首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
基于能量异构双簇头路由算法的水稻田无线传感器网络   总被引:3,自引:3,他引:0  
针对无线传感器网络分簇结构中簇头节点能量消耗过快而容易死亡的问题,提出了一种适合于水稻田监测的混合天线组网通信的能量异构双簇头分簇路由算法。首先估算全网平均剩余能量确定阈值,根据阈值选择主簇头;然后依据节点向主簇头节点发送应答信号强弱的原则,确定簇成员节点;最后,按照簇内成员节点剩余能量大小,选择一个副簇头。副簇头负责收集并融合簇内其他成员节点的数据,从而减轻主簇头的能量消耗,降低主簇头的死亡概率。采用能量异构网络对本算法进行仿真,网络节点初始总能量的平均值与同构网络节点初始能量相等,结果显示,该算法异构网络相对于LEACH (low-energy adaptive clustering hierarchy) 算法同构网络的稳定周期延长了12.1%。采用无线通信模块nRF905射频芯片和TDJ-0825BKM1定向天线,在水稻田进行混合天线通信试验,测试了定向天线水平覆盖范围;在此基础上的网络模拟试验结果表明,基于该算法的通信网络稳定周期比值相比于LEACH、LEACH-E (LEACH-energy adaptive and uneven cluster)、DEEC (design of energy efficient clustering)、EADC (energy aware data-gathering cluster-heads) 4种算法分别提高了46%、47%、58%、11%。该研究可为大面积水稻田无线传感器网络组网进行环境参数实时监测提供理论参考。  相似文献   

2.
基于农田无线传感网络的分簇路由算法   总被引:2,自引:2,他引:0  
由于无线传感网络节点的能量有限,如何有效地利用有限资源以及实现数据的有效传输,成为研究热点问题.针对农田区域广以及种植作物杂等环境特征,为延长农田无线传感器网络的生命周期,提高传感网的数据包投递率,构建了适用于农田信息采集的无线传感器网络架构,提出了一种混合式的分簇路由算法HCRA(hybrid clustering routing algorithm),研究了簇的形成、簇头竞选以及簇间路由过程,并对HCRA算法与低功耗自适应集簇分层型算法LEACH(low-energy adaptive clustering hierarchy),以及使用固定簇半径的混合节能分簇算法HEED(hybrid energy-efficient distributed clustering)进行了仿真试验.结果表明:在1 000次迭代周期下,采用HCRA算法的网络生存时间要比LEACH算法长约28%,比HEED算法长约12%;采用HCRA算法的数据包投递率要比LEACH算法高约34个百分点,比HEED算法高约16个百分点.该研究可为农田环境信息采集自动化监测系统提供参考.  相似文献   

3.
农田土壤含水率监测的无线传感器网络系统设计   总被引:8,自引:11,他引:8  
为解决传统土壤含水率监测中所存在的监测区域面积小、采样率低等问题,设计和开发了基于无线传感器网络技术的土壤含水率监测系统,包括10个传感器节点,1个簇首和1个基站节点,可按任意时间间隔全自动地采集、处理、传输和存储地表以下4个不同土层土壤含水率变化状况;各类节点采用TinyOS操作系统,节点间通信遵循ZigBee协议;含水率测量采用EC-5传感器;太阳能供电模块的供电能力满足传感器节点及簇首的能耗需求;进行了数据包传输率试验,10个传感器节点中有7个的数据包正确传输率高于90%,1个节点的数据包正确传输率为89.2%,2个节点的传输率低于70%。造成2个节点数据包传输率较低的主要原因是太阳能供电电路制作,通过更换电路板解决了该问题。试验结果表明,系统能够实现稳定的数据传输,适合农田土壤含水率的实时监测。  相似文献   

4.
自适应Tree-Mesh结构的大棚无线监测网络设计   总被引:1,自引:1,他引:0  
针对大棚基地作物状态及环境信息的无线采集的需求,设计了改进的分簇Tree-Mesh混合拓扑结构无线传感器网络,并利用ZigBee实现了组网和多跳通信,以CC2530为核心设计了多传感器无线节点硬件系统,基于Z-Stack协议栈设计了有限状态机节点程序。同时,针对无线节点低功耗和网络信息低冗余的要求,设计了基于接收信号强度指示的最佳发射功率自适应机制,和基于感知数据差值的最小传输数据冗余自适应机制。试验结果表明,节点单跳和多跳通信速率典型值分别为20与0.3kb/s,采用干电池供电和直流供电的节点通信距离分别可达30和90m。仿真结果证明采用低功耗自适应机制的节点功耗降低了38.44%,可用作大棚基地的环境监测。  相似文献   

5.
水产养殖参数无线测量网络的长生命周期研究   总被引:3,自引:3,他引:0  
在水产养殖参数的无线测控网络中,测量节点能耗不均匀,个别节点由于能耗大过早失效,降低了网络的有效生命周期。该文对采用平面路由协议和低能量自适应分群分层路由协议(LEACH)的测控网络进行对比试验,发现采用LEACH协议网络的有效生命周期延长19%以上。在LEACH协议的水质参数测量网络中存在2个缺陷:一方面无线测控网络中每个簇的簇首功耗远远大于普通节点,LEACH协议通过等概率随机选择簇首部分改善了节点能耗的均衡性,但水产养殖参数监控中每个簇首功耗不同,为此在LEACH优化协议中依据节点剩余能量的多少选择簇首,使节点的剩余能量更趋均衡;另一方面水产养殖池中距离基站较远的节点容易提前失效,主要是因为监控面积大,簇首节点与基站采用单跳通信,远距离节点被选为簇首后向基站发送数据通信距离远,路径损耗采用多路径衰落信道模型,衰减指数为4。在优化协议中,对远距离簇首与基站通信采用双跳通信,使路径损耗采用自由空间信道模型,衰减指数为2。试验表明,无线传感网络有效生命周期延长了8%,各节点失效时间更趋接近。  相似文献   

6.
针对传统无线传感网络(wireless sensor network,WSN)在数据采集和传输上能耗、传输时延和吞吐量等难以满足海水稻生长环境监测要求,该研究提出一种WSN网络介质访问层海水稻生长环境信息感知策略(medium access layer saline-alkali tolerant rice environmental data perception strategy,MAC-SREP),主要思想是将多无人机协同搜索区域模式映射为单无人机(unmanned arial vehicle,UAV)搜索模式,在此基础上,利用簇头节点的通信距离和UAV对地面的通信覆盖半径修正Voronoi图,再利用修正Voronoi图进行分簇,优化UAV的飞行路径;然后利用MAC层机制对UAV的数据包类型进行优先级调度和时隙分配,以保证网络资源的有效分配。仿真试验结果表明,MAC-SREP在多无人机-无线传感网络(multiple UAVs-WSN,mUAVs-WSN)的网络生命周期和网络吞吐量比单无人机-无线传感网络(single UAV-WSN,sUAV-WSN)分别提高25%和15%,端...  相似文献   

7.
在大规模农田无线传感器网络WSN应用中,如何选择最优的网络架构和相应的自组织方式是一个急需研究的问题。在多跳、无线自组织网络Ad Hoc结构基础之上,针对规模农田面积大、作物生长周期长、传感器节点众多的特点,借鉴生物体内大量细胞生长发育和相互协作的组织机理,提出一种星状网和网状网相结合的分层无线传感器网络拓扑结构和簇首轮换机制,通过簇内控制减少节点与基站远距离的信令交互,降低网络建立的复杂度,减少网络路由和数据处理的开销。  相似文献   

8.
基于低功耗传输方法的设施花卉环境监测系统   总被引:2,自引:2,他引:0  
为了降低现有设施环境监测系统中传感节点的能耗,延长无线传感网络的生存周期,该文提出了节点动态组包主动传输和多种环境变量加权控制传输2种低功耗机制,减少了大量重复冗余数据的传输,并实现了基于Zigbee的设施花卉环境监测及其低功耗传输系统。节点以CC2430芯片为核心,并根据影响花卉生长的环境参数,同时装载SHT10温湿度传感器、BH1750FVI光照传感器以及COZIR二氧化碳传感器,因此节点可同时采集传输多种环境参数,降低了硬件成本。在南农大园艺试验基地进行组网测试,试验结果表明,系统比传统周期传输节点(周期1min)的能耗减少85.97%,测量精度在98.5%以上,网络平均丢包率为0.84%,满足了对设施花卉环境的有效监测及低功耗传输的要求。  相似文献   

9.
为实现在橘园区域内及时、准确地监测橘小实蝇成虫数量及环境、气象变化,该文提出将无线传感器网络技术作为其信息感知和传输的载体,设计和开发了橘小实蝇成虫动态监测系统并部署于华南农业大学国家柑橘产业技术体系柑橘机械研究室试验橘园,包括10台橘小实蝇成虫监测节点、1台环境气象监测节点及1台WSN+GPRS型边际路由器。系统中各监测节点采用TinyOS操作系统,节点间通信遵循ZigBee协议,节点在待机和全功能模式消耗的电流分别为39.52~42.72 mA和92.21~95.32 mA,边际路由器在待机和数据收发工作状态消耗的平均电流分别为190和250 mA,与之相配置的太阳能供电模块的供电能力均能满足其能耗需求;开展了近5个月的数据包传输率试验,各节点丢包率控制在11.9%~20.8%,数据通信的稳定性与植被和气候条件等因素密切相关,合理部署节点天线高度可解决该问题。试验结果表明,系统可实现数据稳定传输,适合橘园橘小实蝇成虫的动态监测。  相似文献   

10.
设计了一款应用于茶园信息采集的无线传感器网络节点。使用ATmega128L单片机和nRF905射频芯片作为无线传感器网络节点通信电路。基于此节点硬件平台编写了软件系统,并进行30天的组网实验。实验结果表明,节点能耗小、丢包率低,适合低功耗及长时间使用要求的农业应用场合。  相似文献   

11.
基于780MHz频段的温室无线传感器网络的设计及试验   总被引:1,自引:1,他引:0  
针对以往农用无线传感器网络(wireless sensor network,WSN)能耗与成本较高、传输性能不理想等问题,该文选用无线射频芯片AT86RF212、单片机C8051F920等,设计了一种工作在780 MHz中国专用频段且与IEEE802.15.4c标准兼容的无线传感器网络。该文简述了无线传感器网络节点结构,重点介绍了780 MHz无线传感器网络的硬件设计,并选择北方典型的日光温室作为试验研究环境,通过改变无线收发距离,对780、433和2 400 MHz频段的无线传感器网络节点的接收信号强度值(RSSI,received signal strength index)和平均丢包率(PLR,packet loss rate)进行了测试与分析。试验结果表明,3种不同频段的无线收发模块的接收信号强度值RSSI都随着收发距离的增大而减小。在温室内测试,收发距离小于20 m时,3种无线模块的RSSI值相近;收发距离为40~90 m时,7803 MHz模块比433 MHz模块的RSSI值略大,2.4 GHz的RSSI值最小。在温室内收发距离小于90 m的范围内,780 MHz模块和433 MHz模块的丢包率均为0,2.4 GHz模块的最高丢包率不超过5%。在温室间测试,收发距离为50~90 m时,780 MHz模块和433 MHz模块的RSSI值相近;收发距离大于90 m时,780 MHz模块比433 MHz模块的RSSI值大;2.4 GHz模块在温室间收发距离为50~140 m时的RSSI值均小于433、780 MHz。2.4 GHz模块在收发距离大于70 m时出现丢包现象,收发距离大于135 m时丢包率达到100%;温室间收发距离为140 m时,433 MHz模块的最大丢包率为11%,780 MHz的最大丢包率不超过6%。因此,在温室环境监测的应用中,780 MHz频段的无线传感器网络的传输性能表现最佳,且与433 MHz都明显优于2.4 GHz。  相似文献   

12.
稻田水分监测无线传感器网络优化设计与试验   总被引:4,自引:4,他引:0  
传感器网络技术为大范围稻田水分信息采集提供了一种新技术手段。利用测量稻田水分含量和水层深度测量的无线传感器WFDMS,探讨了构建稻田水分传感器网络PMSN的关键技术:设计了大面积、大范围应用体系结构模型;提出了一种满足稻田水分采样频率和数据业务需求的低功耗传输控制协议LPTP-PMSN;开发了水分信息监测信息管理系统,实现了完整运行的稻田水分传感器网络整套系统。试验表明,PMSN网络在稻田中的可靠通信距离达60 m,在 3.6 V/2 100 mAh电池供电下,4 h周期采样试验中,在传输协议LPTP-PMSN控制下,传感器、簇首、基站、短信网关、计算机间能够协同工作,整个稻田水分传感器网络可以较可靠运行,节点生命期超过190 d。该研究可为农用信息监控无线传输网络的其他应用提供参考。  相似文献   

13.
智慧农业水田作物网络化精准灌溉系统设计   总被引:3,自引:1,他引:2  
传统水田粗放型灌溉不仅对作物生长带来不利影响,而且不能够充分利用自然降水,在很大程度上造成了水资源的浪费。该研究设计了基于智慧农业技术的网络化水田作物精准灌溉系统。建立了通信节点最优部署模型、作物耗水预测模型、降水预测模型、最优化灌溉决策模型以及基于模糊控制理论的精准灌溉决策系统;提出了基于维诺图改进的飞蛾扑火优化算法(Voronoi Moth Flame Optimization,VI-MFO)的灌溉网络通信节点优化部署方法,以提升灌溉网络通信效率并降低通信能耗;最后,将水田状态信息及气象参数作为精准灌溉决策系统输入,经过系统决策,自适应控制水田灌溉设备进行精准灌溉。对江苏地区水稻田进行仿真,结果表明,所提出的智能灌溉系统与传统非智能决策系统相比,灌溉设备动作频次降低26.67%,灌溉量减少40.82%,排水量减少33.89%。所提出的智能灌溉决策系统节约了水资源。  相似文献   

14.
多路径下桃园射频信号传输特性   总被引:1,自引:0,他引:1  
为解决无线传感器网络在桃园中的快速部署问题,该文研究了2.4 GHz无线射频信号在桃园中的传播特性。依据角度选取4条传输路径,在3种(0.5、1.5、2.5 m)典型的天线高度,同时测量丢包率和路径损耗情况,分析表明两者具有明显的相关性,天线高度和通信距离是路径损耗的主要影响因素。在天线高度为0.5和1.5 m时,可靠传输距离为6个行距(27 m);在天线高度为2.5 m时,可靠传输距离大于14个行距(63 m),因此冠层顶部为布设天线的最佳位置。对路径损耗数据进行回归分析,发现其在每种天线高度,每条传输路径下对数模型最适合作为路径损耗模型,模型的R2最大为0.945,最小为0.732。为研究节点部署于桃园任意位置时的路径损耗情况,便于节点快速灵活地部署,在3种天线高度下对路径损耗数据进行对数回归分析,R2最大为0.976,最小为0.939。最后对2组模型进行了验证,表明模型可以预测射频信号在桃园中的路径损耗情况,该文研究结果为无线传感器网络在桃园中的部署提供了参考。  相似文献   

15.
随着农业集约化、规模化及产业化的发展,联合收获机开始以机群形式进行多机联合作业,由此衍生出对于联合收获机群物联网及无线通信的需求。在无线通信技术中,LoRa技术在传输距离、部署方式等方面具有独特的优势。该研究提出了一种基于2.4 GHz LoRa技术的联合收获机群通信网络结构和工作模式。对LoRa相关参数使用NS-3网络仿真平台建立仿真模型,对扩频因子分配方案选择、可容纳节点数量和最小发送间隔进行分析,并在联合收获机群模拟通信场景进行仿真,同时开发了机载终端硬件和软件。仿真试验结果表明,在模拟通信场景下,选择特定比例分配扩频因子可改善网络通信性能;在保证90%以上接收成功率的前提下,静态场景下1 625 kHz带宽可支持25个节点以1 s的发送间隔进行通信,在动态场景下1 625 kHz带宽通信时延低于10 ms。田间试验结果表明,"报告(Report)"模式下通信总体成功率为99.3%;"请求(Request)"模式下通信总体成功率为92.5%,平均响应时间为123.07 ms。该研究将2.4 GHz LoRa技术应用于联合收获机之间的无线通信,可为联合收获机机群协同作业时通信提供可行方法。  相似文献   

16.
作物精量灌溉系统的无线传感网络应用开发   总被引:7,自引:5,他引:2  
为准确提供作物水分亏缺程度并为精量灌溉提供科学依据,基于作物水分胁迫声发射原理,研究无线传感器网络技术在精量灌溉系统中的应用。采用自适应加权数据融合算法来提高声发射信号精度,提出基于簇的多跳路由算法以减少结点数据传输能耗,利用NB100网关实现无线网和有线网之间的桥接。系统分布式运行,具有鲁棒性强、易于扩充和伸缩性良好等优点。仿真试验表明该系统组网正确、无线传输能耗占总能耗的60%以上,可以使人们远程、精确获取作物需水信息,并实施精量灌溉,能够应用到农田、苗圃、温室等节水农业领域中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号