首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A range of commercially available cereals (mainly rye and wheat) used to manufacture U.K. bakery products were obtained, and the levels of free amino acids and sugars were measured. Selected samples were cooked as flours and doughs to generate acrylamide and the data compared with those obtained from a model system using dough samples that had been additionally fortified with asparagine (Asn) and sugars (glucose, fructose, maltose, and sucrose). In cooked flours and doughs, Asn was the key determinant of acrylamide generation. A significant finding for biscuit and rye flours was that levels of Asn were correlated with fructose and glucose. The results suggest that for these commercial cereals, selection based on low fructose and glucose contents, and hence low asparagine, could be beneficial in reducing acrylamide in products (e.g., crackers and crispbreads) that have no added sugars.  相似文献   

2.
Sulfur (S) fertilization has been long-known to influence the amounts of total free amino acids in plants. To determine the impact of S deficiency in wheat on the concentration of, in particular, free asparagine, the spring wheat cultivar 'Star' was grown in a laboratory scale (5 L pot) at five different levels of S fertilization. After maturity, the kernels were milled into white flours (1-5) and analyzed for their contents of total S and total nitrogen as well as for free amino acids and glucose, fructose, maltose, and sucrose. Extremely high concentrations of free asparagine (Asn; 3.9-5.7 g/kg) were determined in flours 1 and 2 (30 and 60 mg of S), whereas much lower amounts (0.03-0.4 g/kg) were present in flours grown at higher S levels. The amounts of the reducing carbohydrates were, however, scarcely affected by S fertilization. In agreement with the high amount of Asn in flours 1 and 2, heating of both flours led to the generation of very high amounts of acrylamide (1.7-3.1 mg/kg) as well as of 3-aminopropionamide (40-76 mg/kg). Similar concentrations were measured in crispbread prepared from both flours. Application of rheological measurements on doughs prepared from each flour and a determination of the loaf volume of bread baked therefrom clearly indicated that flours 1 and 2 would be excluded from commercial bread processing due to their poor technological properties. Two commercial flours showed relatively low concentrations of acrylamide after a thermal treatment.  相似文献   

3.
When wheat was grown under conditions of severe sulfate depletion, dramatic increases in the concentration of free asparagine were found in the grain of up to 30 times as compared to samples receiving the normal levels of sulfate fertilizer. The effect was observed both in plants grown in pots, where the levels of nutrients were carefully controlled, and in plants grown in field trials on soil with poor levels of natural nutrients where sulfate fertilizer was applied at levels from 0 to 40 kg sulfur/Ha. Many of the other free amino acids were present at higher levels in the sulfate-deprived wheat, but the levels of free glutamine showed increases similar to those observed for asparagine. In baked cereal products, asparagine is the precursor of the suspect carcinogen acrylamide, and when flours from the sulfate-deprived wheat were heated at 160 degrees C for 20 min, levels of acrylamide between 2600 and 5200 microg/kg were found as compared to 600-900 microg/kg in wheat grown with normal levels of sulfate fertilization.  相似文献   

4.
Fried potato products may accumulate substantial amounts of acrylamide due to high precursor contents, namely reducing sugars and asparagine. In a two-factorial experiment increasing N supply, increased the contents of reducing sugars in most cases, and resulted in higher contents of free amino acids. α -amino-N, which was tightly correlated with the contents of free amino acids, can be regarded a suitable rapid test for free asparagine for a given variety. Increasing K addition always raised the citrate contents, but lessened the contents of reducing sugars. Selected treatments were processed into French fries. Highest acrylamide contents were observed in tubers grown with high N and inadequate K supply, which also contained the highest contents of precursors. The experiment clearly demonstrates that nutrient supply has significant impact on the contents of acrylamide precursors and thus for the acrylamide formation during frying.  相似文献   

5.
Acrylamide is formed via the Maillard reaction between reducing sugars and asparagine in a number of carbohydrate-rich foods during heat treatment. High acrylamide levels have been found in potato products processed at high temperatures. To examine the impact of harvest year, information on weather conditions during growth, that is, temperature, precipitation, and light, was collected, together with analytical data on the concentrations of free amino acids and sugars in five potato clones and acrylamide contents in potato chips (commonly known as crisps in Europe). The study was conducted for 3 years (2004-2006). The contents of acrylamide precursors differed between the clones and the three harvest years; the levels of glucose were up to 4.2 times higher in 2006 than in 2004 and 2005, and the levels of fructose were 5.6 times higher, whereas the levels of asparagine varied to different extents. The high levels of sugars in 2006 were probably due to the extreme weather conditions during the growing season, and this was also reflected in acrylamide content that was approximately twice as high as in preceding years. The results indicate that acrylamide formation is dependent not only on the content and relative amounts of sugars and amino acids but also on other factors, for example, the food matrix, which may influence the availability of the reactants to participate in the Maillard reaction.  相似文献   

6.
This report shows the effect of rye flour extraction rate on Maillard reaction, antioxidant activity, and acrylamide formation during toasting of rye bread crisps. Four rye flours with extraction rates of 70, 85, 95, and 100% were tested. Maillard reaction development was studied by measuring browning development, hydroxymethylfurfural (HMF), and glucosilisomaltol (GIM) formation, as well as antioxidant activity. Results showed that HMF and GIM concentrations in toasted bread crisps were higher as the flour extraction rate increases. Antioxidant activity increased during toasting as a consequence of antioxidant Maillard reaction product formation. Acrylamide concentration was clearly affected by free asparagine content of flour, while no effect of dietary fiber and natural antioxidant content of flours had an effect on acrylamide formation. Overall data suggest that the rate of Maillard reaction is higher in whole flours because of their higher free amino acid and protein content.  相似文献   

7.
Wheat flour from plants deficient in sulfur has been shown to contain substantially higher levels of free amino acids, particularly asparagine and glutamine, than flour from wheat grown where sulfur nutrition was sufficient. Elevated levels of asparagine resulted in acrylamide levels up to 6 times higher in sulfur-deprived wheat flour, compared with sulfur-sufficient wheat flour, for three varieties of winter wheat. The volatile compounds from flour, heated at 180 degrees C for 20 min, have been compared for these three varieties of wheat grown with and without sulfur fertilizer. Approximately 50 compounds were quantified in the headspace extracts of the heated flour; over 30 compounds were affected by sulfur fertilization, and 15 compounds were affected by variety. Unsaturated aldehydes formed from aldol condensations, Strecker aldehydes, alkylpyrazines, and low molecular weight alkylfurans were found at higher concentrations in the sulfur-deficient flour, whereas low molecular weight pyrroles and thiophenes and sugar breakdown products were found at higher concentrations in the sulfur-sufficient flour. The reasons for these differences and the relationship between acrylamide formation and aroma volatile formation are discussed.  相似文献   

8.
Pilot-scale bread, biscuit, and cracker doughs have been baked to assess how well recipe changes could reduce acrylamide in commercial bakery products. Removing ammonium-based raising agents was beneficial in biscuits. In doughs, long yeast fermentations were an effective way of reducing asparagine levels and hence acrylamide. At moderate fermentation times fructose levels increased, but the yeast later absorbed this, so the net effect on acrylamide was beneficial. Metal ions such as calcium reduced acrylamide when added as the carbonate or chloride. Hence, the fortification of flour with calcium carbonate, over and above its natural mineral content, has an additional benefit. However, some other possible methods of adding calcium to bakery doughs, for example, via the permitted preservative calcium propionate, were not beneficial. Amino acid addition to doughs gave modest reductions in acrylamide. Lowering the dough pH reduced acrylamide, but at the expense of higher levels of other process contaminants such as 3-monochloropropane-1,2-diol (3-MCPD).  相似文献   

9.
To examine how sulfur deprivation may affect acrylamide formation in cooked potatoes, three varieties of potato were grown under conditions of either severe sulfur deprivation or an adequate supply of sulfur. In all three varieties sulfur deprivation led to a decrease in acrylamide formation, even though the levels of sugars, which are acrylamide precursors, were higher in tubers of the sulfur-deprived plants. In one variety the concentration of free asparagine, the other precursor for acrylamide, was also higher. There was a very close correlation between the concentration of asparagine in the tubers expressed as a proportion of the total free amino acid pool and the formation of acrylamide upon cooking, whereas sugars were poorly correlated with acrylamide. In potatoes, where concentrations of sugars are usually limiting, competition between asparagine and other amino acids participating in the Maillard reaction may be a key determinant of the amount of acrylamide that is formed during processing.  相似文献   

10.
Glucose, fructose, sucrose, free asparagine, and free glutamine were analyzed in 74 potato samples from 17 potato cultivars grown in 2002 at various locations in Switzerland and different farming systems. The potential of these potatoes for acrylamide formation was measured with a standardized heat treatment. These potentials correlated well with the product of the concentrations of reducing sugars and asparagine. Glucose and fructose were found to determine acrylamide formation. The cultivars showed large differences in their potential of acrylamide formation which was primarily related to their sugar contents. Agricultural practice neither influenced sugars and free asparagine nor the potential of acrylamide formation. It is concluded that acrylamide contents in potato products can be substantially reduced primarily by selecting cultivars with low concentrations of reducing sugars.  相似文献   

11.
The relationship between acrylamide and its precursors, namely, free asparagine and reducing sugars, was studied in cakes made from potato flake, wholemeal wheat, and wholemeal rye, cooked at 180 degrees C, from 5 to 60 min. Between 5 and 20 min, major losses of asparagine, water, and total reducing sugars were accompanied by large increases in acrylamide, which maximized in all three products between 25 and 30 min, followed by a slow linear reduction. Acrylamide formation did not occur to a large degree until the moisture contents of the cakes fell below 5%. Linear relationships were observed for acrylamide formation with the residual levels of asparagine and reducing sugars for all three food materials.  相似文献   

12.
Free asparagine is an important precursor for acrylamide in cereal products. The content of free asparagine was determined in 11 milling fractions from wheat and rye. Whole grain wheat flour contained 0.5 g/kg and whole grain rye flour 1.1 g/kg. The lowest content was found in sifted wheat flour (0.2 g/kg). Wheat germ had the highest content (4.9 g/kg). Fermentation (baker's yeast or baker's yeast and sourdough) of doughs made with the different milling fractions was performed to investigate whether the content of free asparagine was reduced by this process. In general, most of the asparagine was utilized after 2 hr of fermentation with yeast. Sourdough fermentation, on the other hand, did not reduce the content of free asparagineas efficiently but had a strong negative impact on asparagine utilization by yeast. This indicates that this type of fermentation may result in breads with higher acrylamide content than in breads fermented with yeast only. The effect of fermentation time on acrylamide formation inyeast‐leavened bread was studied in a model system. Doughs (sifted wheat flour with whole grain wheat flour or rye bran) were fermented for a short (15+15 min) or a long time (180+180 min). Compared with short fermentation time, longer fermentation reduced acrylamide content in bread made with whole grain wheat 87%. For breads made with rye bran, the corresponding reduction was 77%. Hence, extensive fermentation with yeast may be one possible way to reduce acrylamide content in bread.  相似文献   

13.
NH4HCO3 is known to promote acrylamide formation in sweet bakery products. This effect was investigated with respect to sugar fragmentation and formation of acrylamide from asparagine and sugar fragments in model systems under mild conditions. The presence of NH4HCO3 led to increases in acrylamide and alpha-dicarbonyls from glucose and fructose, respectively. As compared to glucose or fructose, sugar fragments such as glyoxal, hydroxyethanal, and glyceraldehyde formed much higher amounts of acrylamide in reaction with asparagine. The enhancing effect of NH4HCO3 is explained by (1) the action of NH3 as base in the retro-aldol reactions leading to sugar fragments, (2) facilitated retro-aldol-type reactions of imines in their protonated forms leading to sugar fragments, and (3) oxidation of the enaminols whereby glyoxal and other reactive sugar fragments are formed. These alpha-dicarbonyl and alpha-hydroxy carbonyl compounds may play a key role in acrylamide formation, especially under mild conditions.  相似文献   

14.
A review of agronomic and genetic approaches as strategies for the mitigation of acrylamide risk in wheat and potato is presented. Acrylamide is formed through the Maillard reaction during high-temperature cooking, such as frying, roasting, or baking, and the main precursors are free asparagine and reducing sugars. In wheat flour, acrylamide formation is determined by asparagine levels and asparagine accumulation increases dramatically in response to sulfur deprivation and, to a much lesser extent, with nitrogen feeding. In potatoes, in which sugar concentrations are much lower, the relationships between acrylamide and its precursors are more complex. Much attention has been focused on reducing the levels of sugars in potatoes as a means of reducing acrylamide risk. However, the level of asparagine as a proportion of the total free amino acid pool has been shown to be a key parameter, indicating that when sugar levels are limiting, competition between asparagine and the other amino acids for participation in the Maillard reaction determines acrylamide formation. Genetic approaches to reducing acrylamide risk include the identification of cultivars and other germplasm in which free asparagine and/or sugar levels are low and the manipulation of genes involved in sugar and amino acid metabolism and signaling. These approaches are made more difficult by genotype/environment interactions that can result in a genotype being "good" in one environment but "poor" in another. Another important consideration is the effect that any change could have on flavor in the cooked product. Nevertheless, as both wheat and potato are regarded as of relatively high acrylamide risk compared with, for example, maize and rice, it is essential that changes are achieved that mitigate the problem.  相似文献   

15.
The influences of composition and roasting conditions on acrylamide formation in almonds and hazelnuts were investigated. Eighteen samples of almonds originating from the U.S. and Europe were analyzed for sugars and free amino acids, and acrylamide formed during roasting was determined. Asparagine was the main free amino acid in raw almonds and correlated with the acrylamide content of dark roasted almonds. Roasting temperature was another key factor and had a very strong influence on acrylamide formation. Almonds of European origin contained significantly less free asparagine and formed significantly less acrylamide during roasting as compared to the almonds from the U.S. Roasted hazelnuts contained very little acrylamide because of the low content of free asparagine in the raw nut. Reducing sugars, although being consumed much faster than free amino acids in both types of nuts, were not decisive for the extent of acrylamide formation during roasting.  相似文献   

16.
Potentially toxic acrylamide is largely derived from heat-induced reactions between the amino group of the free amino acid asparagine and carbonyl groups of glucose and fructose in cereals, potatoes, and other plant-derived foods. This overview surveys and consolidates the following dietary aspects of acrylamide: distribution in food originating from different sources; consumption by diverse populations; reduction of the acrylamide content in the diet; and suppression of adverse effects in vivo. Methods to reduce adverse effects of dietary acrylamide include (a) selecting potato, cereal, and other plant varieties for dietary use that contain low levels of the acrylamide precursors, namely, asparagine and glucose; (b) removing precursors before processing; (c) using the enzyme asparaginase to hydrolyze asparagine to aspartic acid; (d) selecting processing conditions (pH, temperature, time, processing and storage atmosphere) that minimize acrylamide formation; (e) adding food ingredients (acidulants, amino acids, antioxidants, nonreducing carbohydrates, chitosan, garlic compounds, protein hydrolysates, proteins, metal salts) that have been reported to prevent acrylamide formation; (f) removing/trapping acrylamide after it is formed with the aid of chromatography, evaporation, polymerization, or reaction with other food ingredients; and (g) reducing in vivo toxicity. Research needs are suggested that may further facilitate reducing the acrylamide burden of the diet. Researchers are challenged to (a) apply the available methods and to minimize the acrylamide content of the diet without adversely affecting the nutritional quality, safety, and sensory attributes, including color and flavor, while maintaining consumer acceptance; and (b) educate commercial and home food processors and the public about available approaches to mitigating undesirable effects of dietary acrylamide.  相似文献   

17.
This study investigates the importance of selected oil degradation components and some analogues in the formation of acrylamide. For this, a model system containing silica gel, PBS buffer, and oil was heated in a closed tubular reactor, under practically relevant heating conditions. Several probable acrylamide precursors were mixed together with free asparagine in the model system, such as partial glycerides, glycerol, acrolein, acrylic acid, and several aldehydes. Only the heated model system containing acrolein and asparagine showed a significantly higher acrylamide content compared to the control to which only asparagine was added. It was postulated that a nucleophilic 1,2-addition of the alpha-amino group of free asparagine to the carbonyl function of acrolein would lead to the formation of acrylamide. This hypothesis could partially be confirmed, replacing acrolein with other alpha,beta-unsaturated aldehydes. However, the contribution of acrolein to the overall formation of acrylamide appeared to be negligible in the presence of a reducing sugar, indicating that in foodstuffs the importance of acrolein and other oil degradation products is probably small.  相似文献   

18.
The nutritional quality and functional properties of paprika seed flour and seed kernel flours of pumpkin and watermelon were studied, as were the characteristics and structure of their seed oils. Paprika seed and seed kernels of pumpkin and watermelon were rich in oil and protein. All flour samples contained considerable amounts of P, K, Mg, Mn, and Ca. Paprika seed flour was superior to watermelon and pumpkin seed kernel flours in content of lysine and total essential amino acids. Oil samples had high amounts of unsaturated fatty acids with linoleic and oleic acids as the major acids. All oil samples fractionated into seven classes including triglycerides as a major lipid class. Data obtained for the oils' characteristics compare well with those of other edible oils. Antinutritional compounds such as stachyose, raffinose, verbascose, trypsin inhibitor, phytic acid, and tannins were detected in all flours. Pumpkin seed kernel flour had higher values of chemical score, essential amino acid index, and in vitro protein digestibility than the other flours examined. The first limiting amino acid was lysine for both watermelon and pumpkin seed kernel flours, but it was leucine in paprika seed flour. Protein solubility index, water and fat absorption capacities, emulsification properties, and foam stability were excellent in watermelon and pumpkin seed kernel flours and fairly good in paprika seed flour. Flour samples could be potentially added to food systems such as bakery products and ground meat formulations not only as a nutrient supplement but also as a functional agent in these formulations.  相似文献   

19.
The total plant sterol contents (free sterols and covalently bound structures) of the main cereals cultivated in Finland were determined. Furthermore, sterol contents were determined for different flour and bran fractions in the milling process of wheat and rye, as well as plant sterol contents in various milling and retail bakery products. The sample preparation procedure included acid and alkaline hydrolysis to liberate sterols from their glycosides and esters, respectively. Free sterols were extracted and, after recovery using solid‐phase extraction, derivatized to trimethylsilyl ethers for gas chromatography (GC) analysis. We used GC with a mass spectrometer (MS) for identification. When two cultivars of rye, wheat, barley, and oats grown in the same year were compared, the highest plant sterol content was observed in rye (mean content 95.5 mg/100 g, wb), whereas the total sterol contents (mg/100 g, wb) of wheat, barley, and oats were 69.0, 76.1, and 44.7, respectively. In addition, the 10 rye cultivars and breeding lines compared had total sterol contents of 70.7–85.6 mg/100 g. In the milling process of rye and wheat, the plant sterols fractionated according to the ash content of the corresponding milling product. In all cereal grain and milling product samples, sitosterol was the main sterol. The level of stanols differed in the different milling process samples; it was lower in the most refined rye and wheat flours (≈15%) than in the bran fractions (≈30% in the bran with 4% ash content). Rye bread with whole meal rye flour as the main or only ingredient was a good source of sterols. Sterol content was higher than that of wheat bread, whereas plant sterol content of other bakery products was affected by the type and amount of fat used in baking.  相似文献   

20.
Abstract

On soils lacking in water-soluble sulphur, the sulphur fertilization of winter wheat, in general, increases the yields. There are not sufficient investigations about the influence of sulphur on the quality of yield. The objective of this work was to investigate the content and quality of protein in wheat grain depending on sulphur fertilization. The present study relies on field trials conducted on two different soils during 2004–2009. Sulphur was applied with NS-fertilizer Axan or Axan Super at the rate of S 10 or 13.6 kg ha?1 accompanied by a nitrogen background of N 100 kg ha?1. The rates of N- and NS-fertilizers were divided and applied at the beginning and at the end of tillering. At harvest, the grain samples from trial variants in four replications were taken, and the contents of crude protein, wet gluten, amino acids (lysine, threonine, cysteine, methionine) and gluten index in wheat grain were determined. Besides, the contents of amino acids were recalculated on their concentrations in protein. The protein and wet gluten contents in grain varied significantly depending on weather conditions of the trial years. On break-stony soil, sulphur increased the yield by 1.16 t ha?1 on average, i.e. by 21.7%. With increasing yields the protein and wet gluten concentrations in grain decreased. Under the influence of sulphur, the gluten index increased significantly – from 58 to 74, i.e. by 27.6%. In 2004 and 2005, sulphur increased the cysteine and methionine content in wheat grain. Although sulphur application in many cases decreased the protein and wet gluten contents in wheat grain, it improved the biological quality of protein because the concentrations of above-mentioned amino acids recalculated on their concentrations in protein increased significantly. The sulphur application in pseudopodzolic soil had a weaker effect on the grain quality than in break-stony soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号