首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S. Zhu    C. Wang    T. Zheng    Z. Zhao    H. Ikehashi    J. Wan 《Plant Breeding》2005,124(5):440-445
‘Ketan Nangka’, the donor of the wide compatibility gene (WCG) showed typical hybrid sterility when crossed to a landrace, ‘Bai Mi Fen’, of Yunnan province in China. A genome‐wide analysis was performed for a backcrossed population of ‘Ketan Nangka’/‘Bai Mi Fen’//‘Ketan Nangka’ using a total of 143 simple sequence repeat markers and an expressed sequence tagged marker to cover the entire rice linkage map. As a result, two independent loci were found to cause hybrid sterility via female gamete abortion. The locus on chromosome 4 may correspond to S9, but the other, on chromosome 2, was different from all the previously reported hybrid sterility loci and was designated as S29(t) following the hybrid sterility nomenclature. On the basis of allelic interaction which causes female gamete abortion, two alleles were found: S29kn(t) in ‘Ketan Nangka’ and S29bi(t) in ‘Bai Mi Fen’. In the heterozygote, S29kn(t)/S29bi(t), which was semi‐sterile, female gametes carrying S29bi(t) were aborted. An Aus variety from the Indian subcontinent, ‘Dular’, was found to have a neutral allele, S29n(t). Two molecular markers, RM185 and RM425, linked to S9 and S29(t), respectively, will be useful for marker‐aided transfer of WCGs in hybrid rice breeding.  相似文献   

2.
G. W. Wang    H. Y. Cai    Y. Xu    S. H. Yang    Y. Q. He 《Plant Breeding》2009,128(5):451-457
Wide‐compatibility varieties are a special class of rice germplasm that is able to produce fertile hybrids when crossed to either indica or japonica subspecies. Previous studies determined the f5 allele from ‘Dular’ (f5‐Du), f6 allele from ‘Dular’ (f6‐Du) and S5 allele from ‘02428’ (S5‐08) as neutral alleles conferring wide‐compatibility. However, the possible extent of the effect of the three neutral alleles has not been fully characterized because of the narrow range of the tester varieties used and the highly complex differentiation in Asian cultivated rice. In this study, we further developed the five near‐isogenic lines with higher recovery rates of the recurrent parent genome, and testcrossed to 14 japonica varieties, which have been widely used in rice breeding programmes in China. The results clearly revealed that all three neutral alleles exhibited substantial effects on spikelet fertility in most of the indicajaponica testcrosses, which indicated that these hybrid sterility loci have been extensively differentiated between indica and japonica varieties. The magnitudes of effects on spikelet fertility averaged over various crosses seem to be similar among the three neutral alleles, with f5‐Du, f6‐Du and S5‐08 alleles increasing spikelet fertility by 15.09%, 13.99% and 14.25%, respectively. The testcrosses involving f5‐Du allele generally showed much smaller variation in pollen fertility than others. The pyramiding lines with two neutral alleles showed a wider spectrum and a higher level of wide compatibility than others, whereas most of the increases in hybrid fertility couldn’t be simply explained by additive effects, suggesting the very complexity of wide compatibility and hybrid sterility. The indicajaponica hybrids involving restorer lines as one of their parents showed much higher pollen fertility (almost normal) and also higher spikelet fertility. The implications of the findings in rice breeding programmes are also discussed.  相似文献   

3.
中国科学家在水稻籼粳杂种不育研究取得突破性进展   总被引:3,自引:1,他引:2  
2008年,华中农业大学张启发院士以及华南农业大学刘耀光教授领导的研究团队先后在<美国科学院院报>发表了他们对籼粳稻杂种不育的最新研究成果.其研究团队不仅分别克隆了控制水稻杂种雌配子(胚囊)育性基因座位上的广亲和基因S5和雄配子不育基因Sα,还对这些基因所在座位等位基因之间的相互作用关系进行了详细分析,提出了S5基因座上三等位基因系统(triallelic system)模式和Sα座位中的"两基因/三元件互作"的模型(two-gene/three-component interaction model).他们的研究成果在水稻杂交育种和水稻品质改良方面均有重要的应用价值,在生物进化中生殖隔离形成的分子机理上提供了具有重要理论价值的证据.这是中国科学家继2006年阐明Boro Ⅱ型水稻细胞质雄性不育和育性恢复的分子机理以后,在植物杂种不育机理研究方面又一次做出的重要贡献.  相似文献   

4.
Hybrids between rice subspecies indica and japonica display strong heterosis. However, semi-sterility of inter-subspecific hybrids between indica and japonica varieties is a major obstacle for application of hybrid vigor in rice production. Semi-sterility was previously ascribed to allelic interaction at a number of different loci, whereas, wide-compatibility varieties can overcome hybrid sterility. Variety Nekken 2, which is a source of wide compatibility genes, showed sterility when crossed to the Korean variety Yeong Pung. Genetic and cytological analyses revealed that the semi-sterility was caused by partial abortion of the embryo sac. Genome-wide analysis of the backcross population, Nekken 2/Yeong Pung//Nekken 2 identified two independent loci for hybrid sterility on chromosomes 1 and 12, explaining 18.99 and 18.03% of the phenotypic variance, respectively. To confirm this result, another population of the same backcross containing 216 individuals was tested at a different site in a different year. The locus on chromosome 12 was detected again. Based on the study, the stable QTL on chromosome 12 appeared to be different from previously reported genes for this trait, and was designated as S35(t).  相似文献   

5.
以IR36(indica)和热研2号(japonica,广亲和品种)为亲本,构建了包含180个单株的F2群体及包括110个标记的分子连锁图谱。利用该F2群体,进行了水稻花粉不育数量性状基因座(quantitative trait locus, QTL)的检测和遗传效应分析,共检测到3个花粉不育QTL,分别位于第3、5、7染色体上,此外,共检测到9个由雄配子引起的偏分离QTL,其中7个与ga-14和ga-11位点的配子败育类型相同。与花粉形态鉴定相比,偏分离的数据对检测F1杂种花粉败育基因更为敏感。在第5、6染色体上控制偏分离的2个QTL位点,其杂合基因型出现的频率偏高。在qHPS-5位点,粳型纯合子表现出比杂合子和籼型纯合子更低的育性水平。本研究获得的分子标记将有助于聚合尽可能多的中性亲和基因以解决亚种间F1杂种的花粉不育性问题。  相似文献   

6.
花粉不育是籼粳杂种F1优势利用的主要障碍之一。包括Sa、Sb和Sc等至少6个基因座位内的等位基因互作会引起花粉不育,这些座位上的中性等位基因可以克服不育性。所以,发掘和利用中性等位基因具有重要意义。本文用携带S5n的水稻种质,分别与台中65及其携带花粉不育基因的一套近等基因系杂交,组配具有单个座位互作和多个座位同时互作的杂种F1,首先通过观察杂种F1的花粉育性并比较相应杂种F1育性的差异,初步判断是否具有中性等位基因,然后,采用与Sa、Sb和Sc座位紧密连锁的分子标记对F2植株基因型的分离进行检测,并分析其分离比例的符合度,确定存在中性等位基因的真实性。结果发现在所鉴定的6份材料中有2份(灰背子和Madhukar)同时携带San和Sbn,3份(饭毫皮、秕五升和粤泰B)携带Sbn,1份(Jackson)携带Scn。这些材料同时携带可克服杂种F1胚囊不育和花粉不育的基因,是克服籼粳杂种F1不育性的重要基因来源。  相似文献   

7.
以克服亚种间杂种不育来充分发掘亚种间杂种优势是提高水稻单产的一条有效途径。本研究,从一套以日本晴为背景,9311为供体的染色体片段代换系中鉴定出一个系T9424,其与日本晴配置的F1植株小穗与花粉育性较双亲显著降低,双亲间存在不亲和。重测序结果表明T9424在第1、第4和第5染色体上导入9311片段。日本晴/T9424 F2群体内单株基因型及育性鉴定结果表明,T9424与日本晴间杂种不育基因位于第5染色体上。利用F2群体内790株单株将该杂种不育基因定位于第5染色体分子标记PSM8与A14之间110kb的物理区段内。对日本晴/T9424 F1植株花粉与胚囊育性鉴定结果表明该杂种不育基因同时控制雌、雄配子败育,将该基因暂命名为S39(t)。相关结果有助于加深对水稻亚种间杂种不育现象的认识,为该基因克隆及其育种利用奠定基础。  相似文献   

8.
Two species in genus Oryza, O. glaberrima and O. glumaepatula, are valuable and potential sources of useful genes of interest for rice improvement. However, the hybrid sterility between O. sativa and these two species is a main reproduction barrier when transferring the favorable traits/genes to mbox{O. sativa.} To overcome it, the nature of hybrid sterility should be understood further. The objective in the report is to map a new hybrid sterility gene as a Mendelian factor from O. glaberrima and analyze the co-linear of hybrid sterility S loci mbox{between} mbox{O. glaberrima} and mbox{O. glumaepatula} via comparative mapping approach. A BC2F2 population, derived from a single semi-sterility plant of BC2F1 of WAB56-104/ WAB450-11-1-2-P41-HB (WAB450-6) //WAB56-104///WAB56-104 was employed to map this pollen killer in O. glaberrima since WAB450-6 is a progeny of interspecific hybrid between O. sativa and O. glaberrima. A new pollen killer locus, S29(t) in O. glaberrima, was identified and mapped to interval between SSR marker RM7033 (1.1 cM) and RM7562 (1.3 cM) on rice chromosome 2. Comparative mapping indicated that S29(t) closely corresponded to S22 which is also a pollen killer gene in O. glumaepatula and is tightly linked with RFLP marker S910 on the short arm of rice chromosome 2. The good co-linear between S29(t) and S22 implied that there might exist common (orthologous) hybrid sterility loci controlled the reproduction barrier among AA genome species of genus Oryza, which will contribute significantly to our understanding of speciation and operation of hybrid sterility between O. sativa and its AA genome relatives.  相似文献   

9.
Hybrids between indica and japonica rice varieties usually show partial sterility, and are a major limiting factor in the utilization of heterosis at subspecific level. When studying male-gamete (pollen) abortion, a possibly important cause for sterility, six loci (S-a, S-b, S-c, S-d, S-e and S-f) for F1 pollen sterility were identified. Here we report genetic and linkage analysis of S-c locus using molecular markers in a cross between Taichung 65, a japonica variety carrying allele S-c j, and its isogenic line TISL5, carrying alleleS-c j. Our results show that pollen sterility occurring in the hybrids is controlled by one locus. We used 208 RFLP markers, as well as 500 RAPD primers, to survey the polymorphism between Taichung 65 and TISL5. Six RFLP markers located on a small region of chromosome 3, detected different RFLP patterns. Co-segregation analysis of fertility and RFLP patterns with 123 F2 plants confirmed that the markers RG227, RG391, R1420 were completely linked with the S-c locus. The genetic distances between the markers C730, RG166 and RG369 and the S-c locus were 0.5 cM, 3.4 cM, and 3.4 cM respectively. Distorted F2 ratios were also observed for these 4 RFLP markers in the cross. This result suggests that the `one locus sporo-gametophytic' model could explain F1 hybrid pollen sterility in cultivated rice. RG227, the completely linked marker, has been converted to STS marker for marker-assisted selection. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Commercial application of nuclear genetic male sterility has been improved recently by a novel technique, Seed Production Technology (SPT), which incorporates transgenic maintainer lines capable of propagating non‐transgenic nuclear male‐sterile lines for use as female parents in hybrid production. Here, we identified a rice nuclear male‐sterile mutant, Oswbc11, with abnormal pollen development and lipid transport. We finely mapped the Oswbc11 gene into a 12.5‐kb region on chromosome 10 and found one candidate gene, which had a base substitution (C to T) resulting in a premature stop codon and was functionally confirmed by CRISPR/Cas9 technology. Gene OsWBC11 encodes a sub‐family member of adenosine triphosphate‐binding cassette transporter, which participates in the active transport of a wide range of molecules across membranes. Moreover, the agronomic traits of Oswbc11 mutants showed no significant differences compared to the wild‐type control except for the seed setting rate. These results indicated that Oswbc11 gene could be used in rice hybrid breeding as a recessive nuclear male‐sterile gene combined with CRISPR/Cas9 and the SPT technology and applied in different rice varieties.  相似文献   

11.
水稻籼粳亚种间杂种不育性的研究进展   总被引:1,自引:0,他引:1  
克服杂种不育性是利用籼粳亚种间杂种优势的关键。由此对水稻亚种间杂种不育性的原因、细胞学基础及两种主要基因遗传模式进行了总结,并详细综述了利用“亲和基因”克服籼粳杂种不育性的两种有代表性的学说-广亲和基因和特异亲和基因分子定位的最新研究进展,并提出了两“亲和基因”共同利用的初步设想:将聚合了Si等位基因的粳型亲籼系与聚合了不同广亲和基因(中性亲和基因的广亲和力强、亲和谱广泛的粳型品种进行杂交和回交,选育出聚合不同广亲和基因和Si等位基因的粳型亲籼系,再与籼稻品种杂交,真正实现直接利用籼粳亚种间杂种优势。  相似文献   

12.
Hybrid sterility hinders the transfer of useful traits between Oryza sativa and O. glaberrima. In order to further understand the nature of interspecific hybrid sterility between these two species, a strategy of multi-donors was used to elucidate the range of interspecific hybrid sterility in this study. Fifty-nine accessions of O. glaberrima were used as female parents for hybridization with japonica cultivar Dianjingyou 1, after several backcrossings using Dianjingyou 1 as the recurrent parent and 135 BC6F1 sterile plants were selected for genotyping and deducing hybrid sterility QTLs. BC6F1 plants containing heterozygous target markers were selected and used to raise BC7F1 mapping populations for QTL confirmation and as a result, one locus for gamete elimination on chromosome 1 and two loci for pollen sterility on chromosome 4 and 12, which were distinguished from previous reports, were confirmed and designated as S37(t), S38(t) and S39(t), respectively. These results will be valuable for understanding the range of interspecific hybrid sterility, cloning these genes and improving rice breeding through gene introgression.  相似文献   

13.
Genetic male sterility (GMS) exists naturally in safflower (Carthamus tinctorius L.). In the existing safflower GMS lines, sterile and fertile plants are distinguishable at flowering. This causes delay in fertile plants rouging and reduction in hybrid purity. In this investigation, a cross between a spiny GMS parent 13‐137 and a spiny non‐GMS parent ‘A1’ was effected. One sib cross, SC‐67, producing non‐parental‐type non‐spiny sterile and spiny fertile plants in F3 was advanced to F9 through sib crossing between non‐spiny sterile and spiny fertile plants. Mendelian digenic segregation was not observed for non‐spiny trait and male sterility. The results revealed strong linkage between these traits. The linkage was confirmed in F2 generations of crosses between a non‐spiny marker‐linked GMS line (MGMS) and five elite lines. Male sterility–linked non‐spiny trait could distinguish sterile and fertile plants at elongation stage. The MGMS would be useful in production of pure F1 hybrid seed and development of elite populations.  相似文献   

14.
Magnitudes of genetic variation within each of major varietal groups of cultivated rice were surveyed in terms of isozyme polymorphism and allelic differentiation of hybrid sterility loci, both of which are considered to have litt le selective value. Allelic differences for 20 isozyme loci were examined in a total of 337 accessions, including Indica and Japonica rices. Aus cultivars from India, Javanica cultivars and both landraces and cultivars from China. Eleven out of the 20 isozyme loci were polymorphic. The Aus cultivars contained more alleles per locus than others. The hybrid sterilities in the crosses among Chinese cultivars, Indica and Japonica cultivars were mainly controlled by locus S-5, whereas the hybrid sterilities of Aus cultivars, when they were crossed to Indica, Japonica or Javanica cultivars, were found to be controlled by allelic interaction at hybrid sterility loci S-5, S-7, S-9 and S-15. Also in terms of the number of alleles at S-5 and S-7, Aus cultivars contained more alleles than others. While the Aus group showed an extreme diversity for both hybrid sterility alleles and isozymes, modern cultivars from the south of YangZi River in China were classified into Indica type and those from the north were into Japonica, which were almost the same as those in Japan. On the basis of the measured polymorphism the Indica-Japonica differentiation was explained by founder effects, i.e., through selection and distribution of two original sources each with a unique set of markers. Contrastingly, the continuous and pronounced diversity in the Aus group was attributed to the absence of such a process. The intermediate groups in Yunnan province and Tai-hu Lake region of China are considered to be isolated from such founder effects, retaining an intermediate diversity in terms of isozymes and hybrid sterility genes. Since hybrid sterility hampers the exchange of genes between cultivars of different groups, the understanding of its genetic basis will be important in rice breeding, particularly in hybrid rice breeding. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
We have established marker-aided selection strategies for the two major Rf genes (Rf3 and Rf4) governing fertility restoration of␣cytoplasmic-genetic male sterility (CMS) in rice. Polymorphisms between restorer and non-restorer␣lines were observed using RG140/PvuII for Rf3 located on chromosome 1 and S10019/BstUI for Rf4 located on chromosome 10. DNA polymorphisms associated with these two loci in restorer lines of wild abortive (WA), Dissi, and Gambiaca cytoplasm are conserved, suggesting that similar biological processes control pollen fertility in this diverse cytoplasm. Because of their close linkage to Rf genes and distinct banding patterns, STS markers RG140/PvuII and S10019/BstUI are well suited for marker-aided selection, enhanced backcross procedures, and pyramiding of Rf genes in agronomically superior non-restorer lines. The combined use of markers associated with these two loci improved the efficiency of screening for putative restorer lines from a set of elite lines. Positional analyses of Rf4 and the inheritance pattern of the polymorphism in S10019/BstUI suggest that Rf4, governing fertility restoration in WA-CMS in rice, is likely to be the same gene governing fertility restoration in BT- and HL-CMS that has a gametophytic effect, which explains why 100% pollen fertility in hybrids is impossible to attain.  相似文献   

16.
The germplasm for modern sugarcane cultivars (Saccharum spp. hybrids)has been derived principally from S. officinarum (2n = 80), and S. spontaneum (2n = 40 to 128). Diploid gamete formation has been significant in developing cultivated sugarcane, but the cytological basis for the processes involved is not clearly understood. This research investigated microsporogenesis in nine clones of Saccharum spp. Hybrids and in S. officinarum and S. spontaneum. Diploid gamete formation occurred in all 11 lines, but was least frequent in S. spontaneum and S. officinarum which produced 0.5% and 0.8%2n gametes, respectively. In the hybrid lines, 2n gametes were formed infrequencies ranging from 0.9% to 4.4%. Cytological evidence was obtained for dyad and triad formation during microsporogenesis. Detailed analysis of chromosome behaviour at meiosis indicated that 2n male gamete formation is probably attributable to the absence of cytokinesis rather than a combination of asynchrony and non-disjunction. The clones were ranked on the basis of the frequencies with which they formed 4 × 1n microspores and the data were analysed using χ 2 tests for homogeneity. These established that theSaccharum spp. hybrids could be designated as either ‘high’ or ‘low’ frequency haploid gamete producers. Conversely, the latter group, which formed diploid gametes most frequently (2.2%–4.4%), can be described as high frequency diploid gamete producers. The identification of clones most frequently forming diploid gametes may facilitate the more rapid recovery of desirable sugarcane genotypes because such clones could be selected for preferential use in clonal improvement. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Presence of substantial heterosis and economic hybrid seed production are two most desirable components for success of any commercial hybrid breeding programme. Thermosensitive genic male sterile (TGMS) lines of rice, in this regard, have tremendous potential in realizing further quantum jump in yield and economical hybrid seed cost. Analyses for combining ability and heterosis over optimum (120N : 60P2O5 : 40K2O kg/ha) and high (200N : 90P2O5 : 60K2O kg/ha) fertility environments for six traits were made in 2 years (2001 and 2002) using 120 hybrids of inter‐ and intra‐subspecific nature derived from hybridization of 30 elite indica TGMS lines and four cultivars, viz., ‘Pant Dhan 4’ and ‘Ajaya’ (I = indica), ‘Taichung 65’ (J = japonica) and ‘IR 65598‐112‐2’ (TJ = tropical japonica) in line × tester mating design. Predominance of non‐additive genetic variance suggested good prospects of hybrid breeding. Pooled analysis revealed highly significant variances for lines, general combining ability (GCA), specific combining ability (SCA) and line x tester. TGMS line 365‐8S was the best general combiner for all the six traits including grain yield. Trend of relative mid‐parent heterosis for grain yield, panicle length, grain number per panicle and earliness in flowering was I/TJ > I/J > I/I. For panicle number per plant and 1000‐grain weight, trends were I/TJ > I/I > I/J and I/I > I/TJ > I/J, respectively. Grain yield recorded heterosis of 49.3%, 71.9% and 92.7% for I/I, I/J and I/TJ hybrid groups respectively. Effect of environments on the hybrid performance indicated better response of hybrids at high fertilizer dose. Study suggests greater prospects of combining improved japonica and tropical japonica germplasms having wide compatible gene with indica TGMS lines for exploitation of intersubspecific heterosis.  相似文献   

18.
To further understand the nature of hybrid sterility between Oryza sativa and Oryza glaberrima, quantitative trait loci (QTL) controlling hybrid sterility between the two cultivated rice species were detected in BC1F1 and advanced backcross populations. A genetic map was constructed using the BC1F1 population derived from a cross between WAB450-16, an O. sativa cultivar, and CG14, an O. glaberrima cultivar. Seven main-effect QTLs for pollen and spikelet sterility were detected in the BC1F1. Forty-four sterility NILs (BC6F1) were developed via successive backcrosses using pollen sterility plants as female and WAB450-16 as the recurrent parent. Seven NILs, in which the target QTL regions were heterozygous while the other QTL regions as well as most of the reminder of the genome were homozygous for the WAB450-16 allele, were selected as the QTL identification materials. BC7F1 for the seven NILs showed a continuous variation in pollen and spikelet fertility. The four identified pollen sterility QTLs were located one each on chromosomes 1, 3, 7 and 7. Pollen sterility loci qSS-3 and qSS-7a were on chromosomes 3 and 7, respectively, which coincides with the previously identified S19, and S20, while loci qSS-1 and qSS-7b on chromosomes 1 and 7L appear distinct from all previously reported loci. An epistatic interaction controlling the hybrid sterility was detected between qSS-1 and qSS-7a.  相似文献   

19.
Two‐line hybrid rice as a novel hybrid breeding method has huge potential for yield increasing and utilization of intersubspecific heterosis, and it is of major significance for the food security of rice‐consuming populations. Zhu1S is a thermosensitive genic male‐sterile line of rice with low critical temperature and excellent combining ability, which has been widely exploited as a female parent in Chinese two‐line hybrid rice breeding. Here, genetic mapping in F2 populations was used to show that its male sterility is inherited as a single recessive gene and that responsible gene (termed tms9) lies on the short arm of chromosome 2. A high‐resolution linkage analysis which was based on the Zhu1S/R173 F2 population found that the thermosensitive genic male‐sterile gene tms9 of Zhu1S was fine mapped between insertion–deletion (Indel) markers Indel 37 and Indel 57, and the genetic distance from the tms9 to the two markers was 0.12 and 0.31 cM, respectively. The physical distance between the two markers was about 107.2 kb. Sequence annotation databases showed that the two Indel markers (Indel 37 and Indel 57) were located on two BAC clones (B1307A11 and P0027A02). There are sixteen open reading frames (ORF) present in this region. The results of this study are of great significance for further cloning tms9 and molecular marker–assisted selection.  相似文献   

20.
S. Y. Lin  H. Ikehashi 《Euphytica》1993,67(1-2):35-40
Summary A locus for male gamete abortion in hybrids for Japonica and Indica rice was identified with the aid of marker genes Rc and Est-9 on chromosome 7. In an Indica-Japonica cross, AKAMAI 1/IR50, the Indica allele Est-9 2 was transmitted via the male gamete with a ratio of 0.29 instead of the normal 0.5, whereas no segregation distortion was observed for the Rc locus. The recombination value (p) for Est-9 and Rc was estimated to be 0.38 by a least square method after adjusting Mendelian segregation ratios with the male transmission ratios of 0.29 (Tr) for Est-9 2 and 0.71 (1-Tr) for Est-9 1. The recombination value (q) for the new locus for male gamete abortion, ga-11, and Est-9 was estimated to be 0.23 by using 56 F3 lines from F2 plants which were heterozygous for the Est-9 locus. No linkage for Rc and ga-11 was found. Therefore, the two markers and ga-11 were located in the order of ga-11-Est-9-Rc. Using the estimated recombination value (q), the male transmission rate (k) of ga-11 a was estimated to be 0.11 with the F2 data and-0.07 with the F3 line data. Thus, it was apparent that male gametes possessing ga-11 a were frequently aborted in the Indica-Japonica hybrid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号