首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 264 毫秒
1.
The polymeric procyanidins were fractionated from lowbush blueberry on a Sephadex LH-20 column. The degree of polymerization (DP) for the polymers was determined by thiolysis to be in a range of 19.9 to 114.1. Normal-phase HPLC analysis indicated that the polymeric procyanidins did not contain oligomeric procyanidins with DP < 10. The polymers eluted as a single peak at the end of the chromatogram. The normal-phase HPLC gradient was modified to improve the separation of procyanidin monomers through decamers and to elute all the polymers beyond those as a distinct peak. Monomers through decamers were quantified individually. All the polymers (DP > 10) were quantified using a mixture of purified polymers as an external standard. Polymers were found to be the dominant procyanidins in brown sorghum bran, cranberry, and blueberry. Thiolysis of the polymer peaks indicated that epicatechin was present as extension units in these foods, however, the composition of terminal units varied considerably between catechin and epicatechin, or an A-type dimer linkage in the case of cranberry.  相似文献   

2.
Sorghum bran is concentrated with procyanidins (predominately polymers), which may be beneficial for health in humans; however, the bioavailability of procyanidins is not well-understood. Female Sprague-Dawley rats were fed an AIN93G diet containing 0, 5, 10, 20, or 40% Hi-tannin sorghum bran (n = 5-7 for each group) for 50 days. Sorghum bran contained 23.3 mg/g of procyanidins. The urinary excretions of catechin, epicatechin, methylated catechins, and phenolic acids were analyzed using liquid chromatography-tandem mass spectrometry. Sorghum bran dose dependently increased the urinary excretion of catechin (0-2.2 nmol/day) and 3'-O-methylcatechin (0-9.5 nmol/day). Their serum concentrations also increased with dose (range of 0-14 nM for 3'-O-methylcatechin). Among the 14 phenolic acids analyzed, 3,4-dihydroxybenzoic acid, 3-methoxy-4-hydroxybenzoic acid, and 4-hydroxyphenylacetic acid dominated in the serum (1.8-8 micromol/L). In the urine, 3-methoxy-4-hydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, and 3-hydroxyphenylpropionic acid dominated and their excretion increased significantly with the level of sorghum bran in the diet. The summed phenolic acid excretion was 0.8 micromol/day in the control group and increased to 23 micromol/day for 40% sorghum bran group. The hippuric acid excretion ranged from 2.2 to 16.2 micromol/day and peaked in the 10% sorghum bran group. On the basis of chromic oxide, a nonabsorbable marker, total procyanidins and polymers disappeared progressively, and significant degradation occurred in the cecum and colon. Catechins and procyanidins in sorghum were bioavailable; however, bacteria-derived phenolic acids were the predominant metabolites of procyanidins. Procyanidins degraded in the gastrointestinal tract. Depolymerization was not observed.  相似文献   

3.
This study aimed to characterize and compare the chemical structures, physical properties, and enzymatic hydrolysis rates of five sorghum starches (6B73, 6C21, 6C69, 7R34, and X789) with that of corn starch (B73). Sorghum kernels consisted of 68.7-70.6% starch, more than the B73 corn (67.4%). Sorghum starches displayed higher gelatinization temperatures (66.6-67.4 °C), greater gelatinization enthalpy changes (13.0-14.0 J/g), and greater percentages of retrogradation (60.7-69.1%), but slower enzymatic hydrolysis rates (83.8-87.8% at 48 h) than the B73 corn starch (61.7 °C, 10.1 J/g, 51.5%, and 88.5%, respectively). These differences could result from the sorghum amylopectins consisting of fewer short branch chains (DP 6-12) (12.8-14.0%) than the corn amylopectin (15.0%). The sorghum starches showed greater peak and breakdown viscosities but lower setback viscosities than the B73 corn starch, resulting from the lower amylose content of the sorghum starches. After 96 h of fermentation, most ground sorghums exhibited lower ethanol yields (30.5-31.8%) than the ground B73 corn (31.8%).  相似文献   

4.
Properties of 3-deoxyanthocyanins from sorghum   总被引:1,自引:0,他引:1  
There is increasing interest in natural food colorants with functional properties. Anthocyanins from black, brown (containing tannins), and red sorghums were characterized by spectrophotometric and HPLC techniques. The antioxidant activity and pH stability of the anthocyanins were also determined. Sorghum brans had 3-4 times higher anthocyanin contents than the whole grains. Black sorghum had the highest anthocyanin content (average = 10.1 mg/g in bran). The brown and red sorghum brans had anthocyanin contents of 2.8-4.3 mg/g. Only 3-deoxyanthocyanidins were detected in sorghum. These compounds are more stable to pH-induced color change than the common anthocyanidins and their glycosides. Additionally, crude sorghum anthocyanin extracts were more stable than the pure 3-deoxyanthocyanidins. The antioxidant properties of the 3-deoxyanthocyanidins were similar to those of the anthocyanins. Pigmented sorghum bran has high levels of unique 3-deoxyanthocyanidins, which are stable to change in pH and have a good potential as natural food pigments.  相似文献   

5.
Catechins and procyanidins are beneficial for human health; however, their bioavailability is low. The effect of food processing on catechin bioavailability from sources containing predominantly procyanidins has not been studied. The sumac sorghum mixture (50% whole grain+50% bran) used in this study contained catechins, procyanidins dimers, and polymers at 0.08, 0.6, and 26.4 mg/g, respectively. Extrusion decreased the polymeric procyanidins by 48% to 22 mg/g while increasing catechins (50%) and dimers (64%) to 0.12 and 1.0 mg/g, respectively. Six weanling pigs (8.9+/-1.1 kg) received a single dose by gavage of the sorghum mixture (7 g/kg0.75), the sorghum mixture extrudate, or white sorghum (50% whole grain+50% bran) in a randomized crossover design. Treatments were separated by a 7-day washout period. Blood was drawn at 0, 1, 2, and 4 h. Plasma catechin, 3'-O-methylcatechin, 4'-O-methylcatechin, epicatechin, 3'-O-methylepicatechin, and 4'-O-methylepicatechin peaked at 1 h and were 18, 43, 1, 0.7, 0.7, and 0.3 nmol/L for pigs receiving sorghum, respectively. Plasma levels in pigs receiving extruded sorghum were 66, 110, 2, 16, 8, and 11 nmol/L, respectively. Plasma levels of catechin, 3'-O-methylcatechin, and the total catechins were higher in pigs fed extruded sorghum at 1, 2, and 4 h postdose (P相似文献   

6.
Abstract

Determination of the nutrient requirements of sorghum [Sorghum bicolor (L.) Moench] grown on acid soils is, a critical step in the development of plants which are adapted to these problem soils. Sorghum genotype, environment, and soil type interact with the uptake of elements and affect plant growth and production. This study compared the yields of a sorghum grain hybrid grown on a sandy loam soil at four acid pH levels. Nutrient concentrations in sorghum leaves on these soil regimes were also investigated. Grain yields declined 96% as soil pH decreased from 5.5 to 4.4. Leaf element analysis revealed that as pH decreased from 5.5 to 4.4, there was an increase in plant Al, Fe, Mn, K, P and a decrease in Cu, Zn, Mg, Ca. Interactions among several of these elements were readily apparent. Additional data involving different sorghum genotypes and different soil types are needed to establish a consistent pattern of element uptake on acid soils in relation to yield and plant production.  相似文献   

7.
Primary determinants of crop production in arid/semiarid regions are lack of moisture and infertility, especially phosphorus (P) deficiency or unavailability. The effects of P and water stress (WS) levels on shoot and root dry matter (DM), leaf area, root volume, total root length, and shoot and root P concentrations and contents were determined in two bean [Phaseolus acutifolius Gray, cv ‘Tepary #21’ ("drought‐resistant") and P. vulgaris L., cv “Emerson’ ("drought‐sensitive")] and two sorghum [Sorghum bicolor (L.) Moench, cv SA7078 ("drought‐resistant") and ‘Redlan’ ("drought‐sensitive")] cultivars grown in nutrient solution. Plants were grown with different levels of P (20 and 100 μM for bean and 20, 80, and 160 μM for sorghum) when seedlings were transferred to nutrient solution, and WS levels of 0, 13.8, and 1 6.4% polyethylene glycol (PEG‐8000) introduced after plants had grown in solution 23 days (bean) and 31 days (sorghum). All growth traits were lower when bean and sorghum plants were grown with WS and low P. Growth traits were higher in cultivars grown with high compared to low P regardless of WS. Root P concentration and content and shoot content, but not shoot P concentration, were lower when bean plants were grown with WS compared to without WS. Tepary #21 bean had higher shoot DM, leaf area, total root length, and shoot P concentration than Emerson when plants were grown with WS at each level of P. Sorghum shoot and root P concentrations were higher as P level increased regardless of WS, and WS had little effect on shoot P concentration, but root P concentration was higher. Contents of P were similar for SA7078 and Redlan regardless of P or WS treatment, but SA7078 had greater P contents than Redlan over all P and WS treatments. “Drought‐resistant”; cultivars generally had better growth traits, especially total and specific root lengths, than “drought‐sensitive”; cultivars.  相似文献   

8.
To release bound phenolic acids, a microwave-assisted extraction procedure was applied to bran and flour fractions obtained from eight sorghum and eight maize cultivars varying in hardness. The procedure was followed by HPLC analysis, and the identities of phenolic acids were confirmed by MS/MS spectra. The extraction of sorghum and maize bound phenolic acids was done for 90 s in 2 M NaOH to release ferulic acid and p-coumaric acid from bran and flour. Two diferulic acids, 8-O-4'- and 8-5'-benzofuran form, were identified and quantitated in sorghum bran, and only the former was found in maize bran. The contents of ferulic acid and diferulic acids in sorghum bran were 416-827 and 25-179 μg/g, respectively, compared to 2193-4779 and 271-819 μg/g in maize. Phenolic acid levels of sorghum were similar between hard and soft cultivars, whereas those of maize differed significantly (p < 0.05) except for ferulic acid in flour. Sorghum phenolic acids were not correlated with grain hardness as measured using a tangential abrasive decortication device. Maize ferulic acid (r = -0.601, p < 0.01), p-coumaric acid (r = -0.668, p < 0.01), and 8-O-4'-diferulic acid (r = -0.629, p < 0.01) were significantly correlated with hardness.  相似文献   

9.
trans-Piceid and trans-resveratrol were authenticated for the first time by high-resoution mass spectrometry in red sorghum grains. A 0.4-1 mg/kg amount of trans-piceid and up to 0.2 mg/kg trans-resveratrol were quantified by reversed phase high-performance liquid chromatography-atmospheric pressure chemical ionization(+)-tandem mass spectrometry. The white sorghum samples contained only traces of trans-piceid (up to 0.1 mg/kg), and trans-resveratrol was absent. In much lower amounts than procyanidins, stilbenoids are not able to contribute significantly to the exceptional antioxidant activity of red sorghum (ORAC, 83-147 μmol TE/g; AAPH, 0.61-1.79 min/mg kg(-1)). More than 10 mg/kg of total stilbenoids have been reported in some hop varieties. Yet, as hop is a minor wort ingredient as compared to cereals, red sorghum could be the main source of trans-piceid in beer. Hop remains, however, the single source of cis-piceid.  相似文献   

10.
Abstract

Sweet sorghum [Sorghum bicolor (L.) Moench] cultivars have been bred for high sugar content; with accompanying adequate forage yield, the crop may offer potential for ensiling. “Wray”; sweet sorghum, a good sugar producer, was grown under field conditions to determine nutritional quality and subsequent animal performance of silage from the yield. In one experiment, “Wray”; was compared to “FS‐5”;, medium‐tall forage sorghum, at four reproductive stages of growth, in regard to agronomic characteristics and chemical composition. In another study, the “Wray”; sweet sorghum was harvested in early and late reproductive stages and stored in experimental silos. Ensiling losses were measured; in addition, the silages were offered to sheep to determine in vivo digestibility (IVODMD) and intake. In the first experiment, dry matter yields of both sweet and forage sorghum increased during the reproductive period, from 6.2 to 11.9 and 7.7 to 13.9 Mg/ha, respectively; at maturity, grain yields were 651 and 3,526 kg/ha, respectively. Total available carbohydrates tended to be higher in the forage type (23.4%) than in the sweet sorghum (19.9%). Average in vitro dry matter disappearance (IVDMD) was similar for both sorghums at 60.2%, but sweet sorghum IVDMD tended to be higher than forage sorghum at the hard‐dough stage (61.4 versus 55.1%) . In the second experiment, intake was greater when lambs were offered hard‐dough stage silage (1,240 g/lamb/day) versus bloom‐stage silage (878 g/lamb/day), even though IVODMD was similar (average 60.6%) at both harvest stages. The silages appeared to be properly ensiled, as silage pH was less than 4.0; however, effluent and dry matter losses were greater with bloom‐stage silage. These differences probably were due to the slight dry matter differential between the two <22.3 and 26.6%, respectively). To maximize yield, sweet sorghum should be ensiled at the hard‐dough stage. Resulting silage may be higher in digestible dry matter than that of medium‐tall forage sorghums, which produce grain.  相似文献   

11.
Abstract

Soluble salts found in wastewater can be toxic when used for irrigation of forages. Thus, two greenhouse experiments were conducted to investigate effects of saline [CaCl2NaCl (3:1, w:w)] treatments on soil chemical properties and ‘Dekalb FS‐5’ forage sorghum [Sorghum bicolor(L.) Moench]. Treatments for the first experiment consisted of a nonsaline control or 500 mL of a solution with an electrical conductivity (EC) of 10 dS m?1 applied once. In the second experiment, treatments were salinity levels of 1.7,3.5,5.2,8.5, and 12.2 dS m?1, applied in non‐nitrogenous Hoagland's solution as the sole source of irrigation. Both experiments were replicated four times. For both experiments forage sorghum was seeded in pots containing 7 kg of air‐dried Amarillo fine sandy loam soil. Sorghum survivability and plant height were measured. In the second experiment, water use by sorghum was also measured. Plants were harvested 7 wk after seeding, weighed, dried at 55°C, weighed, and ground for subsequent mineral analysis. After harvest, soil salinity, pH, and in the second experiment, extractable soil elements were determined. Soil salinity increased, while soil pH decreased, with the salinity treatments. Extracted soil calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), manganese (Mn), and cadmium (Cd) increased while sulfur (S), iron (Fe), and copper (Cu) decreased, and aluminum (Al) and zinc (Zn) exhibited no change with increasing salinity. Sorghum aerial plant and root production decreased with increasing salinity. Plant Ca, strontium (Sr), Mn, and Cd levels increased with increasing salinity. In contrast, sorghum K, P, and S levels declined with increasing salinity.  相似文献   

12.
Abstract

Sorghum [Sorghum bicolor (L.) Moench] is a potential crop for use in lowland paddy soils following rice in the Philippines. Little is known about the variability in sorghum germplasm with respect to yield potential in these soils, or the alterations in mineral uptake which might occur if late season rains resulted in waterlogging. Eight sorghum cultivars including the most widely used Philippine cultivar were grown after rice under flooded or non‐flooded conditions. Flooding was initiated 30 days after seeding and terminated when most cultivars were at or near the boot growth stage. Flooding markedly reduced dry matter production, and delayed bloom date on the average of 5.5 days. Grain yield was reduced about 57% over all cultivars. Early maturing cultivars were not reduced in days to bloom as much as the late maturing types, and there was a significant cultivar x treatment interaction for both bloom date and grain yield. Later maturing cultivars outyielded the other cultivars at physiological maturity in both flooded and non‐flooded conditions. Concentrations of the major nutrients N, P, K, Ca, Mg, and S were decreased in foliage at the boot stage due to flooding. The only nutrient to fall below published “critical” levels in leaf tissue, however, was N, and plants growing in these conditions showed classical N deficiency symptoms. Iron and Mn concentrations were significantly higher in foliage at the boot stage with flooding, but not high enough to be considered toxic. Most differences observed at boot still existed at maturity, but of less magnitude. Marked variability existed in the response among cultivars to waterlogging. It would appear that flooding tolerant genotypes could be selected which would improve existing cultivar choices for use in these difficult soils.  相似文献   

13.
Starches were isolated from grains of waxy, heterowaxy, and normal sorghum. To study the relationship between starch structure and functionality and guide applications of these starches, amylose content, amylopectin chain-length distributions, gelatinization and retrogradation, pasting properties, dynamic rheological properties, and in vitro enzyme digestion of raw starches were analyzed. Heterowaxy sorghum starch had intermediate amylose content, pasting properties, and dynamic rheological properties. Stress relaxation was a useful indicator of cooked starch cohesiveness. Cooked heterowaxy sorghum starch (10% solids) had a viscoelastic-solid type of character, whereas cooked waxy sorghum starch behaved like a viscoelastic liquid. Amylopectin of normal sorghum starch had a slightly higher proportion of chains with degree of polymerization (DP) of 6-15 (45.5%) compared with amylopectin of heterowaxy starch (44.1%), which had a gelatinization peak temperature 2 degrees C higher than normal sorghum starch. Heterowaxy sorghum starch contained significantly lower rapidly digestible starch (RDS) and higher resistant starch (RS) than waxy sorghum starch.  相似文献   

14.
This study was conducted to improve the quality and theoretical understanding of gluten-free sorghum bread. The addition of 2% hydroxypropyl methylcellulose improved bread based on 105% water, 70% sorghum flour, and 30% potato starch. Nevertheless, a flat top and tendency toward a hole in the crumb remained. Sourdough fermentation of the total sorghum flour eliminated these problems. Size-exclusion high-performance liquid chromatography demonstrated that during sourdough fermentation, proteins from the dough liquid were degraded to peptides smaller than kafirin monomers (<19 kDa). Laser scanning confocal microscopy showed aggregated protein in bread crumb without sourdough fermentation, whereas with sourdough fermentation, only small isolated patches of protein bodies embedded in matrix protein remained. In oscillatory temperature sweeps, sourdough fermentation caused a significantly higher resistance to deformation (|G*|) after gelatinization of the above batter relative to batters without sourdough. Results suggest that a strong starch gel, without interference of aggregated protein, is desirable for this type of bread.  相似文献   

15.
Effects of Al toxicity and interaction of Al and Mg on growth of twelve sorghum (Sorghum bicolor (L.) Moench) genotypes have been studied in nutrient solutions (pH 4.2). Aluminium at 30 μM decreased biomass (dry matter yield) of the individual genotypes by factors between 1.27 and 7.36, with identical sensitivity grouping of genotypes as obtained in an earlier pot experiment with an acid soil. Resembling acid-soil stress, Al toxicity was simultaneously expressed in two independent ways, i.e. impairment of root development and induced Mg deficiency. The effect of Al on total dry matter production of the genotypes was correlated more closely with changes in specific root length (m g−1 dry root) than with changes in internal Mg status. Increased Mg concentrations in the solutions (2.5 and 7.5 instead of 0.25 mM) not only decreased Al-induced Mg deficiency but also reduced the concentrations of Al in/on the roots and its damaging effect on root development. Therefore, the sorghum genotypes were less sensitive to Al at the higher Mg levels. At a high Mg concentration in the solution (7.5 mM) dry matter yield of two genotypes was even stimulated by Al.  相似文献   

16.
The screening of 50 sorghum varieties showed that, on average, germination did not affect the content in total phenolic compounds but decreased the content of proanthocyanidins, 3-deoxyanthocyanidins, and flavan-4-ols. Independent of germination, there are intervarietal differences in antioxidant activities among sorghum varieties. Phenolic compounds and antioxidant activities were more positively correlated in ungerminated varieties than in germinated ones. Sorghum grains with pigmented testa layer, chestnut color glumes, and red plants had higher contents, larger diversity of phenolic compounds, and higher antioxidant activities than other sorghums. Some red sorghum varieties had higher antioxidant activities (30-80 mumol of Trolox equiv/g) than several sources of natural antioxidants from plant foods. Among varieties used for "to", "dolo", couscous, and porridge preparation, the "dolo"(local beer) varieties had the highest average content and diversity in phenolic compounds as well as the highest antioxidant activities. The biochemical markers determined are useful indicators for the selection of sorghum varieties for food and agronomic properties.  相似文献   

17.
An improved method for separating and characterizing maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) storage proteins by free zone capillary electrophoresis (FZCE) was developed. Previous electrophoretic methods for analyzing these proteins required high concentrations of urea to maintain protein solubility during separation. To overcome disadvantages of urea, we developed a FZCE method that mimicked reversed-phase high-performance liquid chromatography (RP-HPLC) in that it used high levels of acetonitrile (ACN) at low pH. The optimized FZCE buffer system consisted of 80 mM phosphate-glycine buffer, nominal pH 2.5, containing 60% ACN and a cellulose derivative to dynamically coat capillary walls. Resolution was similar to or higher than that previously achieved by FZCE buffers utilizing 8 M urea as a buffer additive. ACN concentrations of at least 50% were necessary to achieve acceptable separations; this ACN concentration is approximately that necessary to extract these storage proteins. ACN was equally effective as traditional ethanol solvents and 8 M urea for solubilizing maize and sorghum proteins. The ACN-based FZCE buffer system gave high repeatability (<0.3% relative standard deviation, measured over 15 consecutive injections) for migration time. Subclasses of maize and sorghum storage proteins were identified, and genotypes of each cereal were successfully differentiated using ACN-containing buffers. This FZCE method may be applicable for the analysis of other hydrophobic proteins without the use of urea.  相似文献   

18.
Nitrogen uptake and nitrate-N concentration in forage sorghums, which are related to ground water pollution or feed quality under conditions of crop fertilization by only animal wastes, were examined. Seventy-four genotypes of sorghum and Sudan grass were tested. They were classified into 4 groups; grain type and dual purpose type sorghums (6 and 13 genotypes, respectively, Sorghum bicolor Moench), sorgo type sorghum (21, S. bicolor), Sudan type sorghum (22, S. bicolor × S. sudanense (Piper) Stapf), Sudan grass (12, S. sudanense). There was a strong correlation between dry matter (DM) yield and N uptake, with the sorgo type producing the highest DM matter yield and showing the highest N uptake. Nitrate-N, which causes nitrate poisoning of ruminants, was detected mostly in the stem of all the genotypes. The nitrate-N concentration based on DM could be calculated accurately by multiplying the nitrate-N concentration of stem on a fresh matter basis by the DM partitioning ratio of stem divided by the DM concentration of stem. The grain type and the dual purpose type of sorghums with dry stem showed the lowest nitrate-N concentration because these plants had a lower DM partitioning ratio of stem and higher DM concentration of stem. Sudan grass and Sudan type sorghum with the genetic background of Sudan grass showed higher nitrate-N concentrations owing to their ability to accumulate nitrate-N.  相似文献   

19.
Screening cultivars for aluminum (Al) tolerance is often conducted in acid soils or in complete nutrient solutions. The former method lacks precise measurements of Al, and the second requires high Al concentrations because of precipitation and chelation of the Al and is less representative of the actual environmental stresses to which plants must adapt. These experiments were designed to determine Al tolerance of wheat (Triticum aestivum L. em Thell) and sorghum (Sorghum bicolor L. Moench) using incomplete solutions with very low Al concentrations. Six wheat and five sorghum cultivars were screened for Al tolerance in solution culture with 0 to 10 μM Al and only Ca, K, Mg, NO3, and Cl in the solutions. Plants were subjected to the solutions for 4 d, and the change in relative root length was measured. Solution Al levels and pH were measured after the termination of the experiments. ‘Atlas’ 66 and ‘Stacy’ were the most tolerant wheat cultivars ('Atlas 66’ = ‘Stacy’ ≥ ‘Monon’ ≥ ‘Scout 66’ ≥ ‘Arthur 71’ = ‘Oasis'). The wheat cultivars were effectively separated on a genetic response basis at 2 μM Al. Sorghum cultivars were uniform in their Al tolerance, but did show some separation at 1 μM Al (SC56 > Tx430 > ‘Funk GS22DR’ > SC283 = SC599). The pH and Al variations did not account for any of the differences observed, indicating that root length differences were caused by genetic control of response to high Al.  相似文献   

20.
Sorghum [Sorghum bicolor (L.) Moench] grown under rain-fed conditions is frequently affected by drought stress at different stages, resulting in reduced grain and biomass yield. The aim of this study was to characterise sorghum landraces and to select farmer-preferred medium-maturing genotypes under rainfed and irrigated conditions. Hundred and ninety-six sorghum accessions were evaluated at Kobo site of the Sirinka Agricultural Research Center in 2014/2015 in Ethiopia. Data collected from 14 traits were subjected to analysis of variance, cluster analysis, Pearson’s correlation coefficient analysis, path coefficient analysis and principal component analysis (PCA). Significant genotypic differences (p?<?0.05) were observed. Medium-maturing and drought tolerant sorghum genotypes including E-72457, E-72438, E-72435, E-206214, E-72449, E-75460 and E-75458 with superior agronomic performance were recommend for large-scale production or for further breeding. The genotypes evaluated under rain-fed and irrigated conditions were grouped into five and six clusters, respectively, representing varied different heterotic groups. Grain yield had significant and positive correlation with yield-related traits assessed under the two test conditions. Further, path coefficient analysis revealed that days to maturity under rainfed condition and harvest index under irrigated condition had the highest positive direct effects on grain yield, therefore can be targets for direct selection. Overall, there was marked genetic diversity among the tested genotypes. Suitable medium-maturing farmers-preferred accessions selected from the study will be useful for effective breeding for drought tolerance and medium-maturity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号