首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Growth of loblolly pine (Pinus taeda L.) seedlings through three growing seasons after planting increased with intensity of herbaceous weed control using herbicides. Weed control had no effect on pine survival. Two years of complete herbaceous weed control (CHC, control throughout the first two growing seasons after planting) and operational herbaceous weed control (OHC, sulfometuron at 0.42 kg ai/ha at the beginning of the first growing season), resulted in lower biomass of weeds plus trees than with no herbaceous weed control (NHC) during the first growing season. Differences in total biomass during the first year were due to differences in biomass of herbaceous weeds. Total biomass on CHC and OHC plots was at least as great as NHC the second year, and greater by the third year, as pines assumed dominance as a result of increased growth from reduction of herbaceous weeds. The operational herbicide treatment had no significant impact on overall herbaceous weed biomass and cover, and little effect on species composition compared to no herbaceous weed control two and three growing seasons after treatment. The CHC treatment significantly reduced herbaceous weed biomass, cover and composition through three growing seasons.  相似文献   

2.
An understanding of the rooting pattern of tree species used in agroforestry systems is essential for the development and management of systems involving them. Seasonal variation, depth wise and lateral distribution of biomass in roots of different diameter classes and their annual production were studied using sequential core sampling. The investigations were carried out in four tree species under tree only and tree+crop situations at ICAR Research Farm, Barapani (Meghalya), India. The tree species were mandarin (Citrus reticulata), alder (Alnus nepalensis), cherry (Prunus cerasoides) and albizia (Paraserianthes falcataria). The contribution of fine roots to the total root biomass ranged from 87% in albizia to 77% in mandarin. The bulk of the fine roots (38% to 47%) in the four tree species was concentrated in the upper 10 cm soil layer, but the coarse roots were concentrated in 10–20 cm soil depth in alder (46%) and albizia (51%) and at 0–10 cm in cherry (41%) and mandarin (48%). In all the four tree species, biomass of both fine- and coarse-roots followed a unimodal growth curve by showing a gradual increase from spring (pre-rainy) season to autumn (post rainy) season. Biomass to necromass ratio varied between 2 to 3 in the four tree species. The maximum (3.2) ratio was observed during spring and the minimum (2) in the rainy season. In alder and albizia, the fine roots were distributed only up to 1 m distance from the tree trunk but in the other two species they were found at a distance up to 1.5 m from the tree trunk. The annual fine root production varied from 3.6 Mg ha–1 to 6.2 Mg ha–1 and total production from 4.2 to 8.4 Mg ha–1 in albizia to mandarin, respectively. Cherry and mandarin had a large number of woody roots in the surface layers which pose physical hindrance during soil working and intercultural operations under agroforestry. But the high biomass of roots of these two species may be advantageous for sequential or spatially separated agroforestry systems. However, alder and albizia have the most desirable rooting characteristics for agroforestry systems.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

3.
Pekka Rossi 《New Forests》1991,5(3):211-218
The influence of length of cuttings on establishment of a short rotation plantation was investigated over a period of two years using direct field planting of unrooted Populus Rasumowskiana cuttings. The longer the cuttings, the higher were the survival and dry mass production. Survival at the end of the second growing season varied from 75% to 97%. In two years, the two longest cutting lengths (40 cm and 50 cm) produced about 100 g dry mass per living cutting; but owing to the higher survival rate of the longest cuttings, there was a difference per area unit: 360 g/m2 for 40 cm and 400 g/m2 for 50 cm-long cuttings. The shortest (10 cm) cuttings produced only 115 g/m2.  相似文献   

4.
Fine root dynamics of shaded cacao plantations in Costa Rica   总被引:1,自引:0,他引:1  
Root turnover may contribute a significant proportion of recycled nutrients in agroforestry systems and competition between trees and crops for nutrients and water may depend on temporal fine root regrowth patterns. Fine root biomass ( 2 mm) and fine root productivity were measured during one year in plantations of cacao (Theobroma cacao) shaded by Erythrina poeppigiana or Cordia alliodora planted on a deep alluvial soil in Turrialba, Costa Rica. Fine root biomass of approximately 1.0 Mg ha–1 varied little during the year with maximum values at the beginning of the rainy season of 1.85 Mg ha–1 in the cacao-C. alliodora system compared to 1.20 Mg ha–1 for cacao-E. poeppigiana. Fine root productivity of C. alliodora and E. poeppigiana (maximum of 205 and 120 kg ha–1 4 week–1, respectively) was greatest at the end of the rainy season, while for cacao it was greatest at the beginning of the rainy season (34–68 kg ha–1 4 week–1), which suggests that if nutrient competition occurs between the shade trees and the cacao, it could be minimized by early fertilization during the beginning of the rains immediately after pruning the shade trees. Annual fine root turnover was close to 1.0 in both systems. Assuming that fine root biomass in these mature plantations was constant on an annual basis, nutrient inputs from fine root turnover were estimated as 23–24 (N), 2 (P), 14–16 (K), 7–11 (Ca) and 3–10 (Mg) kg ha–1 year–1, representing 6–13% and 3–6% of total nutrient input in organic matter in the C. alliodora and E. poeppigiana systems, respectively.  相似文献   

5.
A greenhouse trial was carried out to improve the knowledge of how forest organic matter could be utilized in site preparation and the choice of planting spot for Picea abies (L.) Karst. One-year old Norway spruce seedlings were grown for 26 weeks in pots containing pure mineral soil, forest organic matter in three different states of decomposition and combined treatments where the organic matter was mixed with or placed on the surface of the mineral soil (volume proportions of organic:mineral of 1:2). Watering was adapted to the water retention characteristics of each growing medium in order to keep the soil water potential between -4 and -5 kPa in all pots.In its pure form as well as combined with mineral soil, the moderately decomposed mor organic matter gave a higher seedling dry weight increment than the corresponding growing media containing the more decomposed humus. Adding mor or humus to mineral soil increased the seedling dry weight increment by 30–140% and 10–40%, respectively. The largest seedlings grew in the pure mor and humus. Mixing these forms of organic matter with mineral soil appeared to reduce seedling growth as compared to placing them on the mineral soil surface. The increment increase compared to plain mineral soil mostly consisted of proleptic growth and was probably due to the improved nutrient availability of the growing media. Fresh organic matter (chopped needles and twigs) seemed to impair seedling root function and reduced the dry weight increment by 30–50% as compared with pure mineral soil.The results suggest that as long as the water and temperature requirements are fulfilled planting Norway spruce seedlings without scarification and/or gathering extra mor and humus to the planting position should improve seedling growth as compared to the growth following scarification. Unmixed fresh needles and twigs or fresh needles and twigs combined with plain mineral soil should be avoided when planting Norway spruce seedlings.  相似文献   

6.
Mattsson  Stefan  Bergsten  Urban 《New Forests》2003,26(3):217-231
The aim of this study was to quantify the effects of different soil scarification methods on tree growth. Soil scarification influenced stem volume and stem biomass yield of lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.) in a 17-year-old field trial in boreal Sweden. Soil scarification (disc trenching, mounding and ploughing) resulted in an average stem volume yield of 3.1 and 34.2 m3 ha–1 on the poor and intermediate sites, respectively, while corresponding values for no soil scarification were 0.9 and 16.7 m3 ha–1. In comparison to no scarification, ploughing increased volume yields by 500% on the poor site and by 200% on the intermediate sites. The ranking according to stem volume yield was ploughing > disc trenching = mounding no soil scarification. Averaged over the two sites, the mean annual increment of stem biomass was 219% and 145% higher (in d.w., 0.26 kg and 0.34 kg per sample tree) after ploughing compared with no soil scarification, for the average and dominant sample trees, respectively. Although not significant, the increased growth rate after soil scarification decreased the average stem basic wood density of the sample trees with 1.6% and 5.3%, at the poor and intermediate sites, respectively. In conclusion, soil scarification significantly increased the 17-year stem volume yield compared with no scarification. The results also indicate that the difference in stem biomass yield between ploughing and the other methods, especially no soil scarification, will increase even more in the near future.  相似文献   

7.
On three sites in coastal northwestern Oregon, USA, seedling root and shoot development were assessed for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), western hemlock (Tsuga heterophylla (Raf.) Sarg.), and western red-cedar (Thuja plicata Donn ex D. Don) container seedlings under varying sulfometuron methyl (Oust XP®) herbicide application treatments. Treatments consisted of application of 0.16 kg active ingredient (ai) ha?1 as a site preparation in fall 2003, a release application in fall 2004, or a control treatment with no application. Seedlings were planted in winter 2004 and measurements recorded in summer 2004, winter 2005, and summer 2005. During first season growth, western red-cedar seedlings showed the greatest negative impact to site preparation compared to the control with overall average new root length outside the root plug reduced by 67%. Significant reductions in root length also occurred for western hemlock (47%) and Douglas-fir (40%) seedlings. About 9 months after the release treatment, and 21 months after the site preparation application, there were no significant differences between treatments for any measured parameter. These findings suggest that seedlings under the site preparation treatment recovered from initial damage incurred to the root system. Lack of seedling response under the release treatment may be the result of opposing influences from the herbicide application associated with seedling phytotoxicity and enhanced seedling development resulting from effective vegetation control. Although our study was limited to 21 months following planting, reduced vegetation cover in the site preparation and release treatments suggests that these treatments may benefit future seedling growth.  相似文献   

8.
Bergmann  Ben A. 《New Forests》2003,25(3):185-199
Performance of Paulownia elongata, Paulownia fortunei, and Paulownia×Henan 1 was monitored at three sites in North Carolina between 1996 and 2000, and P. elongata clones were tested at an additional two sites. The primary objective was to define the potential for growing Paulownia in the state. Species and clones within species differed in survival and height and diameter growth whenever genotype was included as a treatment. P. elongata was superior at two and P. fortunei was superior at one of the three sites that included P. elongata, P. fortunei, and P.×Henan 1. Trees produced through vegetative means were more likely to survive and were taller and of greater DBH than seed produced trees. Mortality in trees produced from seed was greater for P. fortunei and P. ×Henan 1 than for P. elongata. Application of animal waste or different rates of nitrogen as inorganic fertilizer did not have a pronounced effect on tree survival and growth.  相似文献   

9.
Organic amendments were added to a southwestern United States forest nursery sandy loam soil to determine the effects on soil nutrient reserves and subsequent growth of 1.5+0 ponderosa pine (Pinus ponderosa Laws.) seedlings. Treatments included irradiated sewage sludge, peat moss and pine bark each at 67 t/ha, sawdust at 43 t/ha, and a control that received no organic matter. Sludge caused immediate increases in soil nutrients, especially N and P. Sawdust resulted in near complete N immobilization 45 d after application. Peat moss and bark did not significantly alter soil nutrients. All treatment effects disappeared within 6 months of application.Amendments did not significantly alter seedling survival, biomass or yield (caliper 3 mm). Seedling biomass was positively correlated with early soil nutrient status, but growth was not significantly improved. The modest, short-term nutritional benefits indicate single applications of organic amendments are ineffective in improving the nutrient status of sandy nursery soils of the Southwest.  相似文献   

10.
One-year-old frozen-stored Norway spruce (Picea abies (L.) Karst.) container seedlings were planted in a controlled environment providing an air temperature of 22°C and soil temperature of 9±1 or 18±1°C. At planting the root plugs were either frozen or had been thawing for 4 days at 9°C. During a 5-week growing period, in both cold and warm soil the root growth and height growth were less in frozen-planted seedlings than in thawed seedlings. In addition, frozen-planting delayed bud burst and increased mortality. Soil temperature, however, had no effect on bud burst or mortality. Low soil temperature retarded root growth of seedlings thawed before planting but resulted in both retarded root growth and height growth if root plugs were frozen when planted. These results indicate that planting Norway spruce seedlings with frozen root plugs constitutes a considerable risk for successful forest regeneration at soil temperatures normally prevailing in Fennoscandia in spring or early summer especially if the soil is dry at the time of the planting.  相似文献   

11.
The relative importance of N fixation, organic material inputs and nutrient inputs in litterfall, as justifications for including shade trees in plantations of coffee or cacao, is discussed. According to existing data, N fixation by leguminous shade trees does not exceed 60 kg.N/ha/a. However, these trees contribute 5,000–10,000 kg. organic material/ha/a.Comparisons are made between the leguminous shade tree Erythrina poeppigiana and the non-leguminous timber tree Cordia alliodora. The former, when pruned 2 or 3 times/a., can return to the litter layer the same amount of nutrients that are applied to coffee plantations via inorganic fertilizers, even at the highest recommended rates for Costa Rica of 270 kg.N, 60 kg.P, 150 kg.K/ha/a. The annual nutrient return in this litterfall represents 90–100 percent of the nutrient store in above-ground biomass of E. poeppigiana, and hence the consequences of competition with the crop should not be a serious limitation. In the case of C. alliodora, which is not pruned, nutrient storage in the tree stems, especially of K, is a potential limiting factor to both crop and tree productivity.It is concluded that, in fertilized plantations of cacao and coffee, litter productivity is a more important shade tree characteristic than N fixation.An early version of this review was presented at the CATIE-IUFRO meeting Los Arboles de Uso Multiple en Sistemas Agroforestales, June 1985, Turrialba, Costa Rica.  相似文献   

12.
Kooistra  C.M.  Bakker  J.D. 《New Forests》2002,23(3):225-237
In temperate climates, conifer seedlings are often held in frozen storage (–2 °C) for extended periods and then placed in cool storage (+2 °C) so the root plug can thaw prior to outplanting. Two plug temperature treatments were used to test the hypothesis that thawing seedlings prior to outplanting may be unnecessary: seedlings were planted with frozen root plugs (frozen seedlings) and with thawed root plugs (thawed seedlings). The experiment was conducted under two watering regimes (irregular, regular) and with three conifer species (lodgepole pine [Pinus contorta var. latifolia], western larch [Larix occidentalis], interior spruce [Picea glauca × engelmannii]) to increase the generality of the results. The warming of root plugs after planting was examined. Thawed root plugs warmed to soil temperature rapidly (about 30 min) while frozen root plugs took longer (to 2 h) because ice in the plug had to melt before temperatures rose. Larger root plugs took longer to warm to soil temperature. Several aspects of seedling field performance were also assessed. For all species, variable fluorescence did not differ between frozen and thawed seedlings. Bud break was faster for thawed than frozen western larch seedlings but did not differ between frozen and thawed seedlings for either lodgepole pine or interior spruce. Height increment differed significantly between frozen and thawed seedlings that received the irregular watering regime; this effect was likely a response to the positioning of irrigation nozzles, which resulted in sporadic and non-uniform irrigation patterns. Height increment did not differ between frozen and thawed seedlings that received the regular watering regime. Root collar diameter and volume increments were not significantly affected by plug temperature treatment under either watering regime. Planting seedlings with frozen root plugs did not hinder field performance over one growing season under these watering regimes.  相似文献   

13.
On fertile alluvial soils on the lakeshore plain of Malawi, maize (Zea mays L.) yields beneath canopies of large Faidherbia albida (synAcacia albida) trees greatly exceed those found beyound tree canopies, yet there is little difference in soil nutrients or organic matter. To investigate the possibility that soil nutrient dynamics contribute to increased maize yields, this study focused on the impact of Faidherbia albida on nitrogen mineralization and soil moisture from the time of crop planting until harvest. Both large and small trees were studied to consider whether tree effects change as trees mature.During the first month of the rainy season, a seven-fold difference in net N mineralization was recorded beneath large tree canopies compared to rates measured in open sites. The initial pulse beneath the trees was 60 g N g–1 in the top 15 cm of soil. During the rest of the cropping cycle, N availability was 1.5 to 3 times higher beneath tree canopies than in open sites. The total production of N for the 4-month study period was 112 g N g–1 below tree canopies compared to 42 g N g–1 beyond the canopies. Soil moisture in the 0–15 cm soil layer was higher under the influence of the tree canopies. The canopy versus open site difference grew from 4% at the beginning of the season to 50% at the end of the cropping season.Both N mineralization and soil moisture were decreased below young trees. Hence, the impact of F. albida on these soil properties changes with tree age and size. While maize yields were not depressed beneath young F. albida, it is important to realize that the full benefits of this traditional agroforestry system may require decades to develop.  相似文献   

14.
We examined the following hypotheses: (i) seeds of dry forest trees have high pre- and post-germination mortality by desiccation due to the time between seed dispersal and germination and to irregular rains at the onset of the rainy season; (ii) seedlings from seeds dispersed in the dry season which survive the dry spells are larger at the end of the first rainy season than those dispersed in the rainy season because the former have more time to grow. We evaluated the possible trade-off between few large seedlings (resulting from natural dispersal) × many small seedlings (resulting from delayed dispersal) on seedling survival during the dry season. We sowed eight tree species in a greenhouse in September, simulating the natural dispersal timing (before the rains), and in November, when rains are more constant. Because shading can counteract the effects of desiccation, we applied three levels of shade (10%, 40% and 72% of PPFD). From September 2005 to December 2006, we provided the daily precipitation of a median year from a major patch of dry forest in Central Brazil. At the end of the rainy season, a subset of seedlings was collected for growth measurements (dry mass) and the remainder was left to follow the dry season survivorship. The lower germination expected for seeds dispersed in the dry season and in full sun was not confirmed for species that had some dormancy. The delayed dispersal was advantageous for the initial establishment of fast germinating species, but it was irrelevant or even disadvantageous for others. Also, the greenhouse weather was certainly milder than the natural environment, reducing the potential for mortality by desiccation. The growth of the four species of higher dormancy were not affected by timing of seed dispersal, while three out of four fast germinating species had higher root biomass when dispersed in the dry season. The growth during the rainy season did not affect seedling survival during the dry season. Keeping seeds to sow when rain is constant might be a good strategy to increase the establishment of fast-germinating tree species.  相似文献   

15.
为探究配方施肥对云南松松针养分含量和土壤理化性质的影响,为云南松幼林抚育提供科学依据,以8年生云南松为试材,采用U*15(157)均匀设计开展复合肥、氮肥、磷肥、镁肥和硼肥配施的试验。处理组合的针叶长、烘干含水率、针叶全氮、全磷和全钾分别为23.90~27.34 cm、55.47%~60.88%、0.17%~0.57%、0.13%~0.33%和0.17%~0.82%,对照的则为24.14 cm、60.75%、0.35%、0.17%和0.29%。其中,全磷和全钾具有显著的差异。处理组合的土壤pH、烘干含水率、速效氮、速效磷、速效钾和胸径增长率分别为4.08~4.69、17.27%~34.59%、22.77~41.91、7.70~11.80、66.44~174.67 mg/kg和23.5%~50.3%,对照的则为4.42、17.27%、23.70、8.23、81.11 mg/kg和22.4%,处理组合间速效磷、速效钾和胸径增长率具有极显著的差异。土壤理化性质与因素具有复杂的相关性,硼肥与胸径增长率呈现显著的正相关;配施复合肥1.6 kg/3 cm、氮肥0.10 kg/3 cm、磷肥0.2 kg/3 cm,镁肥7.5 g/3 cm和硼肥1.5 g/3 cm可改善土壤理化性质,促进云南松幼树胸径生长。  相似文献   

16.
Fredericksen  T.S.  Justiniano  M.J.  Mostacedo  B.  Kennard  D.  McDonald  L. 《New Forests》2000,20(1):45-64
A comparative study of the regeneration ecology ofthree lesser-known leguminous timber species wasconducted in the seasonally dry forests of SantaCruz, Bolivia to determine species regenerationstrategies and make silvicultural recommendationsfor these species. The study included arepresentative from each subfamily of Leguminosae:Anadenanthera colubrina (Vell. Conc.) Benth.(Mimosaceae), Copaifera chodatiana Kunth.(Caesalpinaceae), and Centrolobium microchaeteC. Martius (Fabaceae). After production in themid-late dry season, seeds of all species sufferedhigh (>30%) rates of predation. For seedssurviving predation, Anadenanthera germinatedwithin three days after the first rains and a highgermination capacity (82%), but most seedlings diedfrom inadequate light or during subsequent periodsof drought. Copaifera germinated more slowlybut had high germination capacity (85%). Centrolobium had very low germination capacity(4%) and germinative energy. Most successfulregeneration of Centrolobium occurred viasprouting from damaged roots on or near loggingroads where it had a density of 261 root sprouts/ha.Anadenanthera regenerated best from seedin areas with soil disturbance or burning. Theregeneration of these species will likely increaseunder more intensive logging and/or post-harvestcompetition control treatments in logging gaps. Themore shade-tolerant Copaifera is most suitedto the current regime of light selective logging,but all three species are likely to be responsive topost-harvest competition control treatments. Impacts of controlled and natural fire were mixed,but generally seedling regeneration and growth wereeither not significantly affected or were increasedby fire.  相似文献   

17.
A method of classifying woody perennials based on the effective foraging space (EFS) is described. EFS of a plant is defined as the soil space which accounts for 80% or more of root activity. The lateral and vertical dimensions of EFS of a plant can be determined from the study of root activity pattern of the plant employing 32P-soil injection technique. Based on the dimensions of the EFS, the perennial plant species may be grouped into 16 classes ranging from plants with very compact-very shallow active root system (less than 100 cm lateral extension and less than 30 cm deep) to very extensive — very deep root system (more than 300 cm lateral spread and more than 90 cm deep). The soil and genetic factors which can influence root activity pattern of a plant can also alter its EFS. Nevertheless, given the soil type and the variety, the concept of EFS can be very fruitfully applied in several situations such as selection of plant species for a given land use system, spacing of the component species in agroforestry and other mixed production systems, deciding the planting geometry, developing the most efficient method of fertilizer application, choosing the most appropriate crop combinations for stratified exploitation of below-ground resources, etc. Although this classification system is primarily intended for woody perennials, it can be extended to other plant species as well.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

18.
Sphingomonas paucimobilis SYK-6 produces unique and specific enzymes, such as-etherases,O-demethylases, and ring fission dioxygenases, for lignin degradation. Cleavage of arylglycerol--aryl ether linkage is the most important process in the lignin metabolic pathway ofS. paucimobilis SYK-6. We reported the genes (ligD, ligE, ligF) for enzymes that cleaved-aryl ether linkage of dimeric compounds in previous studies. In this study we synthesized the fluorescent high-molecular-weight lignin (UBE-DHP) by dehydrogenative polymerization. We investigated the-aryl ether cleavage ability of these enzymes produced in recombinantEscherichia coli. When UBE-DHP was incubated with LigF, 4-methylumbeliferone was released as a result of-aryl ether cleavage of O-methylumbelliferyl--hydroxypropiovanillone (compound III) incorporated in UBE-DHP. Here, we report that-etherase ofS. paucimobilis SYK-6 can be expressed inE. coli and is able to cleave the-aryl ether linkage in synthetic high-molecular-weight lignin.  相似文献   

19.
Fertilizer trees, the nitrogen-fixing legumes, such as gliricidia (Gliricidia sepium) and tephrosia (Tephrosia spp.) have been used to improve soil fertility for higher crop yields in nitrogen deficient soils. Many studies have focused on how these fertilizer trees improve maize yield, but there has been a dearth of information on the effect of fertilizer tree species on cotton growth and yield. A study was undertaken for two cropping seasons (2012/13 and 2013/14) with the objective of assessing IRM 81 cotton growth and yield responses to tephrosia and/or gliricidia biomass with or without inorganic fertilizer application. Boll opening significantly varied (P < 0.0001) with treatments and early boll opening was observed in plots where only inorganic fertilizer was applied. Higher lint yield (mean of 1397 kg/ha) was obtained in the second cropping season than in the first cropping season (480 kg/ha) and the application of gliricidia biomass with fertilizer gave the highest lint yield (2121 kg/ha). The lowest lint and seed yields were obtained from plots where tephrosia biomass only was applied. It is concluded that the use of gliricidia biomass with inorganic fertilizer improved cotton yields. The high amount of gliricidia biomass (due to prolific coppicing) applied contributed to higher cotton lint yields with reduced rates of inorganic fertilizer application, making gliricidia-cotton intercropping a cost-effective option to smallholder farmers.  相似文献   

20.
Pinus radiata trees were grown on a podzolized sandy soil at a second rotation site under the following treatments: total weed control, total weed control plus ammonium nitrate, strip weed control and no weed control. During the first two summers after planting the differences in needle water potential between trees under no, strip or total weed control were very small. Despite similar rates of net N-mineralization in strip and total weed control treatments, which averaged 64 kg ha–1 yr–1 in the 0–15 cm soil depth, weeds in the strip weed control treatment reduced soil mineral-N concentrations by 50–80%, leaching of N by the end of the first growing season by 45%, foliar-N concentrations by 4–14% and stem biomass at 20 months after planting by 46%. Although N-uptake by above-ground vegetation (trees plus weeds) was 49% higher in the strip weed control treatment, the amount of N apportioned to trees during the first 20 months after planting was reduced from 15.5 to 9.0 kg ha–1. These effects of weeds were even more pronounced in the no weed control treatment. Since weeds had little effect on the needle water potential of trees and the annual rates of N-mineralization, but adversely affected N-uptake by trees, results indicate that weeds directly competed with trees for N, and thereby aggravated N-deficiency in trees. Application of ammonium nitrate after complete weed control increased foliar-N concentrations, and N-uptake and growth of trees, but also induced severe stem deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号