional degradation. Peptide profiles from sarcoplasmic protein extracts were greatly modified regardless of the addition of whole cells or CFE, although their combination intensified these changes. The generation of free amino acids was remarkable when whole cells and CFE were incorporated together to sarcoplasmic protein extracts.  相似文献   

12.
The magnitude of CO2 efflux pulses after rewetting a dry soil is highly variable and the factors regulating these pulses are poorly understood. In this field experiment, we aimed to study the C dynamics after simulated summer rainstorms in a Mediterranean open holm oak woodland (dehesa). We hypothesized that because the herbaceous cover is mostly dead during the summer in this ecosystem, the short-term CO2 efflux (SR) after rewetting could mainly be explained by different measurable soil C fractions: i) K2SO4-extracted soil C (EOC); ii) microbial biomass C (MBC); or iii) chloroform-fumigated extracted C (CFE). On both grazed and abandoned dehesa sites, we simulated three summer rain events at two-week intervals and we measured SR discontinuously in three plots under tree canopy and in another three plots in open grassland. In each plot, C fractions and water content were estimated before (2 h) and after (36 h) each irrigation event. Following rewettings, SR increased up to ten times compared with non-irrigated plots. The CFE actually increased after rewetting in the first two irrigations but not in the third event, suggesting that the capacity of the soil to release labile organic C from soil aggregates or litter was reduced after each irrigation event. Overall, the C released as CO2 in the first 24 h was related to the CFE existing before rewetting, which may help to explain the spatial variability in SR. However, the explained variability decreased after each irrigation, suggesting a change to a less labile composition of the CFE fraction as a consequence of multiple drying-rewetting cycles.  相似文献   

13.
As an important component of organic fertilizers, animal faeces require methods for determining diet effects on their microbial quality to improve nutrient use efficiency in soil and to decrease gaseous greenhouse emissions to the environment. The objectives of the present study were (i) to apply the chloroform fumigation extraction (CFE) method for determining microbial biomass in cattle faeces, (ii) to determine the fungal cell-membrane component ergosterol, and (iii) to measure the cell-wall components fungal glucosamine and bacterial muramic acid as indices for the microbial community structure. Additionally, ergosterol and amino sugar data provide independent control values for the reliability of the microbial biomass range obtained by the CFE method. A variety of extractant solutions were tested for the CFE method to obtain stable extracts and reproducible microbial biomass C and N values, leading to the replacement of the original 0.5 M K2SO4 extractant for 0.05 M CuSO4. The plausibility of the data was assessed in a 28-day incubation study at 25 °C with cattle faeces of one heifer, where microbial biomass C and N were repeatedly measured together with ergosterol. Here, the microbial biomass indices showed dynamic characteristics and possible shifts in the microbial community. In faeces of five different heifers, the mean microbial biomass C/N ratio was 5.6, the mean microbial biomass to organic C ratio was 2.2%, and the mean ergosterol to microbial biomass C ratio was 1.1‰. Ergosterol and amino sugar analysis revealed a significant contribution of fungi, with a percentage of more than 40% to the microbial community. All three methods are expected to be suitable tools for analysing the quality of cattle faeces.  相似文献   

14.
Techniques developed to measure microbial biomass in mineral soils may not give reliable results in humus. We evaluated the relationships between three techniques to estimate microbial biomass in forest humus: chloroform fumigation-extraction (CFE), total extractable phospholipid fatty acids (PLFA), and extractable DNA. There was a good relationship between PLFA and CFE (R2=0.96), with a slope slightly different from that previously reported for mineral soils (1 nmol PLFA corresponded to a flush of 3.2 μg C released by fumigation in humus cf. 2.4 μg C in mineral soil). There was no relationship between DNA concentration and the other two measurements of microbial biomass. This may be due, in part, to the high fungal biomass in forest humus, as DNA concentration per unit biomass is much more variable for fungi than bacteria.  相似文献   

15.
We investigated the potential of three methods of quantifying microbial biomass carbon (MBC), viz., chloroform fumigation-extraction (CFE) following organic C estimation through Vance method (CFE-V) and Snyder–Trofymow method (CFE-ST), and substrate-induced respiration (SIR) method in soils under various temperate fruit crops along with a control (no plantation) at 0–20 and 21–40 cm soil depths. CFE methods have shown significant (< 0.05) increase in chloroform labile C in all orchards over the control in surface soil. The interaction between the fruit crops and methods, although significant (< 0.01), indicated that CFE-ST and SIR methods were statistically at par with each other within the same fruit crop, except peach plantation (CEF-ST significantly lower than SIR) in 0–20 cm soil depth. The coefficient of variation recorded for chloroform labile organic C estimates by CFE-ST method makes it more precise than CFE-V method, especially in 0–20 cm soil depth. The very close agreement between the methods suggests that over this narrower range (i.e., smaller geographical area) all methods are appropriate for assessing MBC. However, SIR, being most sensitive to orchard plantations and strongly correlated with various soil chemical properties, could preferably be recommended for estimation of MBC in such soils. As an alternative to CFE-V method, CFE-ST may also be used for estimation of chloroform labile organic C in these soils.  相似文献   

16.
Very few studies have been related to soluble organic nitrogen (SON) in forest soils. However, this nitrogen pool could be a sensitive indicator to evaluate the soil nitrogen status. The current study was conducted in temperate forests of Thuringia, Germany, where soils had SON (extracted in 0.5 M K2SO4) varying from 0.3 to 2.2% of total N, which was about one-third of the soil microbial biomass N by CFE. SON in study soils were positively correlated to microbial biomass N and soil total N. Multiple regression analysis also showed that mineral N negatively affected SON pool. The dynamics of the SON was significantly affected by mineralization and immobilization. During the 2 months of aerobic incubation, the SON were significantly correlated with net N mineralization and microbial biomass N. SON extracted by two different salt solution (i.e. 1 M KCl and 0.5 M K2SO4) were highly correlated. In mineral soil, SON concentrations extracted by 1 M KCl and 0.5 M K2SO4 solutions were similar. In contrast, in organic soil layer the amount of KCl-extractable SON was about 1.2-1.4 times higher than the K2SO4-extractable SON. Further studies such as the differences of organic N form and pool size between SON and dissolved organic N (DON) are recommended.  相似文献   

17.
《Applied soil ecology》2007,35(2):432-440
Microbial biomass is the key factor in nutrient dynamics in soil, but no information exist about it in soils of the central highlands of Mexico, a major agricultural area. We determined the microbial biomass in soils with a wide range of organic C and belonging to three soil texture classes. Twenty-four soils under different types of cultivation were sampled while microbial biomass C was measured with the chloroform fumigation incubation (CFI) and extraction technique (CFE). Microbial biomass C as measured with the CFI technique ranged from 138 to 2195 mg C kg−1. The ninhydrin-positive compounds (NPC) and extractable C released with CFE increased with increased time of exposure to chloroform and on average 53% of NPC and 83% of extractable C was released after 1 day compared to that released after 10 days. The ratio of microbial biomass C as measured with the CFI method related to the NPC was 31.8 after 1 day and 20.0 after 10 days while the relationship with extractable C was 3.18 and 2.69, respectively. The relationship between microbial biomass C as measured by the chloroform fumigation incubation technique and the soluble C and ninhydrin-N rendered extractable after 1 and 10 days of chloroform fumigation for soils of the central highlands of Mexico were comparable to values reported for soils in other regions of the world. The factors determined in this study can thus be used to determine microbial biomass.  相似文献   

18.
 A chloroform-fumigation extraction method with fumigation at atmospheric pressure (CFAP, without vacuum) was developed for measuring microbial biomass C (CBIO) and N (NBIO) in water-saturated rice soils. The method was tested in a series of laboratory experiments and compared with the standard chloroform-fumigation extraction (CFE, with vacuum). For both methods, there was little interference from living rice roots or changing soil water content (0.44–0.55 kg kg–1 wet soil). A comparison of the two techniques showed a highly significant correlation for both CBIO and NBIO (P<0.001) suggesting that the simple and rapid CFAP is a reliable alternative to the CFE. It appeared, however, that a small and relatively constant fraction of well-protected microbial biomass may only be lysed during fumigation under vacuum. Determinations of microbial C and N were highly reproducible for both methods, but neither fumigation technique generated NBIO values which were positively correlated with CBIO. The range of observed microbial C:N ratios of 4–15 was unexpectedly wide for anaerobic soil conditions. Evidence that this was related to inconsistencies in the release, degradation, and extractability of NBIO rather than CBIO came from the observation that increasing the fumigation time from 4 h to 48 h significantly increased NBIO but not CBIO. The release pattern of CBIO indicated that the standard fumigation time of 24 h is applicable to water-saturated rice soils. To correct for the incomplete recovery of CBIO, we suggest applying the k C factor of 2.64, commonly used for aerobic soils (Vance et al. 1987), but caution is required when correcting NBIO data. Until differences in fumigation efficiencies among CFE and CFAP are confirmed for a wider range of rice soils, we suggest applying the same correction factor for both methods. Received: 1 June 1999  相似文献   

19.
为分析评价灌区工程状况、管理水平等不同因素对渠系水利用效率的影响,该文对传统渠系水利用效率指标体系作了修正,提出由渠道输水效率、渠系输水效率、渠系配水效率、渠系水利用效率组成的灌区渠系水利用效率指标体系,并分别给出了这些指标的定义、内涵及其确定方法,结合实例分析了该指标体系的合理性。渠道输水效率(Eca)及渠系输水效率(Ec)主要反映灌区渠系工程状况对水利用效率的影响,可由静水法或动水法直接测定某级渠道的渠道输水效率,然后采用各级渠道输水效率连乘的方法确定渠系输水效率;渠系水利用效率(Ecs)综合反映了渠系工程状况和用水管理水平对水利用效率的影响,采用首尾测算法直接得到,也可由灌溉水利用效率除以田间水利用效率间接分析得到;渠系配水效率(Ed)主要反映灌区管理水平对水利用效率的影响,在求得渠系水利用效率和渠系输水效率后,由渠系水利用效率除以渠系输水效率得到。该文所构建的指标体系能满足灌区不同阶段、不同目的开展的渠系水利用效率评价需求,为灌区工程投资分配决策、工程运行状况及用水管理水平评价提供依据。  相似文献   

20.
为筛选出"低投入-低排放-高收益"的稻田水氮管理模式,该研究以汉江平原双季稻为研究对象,设计4种氮肥管理方式:1)普通尿素;2)树脂包膜控释尿素;3)普通尿素减氮20%;4)控释尿素减氮20%,和2种水分管理方式:1)常规灌溉;2)薄浅湿晒节水灌溉。采用静态箱-气相色谱法测定甲烷(CH4)和氧化亚氮(N2O)的排放量,应用生命周期法(life cycle assessment, LCA)计算水稻生产碳足迹,基于成本收益核算分析单位水稻产量和单位净收益的碳排放强度。结果表明,控释尿素能有效提高双季稻产量,节水灌溉和减氮20%能节约投入成本,对双季稻产量存在一定负效应,但差异不显著。相比普通尿素和常规灌溉,不同水氮优化处理可不同程度降低水稻生产的碳足迹和排放强度,并有助于提高收益。其中节水灌溉搭配控释尿素减氮的综合减排效果最好,早、晚稻总减排量分别为45.8%和42.5%(P<0.05),同时全年净利润最高,达14 340元/hm2。因此,节水灌溉、控释尿素同时减氮20%的组合技术可实现稻田节本减排增收。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号