首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary An Agropyron elongatum-derived leaf rust resistance gene Lr24 located on chromosome 3DL of wheat was tagged with six random amplified polymorphic DNA (RAPD) markers which co-segregated with the gene. The markers were identified in homozygous resistant F2 plants taken from a population segregating for leaf rust resistance generated from a cross between two near-isogenic lines (NILs) differing only for Lr24. Phenotyping was done by inoculating the plants with pathotype 77-5 of Puccinia triticina. To enable gene-specific selection, three RAPD markers (S1302609, S1326615 and OPAB-1388) were successfully converted to polymorphic sequence characterized amplified region (SCAR) markers, amplifying only the critical DNA fragments co-segregating with Lr24. The SCAR markers were validated for specificity to the gene Lr24 in wheat NILs possessing Lr24 in 10 additional genetic backgrounds including the Thatcher NIL, but not to 43 Thatcher NILs possessing designated leaf rust resistance genes other than Lr24. This indicated the potential usefulness of these SCAR markers in marker assisted selection (MAS) and for pyramiding leaf rust resistance genes in wheat.  相似文献   

2.
Inheritance of resistance to angular leaf spot (ALS) disease caused by Phaeoisariopsis griseola (Sacc.) Ferr was investigated in two common bean cultivars, Mexico 54 and BAT 332. Both Andean and Mesoamerican backgrounds were used to determine the stability of the resistance gene in each of the two cultivars. Resistance to P. griseola was phenotypically evaluated by artificial inoculation with one of the most widely distributed pathotypes, 63–39. Evaluation of the parental genotypes, F1, F2 and backcross populations revealed that the resistance to angular leaf spot in the cultivars Mexico 54 and BAT 332 to pathotype 63–39 is controlled by a single dominant gene, when both the Andean and Mesoamerican backgrounds were used. Allelism test showed that ALS resistance in Mexico 54 and BAT 332 to pathotype 63–39 was conditioned by the same resistance locus. Resistant and susceptible segregating populations generated using Mexico 54 resistant parent were selected for DNA extraction and amplification to check for the presence /absence of the SCAR OPN02 and RAPD OPE04 markers linked to the Phg-2 resistance gene. The results indicated that the SCAR OPN02 was not polymorphic in the study populations and therefore of limited application in selecting resistant genotypes in such populations. On the other hand, the RAPD OPE04 marker was observed in all resistant individuals and was absent in those scored susceptible based on virulence data. Use of the RAPD OPE04 marker in marker-assisted selection is underway.  相似文献   

3.
RAPD and SCAR markers for resistance to acochyta blight in lentil   总被引:3,自引:0,他引:3  
Resistance to ascochyta blight of lentil (Lens culinaris Medikus),caused by the fungus Ascochyta lentis, is determined by a single recessive gene, ral 2, in the lentil cultivar Indian head. Sixty F2 individuals from a cross between Eston (susceptible) and Indian head (resistant) lentil were analyzed for the presence of random amplified polymorphic DNA (RAPD) markers linked to the ral 2gene, using bulked segregant analysis (BSA). Out of 800 decanucleotide primers screened, two produced polymorphic markers that co-segregated with the resistance locus. These two RAPD markers, UBC2271290and OPD-10870, flanked and were linked in repulsion phase to the gene ral 2 at 12 cm and 16 cm, respectively. The RAPD fragments were converted to SCAR markers. The SCAR marker developed from UBC2271290 could not detect any polymorphism between the two parents or in the F2. The SCAR marker developed from OPD-10870 retained its polymorphism. The polymorphic RAPD marker UBC2271290 and the SCAR marker developed from OPD-10870 can be used together in a marker assisted selection program for ascochyta blight resistance in lentil. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Squash silverleaf (SSL), caused by the silverleaf whitefly [Bemisia argentifolii (formerly known as Bemisia tabaci Gennadius, B strain)], is an important physiological disorder that affects squash (Cucurbita spp.) by reducing yield potential. Breeding squash with resistance to SSL disorder can be facilitated by using marker-assisted selection (MAS). Resistance to SSL disorder, in Cucurbita pepo, is conferred by a single recessive gene (sl). The objective of this study was to identify molecular markers associated with resistance. A zucchini squash, SSL disorder resistant breeding line, ‘Zuc76’ (sl/sl) and a SSL disorder susceptible zucchini cultivar ‘Black Beauty’ (Sl/Sl) were screened with 1,152 randomly amplified polymorphic DNA (RAPD) primers and 432 simple sequence repeat (SSR) markers to identify polymorphisms. Using F2 and BC1 progeny segregating for SSL disorder resistance, three RAPD (OPC07, OPL07 and OPBC16) primers and one SSR (M121) marker were found associated with sl. Fragments amplified by RAPD primer OPC07 was linked in coupling phase to sl, whereas RAPD primer OPL07 was linked in repulsion phase. RAPD primer OPBC16 and SSR marker M121 were co-dominant. The allelic order of these loci was found to be M121–sl–OPC07–OPL07–OPBC16. The closest marker to sl is M121 with an estimated genetic distance of 3.3 cM. The markers identified in this study will be useful for breeding summer squash (C. pepo) for SSL disorder resistance derived from zucchini squash breeding line ‘Zuc76’.  相似文献   

5.
The or mutation in Chinese cabbage (Brassica rapa L. ssp. pekinensis) is a recessive, single-locus mutation that causes the head leaves of the plant to accumulate carotenoids and turn orange. In China, considerable attention has been focused in recent years on breeding the variety with orange head leaves. In this study, sequence-characterized amplified region (SCAR) markers linked to the or gene were identified based on random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) by performing a bulked segregant analysis (BSA) using a doubled haploid (DH) population derived from the F1 cross between 91-112 (white head leaves) and T12-19 (orange head leaves) via microspore culture. Two RAPD markers—OPB01-845 and OPAX18-656—and 1 AFLP marker, namely, P67M54-172, were identified to be linked to the or gene, and they were successfully converted into the SCAR markers SCR-845, SCOR204, and SCOR127, respectively. In a linkage analysis, these 3 SCAR markers and 2 previously published simple sequence repeat markers, namely, BRMS-51 and Ni4D09 (located on R9 linkage group), were mapped to the same linkage group with the or gene at a LOD score of 6.0, indicating that the or gene should be located on the linkage group R9 of the A genome. In addition, accuracies of 92%, 90%, and 89.1% were obtained when 110 different inbred breeding lines of Chinese cabbage were used for investigation with these 3 SCAR markers, indicating that these makers could be used in marker-assisted selection in orange head leaf breeding programs for Chinese cabbage.  相似文献   

6.
Fusarium wilt, caused by Fusarium oxysporum f. sp. melonis (F.o.m), is a worldwide soil-borne disease of melon (Cucumis melo L.). The most effective control measure available is the use of resistant varieties. Resistance to races 0 and 2 of this fungal pathogen is conditioned by the dominant gene Fom-1. An F2 population derived from the ‘Charentais-Fom1’ × ‘TRG-1551’ cross was used in combination with bulked segregant analysis utilizing the random amplified polymorphic DNA (RAPD) markers, in order to develop molecular markers linked to the locus Fom-1. Four hundred decamer primers were screened to identify three RAPD markers (B17649, V01578, and V061092) linked to Fom-1 locus. Fragments amplified by primers B17649 and V01578 were linked in coupling phase to Fom1, at 3.5 and 4 cM respectively, whereas V061092 marker was linked in repulsion to the same dominant resistant allele at 15.1 cM from the Fom-1 locus. These RAPDs were cloned and sequenced in order to design primers that would amplify only the target fragment. The derived sequence characterized amplified region (SCAR) markers SB17645 and SV01574 (645 and 574 bp, respectively) were present only in the resistant parent. The SV061092 marker amplified a band of 1092 bp only in the susceptible parent. These markers are more universal than the CAPS markers developed by Brotman et al. (Theor Appl Genet 10:337–345, 2005). The analysis of 24 melon accessions, representing several melon types, with these markers revealed that different melon types behaved differently with the developed markers supporting the theory of multiple, independent origins of resistance to races 0 and 2 of F.o.m.  相似文献   

7.
L. Kong    H. W. Ohm    S. E. Cambron    C. E. Williams 《Plant Breeding》2005,124(6):525-531
Hessian fly [Mayetiola destructor (Say)] is one of the major insect pests of wheat (Triticum aestivum L.) worldwide. Hessian fly resistance gene H9 was previously reported to condition resistance to Hessian fly biotype L that is prevalent in many wheat‐growing areas of eastern USA and an RAPD marker, OPO051000, linked to H9 in wheat was developed using wheat near‐isogenic lines (NILs). However, marker‐assisted selection (MAS) with RAPD markers is not always feasible. One of the objectives in this study was to convert an RAPD marker linked to the gene H9 into a sequence characterized amplified region (SCAR) marker to facilitate MAS and to map H9 in the wheat genome. The RAPD fragment from OPO051000 was cloned, sequenced, and converted into a SCAR marker SOPO05909, whose linkage relationship with H9 was subsequently confirmed in two F2 populations segregating for H9. Linkage analysis identified one sequence tagged site (STS) marker, STS‐Pm3, and the eight microsatellite markers Xbarc263, Xcfa2153, Xpsp2999, Xgwm136, Xgdm33, Xcnl76, Xcnl117 and Xwmc24 near the H9 locus on the distal region of the short arm of chromosome 1A, contrary to the previously reported location of H9 on chromosome 5A. Locus Xbarc263 was 1.2 cM distal to H9, which itself was 1.7 cM proximal to loci Xcfa2153, Xpsp2999 and Xgwm136. The loci Xgwm136, Xcfa2153 and SOPO05909 were shown to be specific to H9 and not diagnostic to several other Hessian fly resistance genes, and therefore should be useful for pyramiding H9 with other Hessian fly resistance genes in a single genotype.  相似文献   

8.
An introgression line derived from an interspecific cross between Oryzasativa and Oryza officinalis, IR54741-3-21-22 was found to beresistant to an Indian biotype of brown planthopper (BPH). Genetic analysisof 95 F3 progeny rows of a cross between the resistant lineIR54741-3-21-22 and a BPH susceptible line revealed that resistance wascontrolled by a single dominant gene. A comprehensive RAPD analysisusing 275 decamer primers revealed a low level of (7.1%) polymorphismbetween the parents.RAPD polymorphisms were either co-dominant (6.9%), dominant forresistant parental fragments (9.1%) or dominant for susceptible parentalfragments (11.6%). Of the 19 co-dominant markers, one primer,OPA16, amplified a resistant parental band in the resistant bulk and asusceptible parental band in the susceptible bulk by bulked segregantanalysis. RAPD analysis of individual F2 plants with the primerOPA16 showed marker-phenotype co-segregation for all, with only onerecombinant being identified. The linkage between the RAPD markerOPA16938 and the BPH resistance gene was 0.52 cM in couplingphase. The 938 bp RAPD amplicon was cloned and used as a probe on122 Cla I digested doubled haploid (DH) plants from aIR64xAzucena mapping population for RFLP inheritance analysis and wasmapped onto rice chromosome 11. The OPA16938 RAPD markercould be used in a cost effective way for marker-assisted selection of BPHresistant rice genotypes in rice breeding programs.  相似文献   

9.
Novel male-specific molecular markers (MADC5, MADC6) in hemp   总被引:8,自引:0,他引:8  
Decamer RAPD primers were tested on dioecious and monoecious hemp cultivars to identify sex-specific molecular markers. Two primers (OPD05 and UBC354) generated specific bands in male plants. These two DNA fragments were isolated, cloned and sequenced. Both markers proved to be unique, since no sequence with significant homology to OPD05961 and UBC354151 markers were found in databases. These markers were named MADC3 (OPD05961) and MADC4 (UBC354151) (Male-Associated DNA from Cannabis sativa). The markers were converted into sequence-characterized amplified region (SCAR) markers. The SCAR markers correlated with the sex of the segregating F2 population and proved the tight linkage to the male phenotype. Results of F2 plant population analysis suggest these markers are to be linked to the Y chromosome. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Epidemiological field controls in different Italian locations and seedling evaluations of the ‘Thatcher’ near-isogenic lines (NILs) carrying the leaf rust resistance genes Lr1, Lr9, Lr24 and Lr47 were conducted during 5 years of testing. These genes confirmed their effectiveness in both field and greenhouse conditions. Moreover a backcross program was carried out by using as recurrent parents the susceptible high-quality common wheat cvs ‘Bolero’, ‘Colfiorito’, ‘Serio’ and ‘Spada’ and the ‘Thatcher’ NILs carrying the above mentioned genes as donor parents. The progenies of different cross combinations were selected by both resistance tests and marker assisted selection using molecular markers (STS, SCAR, CAPS) closely linked to Lr genes: a complete cosegregation was observed between the resistance genes used and the corresponding molecular markers.  相似文献   

11.
Early selection of scab-resistant apple seedlings can be enhanced by the use of markers tightly linked to the Vf resistance gene. Two sequence characterized amplified regions (SCAR) markers have been obtained from previously described random amplified polymorphic DNA (RAPD) markers. AM19-SCAR is a codominant marker, while AM19-SCAR is dominant, as is the RAPD from which it was derived. A highly detailed map in the vicinity of the Vf gene was built through the cumulative analysis of about 600 seedlings from six different controlled crosses. The usefulness of these and other SCAR markers will be discussed in relation to combining the traditional phenotypic selection with MAS. The availability of two codominant, tightly linked markers flanking both sides of the resistance gene (AL07-SCAR and M18-CAPS) also makes it easy to identify the seedlings homozygous for the resistance gene.  相似文献   

12.
Three segregating F2 populations were developed by self-pollinating 3 black rot resistant F1 plants, derived from across between black rot resistant parent line 11B-1-12 and the susceptible cauliflower cultivar ‘Snow Ball’. Plants were wound inoculated using 4 isolates ofXanthomonas campestris pv. campestris (Xcc) race 4, and disease severity ratings of F2 plants from the three populations were scored. A total of 860 arbitrary oligonucleotide primers were used to amplify DNA from black rot resistant and susceptible F2 plants and bulks. Eight RAPD markers amplified fragments associated with completely disease free plants following black rot inoculation,which segregated in frequencies far lower than expected. Segregation of markers with black rot resistance indicates that a single, dominant major gene controls black rot resistance in these plants. Stability of this black rot resistance gene in populations derived from 11B-1-12 may complicate introgression into B. oleracea genotypes for hybrid production. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
K Yu    S. J. Park  V. Poysa 《Plant Breeding》2000,119(5):411-415
The possibility of using random amplified polymorphic DNA (RAPD) markers previously mapped in the common bean PC50/XANI59 population to select for resistance to common bacterial blight (CBB) in different populations was examined. Two out of 02 selected RAPD markers were polymorphic in HR56 and W0633d, the parental lines used in this experiment. Cosegregation analysis of the two polymorphic markers and disease reaction in a recombinant inbred (RI) population derived from HR67/W1744d confirmed that one of the two RAPD markers, BC420900, was significantly associated with a major quantitative trait locus‐conditioning resistance to CBB in HR67. This locus accounted for approximately 51) of the phenotypic variation. The RAPD marker was transformed into a sequence characterized amplified region (SCAR) marker and used for selection in a different population derived from ‘Envoy’/HR67. Prediction for resistance to CBB with the BC420.990 SCAR marker was 94.2% accurate in this population. A comparison between marker‐assisted selection (MAS) and conventional greenhouse screening showed that the cost of MAS is about one‐third less than that of the greenhouse test.  相似文献   

14.
The pol cytoplasmic male-sterility system has been widely used as a component for utilization of heterosis in Brassica napus and offers an attractive system for study on nuclear–mitochondrial interactions in plants. Genetic analyses have indicated that one dominant gene, Rfp, was required to achieve complete fertility restoration. As a first step toward cloning of this restorer gene, we attempted molecular mapping of the Rfp locus using the amplified fragment length polymorphism (AFLP) technique combined with bulked segregant analysis (BSA) method. A BC1 population segregating for Rfp gene was used for tagging. From the survey of 1,024 AFLP primer combinations, 13 linked AFLP markers were obtained and five of them were successfully converted into sequence characterized amplified region (SCAR) markers. A population of 193 plants was screened using these markers and the closest AFLP markers flanking Rfp were at the distances of 2.0 and 5.3 cM away, respectively. Further the AFLP or SCAR markers linked to the Rfp gene were integrated to one doubled-haploid (DH) population derived from the cross Quantum × No.2127-17 available in our laboratory, and Rfp gene was mapped on N18, which was the same as the previous report. These molecular markers will facilitate the marker-assisted selection (MAS) of pol CMS restorer lines.  相似文献   

15.
Summary Two RAPD markers linked to gene for resistance (assayed as pustule number cm−2 leaf area) to rust [Uromyces fabae (Pers.) de Bary] in pea (Pisum sativum L.) were identified using a mapping population of 31 BC1F1 [HUVP 1 (HUVP 1 × FC 1] plants, FC 1 being the resistant parent. The analysis of genetics of rust resistance was based on the parents, F1, F2, BC1F1 and BC1F2 generations. Rust resistance in pea is of non-hypersensitive type; it appeared to be governed by a single partially dominant gene for which symbol Ruf is proposed. Further, this trait seems to be affected by some polygenes in addition to the proposed oligogene Ruf. A total of 614 decamer primers were used to survey the parental polymorphism with regard to DNA amplification by polymerase chain reaction. The primers that amplified polymorphic bands present in the resistant parent (FC 1) were used for bulked segregant analysis. Those markers that amplified consistently and differentially in the resistant and susceptible bulks were separately tested with the 31 BC1F1 individuals. Two RAPD makers, viz., SC10-82360 (primer, GCCGTGAAGT), and SCRI-711000 (primer, GTGGCGTAGT), flanking the rust resistance gene (Ruf) with a distance of 10.8 cM (0.097 rF and LOD of 5.05) and 24.5 cM (0.194 rF and a LOD of 2.72), respectively, were identified. These RAPD markers were not close enough to Ruf to allow a dependable maker-assisted selection for rust resistance. However, if the two makers flanking Ruf were used together, the effectiveness of MAS would be improved considerably.  相似文献   

16.
Knowledge of the evolutionary origin and sources of pest resistance genes will facilitate gene deployment and development of crop cultivars with durable resistance. Our objective was to determine the source of common bacterial blight (CBB) resistance in the common bean Great Northern Nebraska #1 (GN#1) and GN#1 Selection 27 (GN#1 Sel 27). Several great northern cultivars including GN#1, GN#1 Sel 27, and Montana No.5 (the female parent of the common x tepary bean interspecific population from which GN #1 and GN # 1 Sel 27 were derived) and known susceptible checks were evaluated for CBB reaction in field and greenhouse environments. These genotypes and CBB resistant and susceptible tepary bean including Tepary #4, the male parent and presumed contributor of CBB resistance toGN#1 and GN#1 Sel 27, were assayed for presence or absence of three SCAR markers tightly linked with independent QTLs conditioning CBB resistance. The parents and F2 of Montana No. 5/GN #1 Sel 27 and Montana No.5/Othello(CBB susceptible) were screened for CBB reaction and SCAR markers. CBB resistance in Montana No.5 was comparable to that of GN#1 and GN#1 Sel27. The SAP6 SCAR marker present in GN#1 and GN#1 Sel 27 was also present in Montana No.5, and it co-segregated (R 2 =35%) with the CBB resistance in the Montana No.5/Othello F2 population. Although a few CBB resistant and susceptible transgressive segregants were found in the F2 of MontanaNo.5/GN #1 Sel 27 and later confirmed by F3 progeny tests, SAP6 SCAR marker was present in all progenies. None of the tepary bean specific CBB resistance-linked SCAR markers were present in GN#1, GN#1 Sel 27, or Montana No.5. A cluster analysis of 169 polymorphic PCR-based markers across three common bean and Tepary #4 indicated that GN#1, GN#1 Sel 27, and Montana No.5 were closely related, and not related at all with Tepary #4.Thus, these results clearly indicate Montana No.5, not Tepary #4, as the source of CBB resistance in GN#1 and GN#1 Sel 27. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Ascochyta blight caused by the fungus Ascochyta lentis Vassilievsky and anthracnose caused by Colletotrichum truncatum [(Schwein.) Andrus & W.D. Moore] are the most destructive diseases of lentil in Canada. The diseases reduce both seed yield and seed quality. Previous studies demonstrated that two genes, ral1 and AbR1, confer resistance toA. lentis and a major gene controls the resistance to 95B36 isolate of C. truncatum. Molecular markers linked to each gene have been identified. The current study was conducted to pyramid the two genes for resistance to ascochyta blight and the gene for resistance to anthracnose into lentil breeding lines. A population (F6:7) consisting of 156 recombinant inbred lines (RILs) was developed from across between ‘CDC Robin’ and a breeding line ‘964a-46’. The RILs were screened for reaction to two isolates (A1 and 3D2) ofA. lentis and one isolate (95B36) ofC. truncatum. χ2 analysis of disease reactions demonstrated that the observed segregation ratios of resistant versus susceptible fit the two gene model for resistance to ascochyta blight and a single gene model for resistance to anthracnose. Using markers linked to ral1 (UBC 2271290), to AbR1(RB18680) and to the major gene for resistance to anthracnose (OPO61250),respectively, we confirmed that 11 RILs retained all the three resistance genes. More than 82% of the lines that had either or both RB18680 and UBC2271290markers were resistant to 3D2 isolate and had a mean disease score lower than 2.5. By contrast, 80% of the lines that had none of the RAPD markers were susceptible and had a mean disease score of 5.8. For the case of A1 isolate of A. lentis, more than 74% of the lines that carriedUBC2271290 were resistant, whereas more than 79% of the lines that do not have the marker were susceptible. The analysis of the RILs usingOPO61250 marker demonstrated that 11out of 72 resistant lines carried the marker, whereas 66 out of 84 susceptible lines had the marker present. Therefore, selecting materials with both markers for resistance to ascochyta blight and a marker for resistance to anthracnose can clearly make progress toward resistance in the population. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
普通小麦品种Brock抗白粉病基因分子标记定位   总被引:4,自引:2,他引:2  
为明确利用Brock转育成的小麦抗白粉病品系3B529(京411*7//农大015/Brock, F6)抗性的遗传基础,将高感白粉病小麦品系薛早和3B529杂交,获得F1代、F2分离群体和F2:3家系。抗病性鉴定和遗传分析结果表明,3B529对E09小种的抗性受1对显性基因控制,暂被定名为MlBrock。利用BSA和分子标记分析,获得了与MlBrock连锁的3个SSR标记Xcfd81、Xcfd78、Xgwm159和2个SCAR标记SCAR203和SCAR112,根据SSR和SCAR标记在中国春缺体四体、双端体和缺失系的定位结果,将MlBrock定位在小麦染色体臂5DS Bin 0~0.63区间上。MlBrock与Xcfd81和SCAR203共分离,与SCAR112的遗传距离为0.5 cM。这些分子标记的建立有利于今后Brock抗白粉病基因分子标记辅助选择和基因聚合。综合抗白粉病基因MlBrock的染色体定位和抗谱分析结果,推测MlBrock很可能是Pm2基因。  相似文献   

19.
Turcicum or northern corn leaf blight (NCLB) incited by the ascomycete Setosphaeria turcica, anamorph Exserohilum turcicum, is a ubiquitous foliar disease of maize. Diverse sources of qualitative and quantitative resistance are available but qualitative resistances (Ht genes) are often unstable. In the tropics especially, they are either overcome by new virulent races or they suffer from climatically sensitive expression. Quantitative resistance is expressed independently of the physical environment and has never succumbed to S. turcica pathotypes in the field. This review emphasizes the identification and mapping of genes related to quantitative NCLB resistance. We deal with the consistency of the genomic positions of quantitative trait loci (QTL) controlling resistance across different maize populations, and with the clustering of genes for resistance to S. turcica and other fungal pathogens or insect pests in the maize genome. Implications from these findings for further genomic research and resistance breeding are drawn. Incubation period (IP) and area under the disease progress curve (AUDPC), based on multiple disease ratings, are important component traits of quantitative NCLB resistance. They are generally tightly correlated (rp? 0.8) and highly heritable (h2? 0.75). QTL for resistance to NCLB (IP and AUDPC) were identified and characterized in three mapping populations (A, B, C). Population A, a set of 121‐150 F3 families of the cross B52×mo17, represented US Corn Belt germplasm with a moderate level of resistance. It was field‐tested in Iowa, USA, and Kenya, and genotyped at 112 restriction fragment length polymorphism (RFLP) loci. Population B consisted of 194‐256 F3 families of the cross Lo951×CML202, the first parent being a Corn‐Belt‐derived European inbred line and the second parent being a highly resistant tropical African inbred line. The population was also tested in Kenya and genotyped with 110 RFLP markers. Population C was derived from a cross between two early‐maturing European inbred lines, D32 and D145, both having a moderate level of resistance. A total of 220 F3 families were tested in Switzerland and characterized with 87 RFLP and seven SSR markers. In each of the three studies, 12‐13 QTL were detected by composite interval mapping at a signifcance threshold of LOD=2.5. The phenotypic and the genotypic variance were explained to an extent of 50‐70% and 60‐80%, respectively. Gene action was additive to partly dominant, as in previous generation means and combining ability analyses with other genetic material. In each population, gene effects of the QTL were of similar magnitude and no putative major genes were discovered. QTL for AUDPC were located on chromosomes 1 to 9. All three populations carried QTL in identical genomic regions on chromosomes 3 (bin 3.06/07), 5 (bin 3.06/07) and 8 (bin 8.05/06). The major genes Ht2 and Htn1 were also mapped to bins 8.05 and 8.06, suggesting the presence of a cluster of closely linked major and minor genes. The chromosomal bins 3.05, 5.04 and 8.05, or adjacent intervals, were further associated with QTL and major genes for resistance to eight other fungal diseases and insect pests of maize. Bins 1.05/07 and 9.05 were found to carry population‐specifc genes for resistance to S. turcica and other organisms. Several disease lesion mimic mutations, resistance gene analogues and genes encoding pathogenesis‐related proteins were mapped to regions harbouring NCLB resistance QTL.  相似文献   

20.
The columnar phenotype is a very valuable genetic resource for apple breeding because of its compact growth form determined by the dominant gene Co. Using bulked segregant analysis combined with several DNA molecular marker techniques to screen the F1 progeny of Spur Fuji × Telamon (heterozygous for Co), 9 new DNA markers (6 RAPD, 1 AFLP and 2 SSRs) linked to the Co gene were identified. A total of 500 10-mer random primers, 56 pairs of selective AFLP primers and 8 SSR primer pairs were screened. One RAPD marker S1142682, and the AFLP marker, E-ACT/M-CTA346, were converted into SCAR markers designated SCAR682 and SCAR216, respectively. These markers will enable early selection in progenies where Co is difficult to identify. The Co gene was located between the SSR markers CH03d11 and COL on linkage group 10 of the apple genetic linkage map. Finally, a local genetic map of the region around the Co gene was constructed by linkage analysis of the nine new markers and three markers developed earlier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号