首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two 160-d feedlot experiments, each consisting of 20 Angus-Hereford steers (216 +/- 5 kg BW, Exp. 1; 258 +/- 5 kg BW, Exp. 2) and 20 Angus-Hereford heifers (208 +/- 5 kg BW, Exp. 1; 236 +/- 5 kg BW, Exp. 2), were used to investigate the effects of supplementing diets with either roasted soybeans (RSB, roasted at 127 degrees C for 10 min) or soybean meal (SBM) and implanting or not implanting with an estrogenic growth promoter (SYN; Synovex-S, 20 mg of estradiol benzoate plus 200 mg of progesterone or Synovex-H, 20 mg of estradiol benzoate plus 200 mg of testosterone) on performance. The cattle were fed a basal diet of 15% orchardgrass silage, 15% corn silage, and 70% corn-based concentrate. Treatments were 1) no SYN and fed a SBM-supplemented diet, 2) no SYN and fed a RSB-supplemented diet, 3) SYN and SBM, and 4) SYN and RSB. Cattle in the SYN groups were reimplanted at 80 d. Four additional Angus-Hereford steers were used in a digestion and nitrogen balance experiment conducted during the first half of Exp. 1. For the total 160-d feedlot experiments, DMI for RSB compared with SBM was lower (P < .01; 8.5 vs 9.2 kg/d, SEM = .07) and ADG/DMI tended to be higher (P < .10; 165 vs 157 g/kg, SEM = 1.3). Final BW of steers fed RSB was similar (P > .10) to that of steers fed SBM (473 vs 478 kg, SEM = 5.6), as was ADG (1.39 vs 1.43 kg/d, SEM = .02). Dry matter intake for SYN-implanted steers was higher (P < .01) than for steers not implanted (9.2 vs 8.5 kg/d). Likewise, final BW (491 vs 460 kg) and ADG (1.49 vs 1.33 kg/d) were higher (P < .01), and ADG/DMI (166 vs 157 g/kg) tended to be higher (P < .10), for SYN-implanted steers than for steers not implanted. During the more rapid muscle growth period (0 to 80 d), DMI for RSB compared with SBM was lower (P < .01; 7.8 vs 8.6 kg/d, SEM = .07) and ADG/DMI was similar (P > .10; 181 vs 172 g/kg, SEM = 1.8). Dry matter intake for SYN-implanted steers was higher (P < .05) than for steers not implanted (8.4 vs 8.0 kg/d), as was ADG/DMI (P < .01, 182 vs 171 g/kg). During this more rapid growth period, the supplement x implant interaction for ADG was significant (P < .05; 1.35, 1.36, 1.59, and 1.44 kg/d for Treatments 1, 2, 3, and 4, respectively, SEM = .04). There were no differences in digestibilities or N balance. The results suggest that there is no improvement in performance under feedlot conditions when RSB replaces SBM in the diet of beef cattle, and, in young cattle, RSB may reduce the response expected by an estrogenic growth promoter.  相似文献   

2.
Three trials were conducted to compare effects of restricted intake of high-concentrate diets vs ad libitum intake of corn silage diets during the growing phase on feedlot cattle performance. In Trial 1, 120 steers (initial BW, 246 kg) were fed 1) a corn silage-based diet ad libitum, 2) a high-moisture corn-corn silage-based diet with intake restricted to a level 20% less than that of the corn silage diet or 3) a high-moisture corn-based diet with intake restricted to a level 30% less than that of the corn silage diet. Steers fed the 20% restricted corn-corn silage-based diet tended (P = .07) to gain slower than those fed the corn silage or 30% restricted high-concentrate diet. Feed efficiency and diet digestibility were greatest for steers fed the 30% restricted-intake, high-concentrate diet (P less than .01). Performance of steers during the subsequent 118-d finishing period was not affected (P greater than .65) by source of energy during the growing period. In Trial 2, ADG of steers fed the 30% intake-restricted, high-concentrate diet was lower (P less than .01) than that of steers with ad libitum access to corn silage. During the 84-d growing period, steers fed supplemental blood meal had 8.3% greater gains and a 6% greater efficiency of feed use than those fed supplemental soybean meal (P less than .01). Monensin did not affect (P = .82) performance of steers fed 30% restricted-intake diets. During the 76-d finishing period, gains and feed conversion were improved (P less than .01) for steers fed the restricted-intake diet in the growing period compared with those given ad libitum access to corn silage. During the growing period in Trial 3, ADG of steers restricted-fed an all-concentrate diet were slightly greater (P less than .10) than ADG of those given ad libitum access to corn silage. Gains did not differ (P = .37) during the subsequent finishing period when steers were switched to 85 or 100% concentrate diets. We concluded that intake of all concentrate diets can be restricted to achieve gains equal to those of steers given ad libitum access to corn silage-based diets without detrimental effects on finishing performance.  相似文献   

3.
Sixteen crossbred steers (278 +/- 4.9 kg) were used to determine the influence of supplemental ruminally protected lysine and methionine on performance of growing cattle fed grass silage. During the 154-d experiment, all steers were allowed ad libitum consumption of a good-quality grass silage during the first 70 d and of a lesser-quality silage during the remaining 84 d of the trial. The steers received a supplement of .5 kg/d of barley with or without a mixture of ruminally protected amino acid (RPAA) containing 8.2 g of lysine and 2.6 g of methionine. Compared with controls, steers supplemented with RPAA showed 16.3% improved (P less than .03) ADG (.92 vs 1.07 kg/d). Dry matter intake was not affected (P greater than .50) by treatment and averaged 2.03% BW across treatments. Supplementation with RPAA improved feed/gain by 13.6% (7.88 vs 6.81 for control and RPAA treatments, respectively, P less than .01). Plasma levels of methionine, lysine, arginine, and glutamic acid were higher (P less than .05) and of histidine were lower (P less than .001) when RPAA were fed. These results indicate that feeding RPAA can improve the performance of growing steers fed grass silages of varying qualities.  相似文献   

4.
Metabolism and growth experiments were conducted to determine the effects of lysocellin and calcium level on mineral metabolism and performance of beef steers. Lysocellin at 0 or 22 mg/kg and Ca at .3 or .6% of the diet were fed in a 2 x 2 factorial arrangement of treatments. Two steers averaging 287 kg BW were fed each diet consisting of 80% corn silage and 20% supplement (DM basis) in each of two metabolism trials. Steers were fed the diets for a 21-d preliminary period, followed by 7 d of total feces and urine collection. A lysocellin x Ca interaction was observed for nitrogen retention (P less than .01). Steers fed lysocellin and .6% Ca retained the most N (15.6 g/d), whereas steers receiving lysocellin and .3% Ca retained the least N (8.8 g/d). Lysocellin increased (P less than .05) apparent absorption of Mg. In one of the two metabolism trials, lysocellin increased (P less than .05) apparent absorption and retention of Ca. Apparent absorption and retention of Ca were higher (P less than .05) in steers fed .6% Ca when expressed as grams per day, but absorption and retention were lower (P less than .01) when expressed as a percentage of intake. In the other metabolism trial, the .6% Ca level decreased (P less than .05) urinary P excretion and increased (P less than .05) P retention as a percentage of absorbed P. In a growth experiment, 64 steers were fed similar levels of lysocellin and Ca for 119 d. Diets consisted of 90% corn silage and 10% supplement. Although no treatment effects on ADG, DMI or feed:gain were detected, lysocellin did affect concentration of several minerals in ruminal fluid and blood plasma.  相似文献   

5.
Seventy-two Hereford X Simmental cows, averaging 498 kg in body weight and 5.2 yr of age, were used in a 2-yr study to ascertain if selenium (Se)-vitamin E (E) injections and winter protein supplementation would affect growth, reproduction and health of beef cattle maintained year-round on feedstuffs marginally deficient in Se (.03 to .05 mg/kg). Cows received either no injection or a mixture of 30 mg Se (as sodium selenite) and 408 IU E injected subcutaneously beginning 3 to 4 mo prepartum and at 60-d intervals throughout the 2-yr period. Calves born to Se-E treated cows were injected with 5.5 mg Se and 75 IU E/100 kg body weight at 60-d intervals beginning at 1 mo of age. Calves were born between December 30 and February 20 and cows were bred between March 20 and May 20. Cattle grazed pasture (.05 mg Se/kg) that consisted of orchardgrass, bluegrass and white clover during the fall, spring and summer. During winter (December 15 to May 2), cattle were fed corn silage (.03 mg Se/kg) supplemented with either: no protein supplement (control), soybean meal or a urea-corn mixture. Cows and calves receiving Se-E had higher (P less than .01) whole blood glutathione peroxidase (GSH-Px) activity and plasma Se concentrations than controls. Selenium-E injections reduced (P less than .05) calf death losses from 15.3% to 4.2% and slightly increased (P less than .10) adjusted calf weaning weights. Hemoglobin concentrations were higher (P less than .05) in Se-E-injected supplemented calves at 1 mo of age but not at 5 or 7 mo of age.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Endophyte (Acremonium coenophialum)-infected Kentucky 31 tall fescue was fertilized in mid-August, stockpiled, harvested November 4 to 6 and stored in a concrete stave silo. Ninety-six growing calves (189 kg) were assigned to the following treatments (24 calves/treatment): 1) corn silage (CS) plus .4 kg/d of soybean meal (SBM; 2) fescue haylage plus .4 kg/d of SBM; 3) fescue haylage plus 1.6 kg/d of corn and 4) fescue haylage plus 1.6 kg/d of corn and .4 kg/d of SBM. Daily gains and dry matter (DM) intakes during the 91-d trial were .52, 4.58; .51, 5.22; .59, 6.06; and .63, 6.18 kg for treatments 1 through 4, respectively. Daily gains of calves fed corn silage plus SBM and fescue haylage plus SBM were not different (P greater than .05). However, a difference (P less than .05) existed between treatments 1 and 2 vs 3 and 4. Feed conversion was improved (P less than .05) in calves fed corn silage. Calves in a metabolism trial were fed either 1) 6.2 kg November-ensiled fescue haylage or 2) 6.2 kg November-ensiled fescue haylage plus 1.6 kg/d of corn. Digestibility of DM, N-free extract (NFE) and TDN did not differ (P greater than .05) between treatments. Ether extract digestibility was greater (P less than .05) for the added corn diet, while that of CP was greater (P less than .05) for the fescue haylage diet. Nitrogen retained was higher (P less than .05) for calves fed added corn. A follow-up trial with 96 growing calves (190 kg) compared September- and November-harvested fescue haylages supplemented with either 1.3 or 2.6 kg corn/d.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Two experiments were conducted using corn from clean or aflatoxin B1 (AFB1)-contaminated (182 ppb) sources. Weanling pigs (28 d) were fed one of eight dietary treatments arranged in a 2 x 2 x 2 factorial design. In Exp. 1 (192 pigs), treatments varied in corn source (clean or AFB1-contaminated), CP level (18 or 20%) and added fat (0 or 5%). At the end of the 28-d growth trials, plasma samples were obtained. An AFB1 x CP level interaction was detected (P less than .05) for growth rate (ADG), feed intake (FI) and feed/gain ratio (F/G). Feeding AFB1 reduced (P less than .05) ADG (.30 vs .37 kg/d) and FI (.57 vs .66 kg/d) and increased F/G (1.88 vs 1.78) of pigs fed 18% CP diets. Performance of pigs fed 20% CP diets was not altered by AFB1. Adding 5% fat to diets improved (P less than .05) F/G but did not improve ADG of pigs fed AFB1. There was an AFB1 x CP x fat interaction (P less than .05) for plasma cholesterol. Adding fat or increasing the CP level prevented the depression of plasma cholesterol in pigs fed AFB1. In Exp. 2 (96 pigs), all diets contained 18% CP and the treatments varied in corn source (clean or AFB1-contaminated), added L-lysine HCl (0 or .25%) and added DL-methionine (0 or .15%). Feeding AFB1 reduced (P less than .05) ADG of pigs fed the 18% CP diet (.44 vs .50 kg/d) but not of pigs fed diets supplemented with .25% lysine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Three experiments were conducted to determine the effect of soybean lipid on ruminal proteolysis of soybean meal (SBM) and ground whole soybeans (GSB). Experiment 1 was a 92-d growth experiment using 120 calves (206 kg) allotted to 12 pens of 10 calves each. Three replicate pens were assigned to each of the treatment supplements: low SBM (LSBM), low GSB (LGSB), high SBM (HSBM) and high GSB (HGSB). Calves received ad libitum amounts of corn silage top-dressed with the respective supplement (.81 kg/head). High protein supplements produced greater (P less than .05) gains than low protein supplements, with HSBM calves gaining faster (P less than .05) than HGSB calves and LSBM and LGSB calves having similar (P greater than .10) gains. In Exp. 2, 15 ruminally cannulated Angus X Hereford heifers (380 kg) fed corn silage were used to determine ammonia-N release from the treatment supplements: ground corn (control), GSB, SBM and SBM coated with soybean oil (SBMO). Heifers fed the control supplement had lower (P less than .05) ruminal NH3-N concentrations than those consuming soybean protein. Ruminal NH3-N concentrations were similar (P greater than .10) for GSB and SBM; whereas, SBMO had lower (P less than .10) concentrations than SBM through 3 h. In Exp. 3, two ruminally cannulated Angus X Jersey steers (250 kg) were used to determine in situ disappearance of SBM, GSB and SBMO. Total and feed N disappearances were greater (P less than .001) for GSB than SBM or SBMO.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Energy retention was compared in Holstein steers fed either alfalfa or orchardgrass silages for 164 d at either 65 or 90 g DM/kg.75 BW daily in a 2 x 2 factorial. Energy retention was estimated by slaughter-balance using an initial kill of eight steers at 216 kg and a final kill of eight steers per treatment at 326 kg. The ADG was not affected (P greater than .05) by silage, but steers fed alfalfa gained less (P less than .001) gut fill (they lost gut fill) and gained more (P less than .001) of the following than steers fed orchardgrass: empty body, 23%; fat, 50%; fat-free matter, 18%; protein, 16%; water, 17%; ash, 43%; gross energy, 31%; and carbon, 38%. With retained energy at 1.15 Mcal/d, retained energy was equally distributed between fat and protein. Increments of daily retained energy greater than 1.15 Mcal were deposited as 76% to fat and 24% to protein; this distribution was not affected by silage. The energy requirement for maintenance, with BW adjusted to equal gut fill, was not different (P greater than .05) at 130 kcal ME/kg.75 BW for steers fed alfalfa vs 125 for steers fed orchardgrass. Although not significant (P greater than .05), retained energy/ME intake above maintenance was 13% greater for steers fed alfalfa (.261) than for steers fed orchardgrass (.230), which supports the difference observed by calorimetry. The difference in dietary protein (25.6 vs 20.5%) did not contribute to the difference in energy retention because the differences in fat and protein retention could be explained totally by differences in daily energy deposition. The higher NDF of orchardgrass, or other fiber components, seems to be the most probable cause of its somewhat lower partial energetic efficiency relative to alfalfa.  相似文献   

10.
The effects on beef cattle growth performance and carcass characteristics of feeding silages produced by altered fermentations were determined. Alpha-amylase was added at 0 or .05% (wet basis) and sorbic acid was added at 0 or .10% (wet basis) to chopped whole corn plants before ensiling in a 2 x 2 factorial arrangement of treatments. For three successive years, 40 beef heifers (224 kg) were fed these silages for 80 d, finished on corn-and-cob meal (107 d) and slaughtered when backfat thickness over the 13th rib reached 12 mm. Silages treated with alpha-amylase had a slightly higher percentage of N-free extract (P less than .10). Silages treated with sorbic acid had lower percentages of ADFN (P less than .10). During the silage-feeding phase, heifers fed silages treated with alpha-amylase gained more (P less than .01) daily than heifers fed the other two silages (.84 vs .78 kg) and they were more efficient (P less than .01) in weight gain per unit of dry feed consumed (.149 vs .139 kg). During the finishing phase, heifers that previously had been fed the alpha-amylase-treated silage continued to have higher (P less than .05) ADG (.93 vs .87 kg), although all were fed the same diet during this period. Added sorbic acid had no effect on ADG in either period. The percentage of kidney fat in heifers on the alpha-amylase treatments was increased (P less than .02, 2.2 vs 2.0). The biological mechanisms associated with the beneficial results of alpha-amylase addition are not understood yet.  相似文献   

11.
Two experiments were conducted to evaluate alkaline hydrogen peroxide-treated wheat straw (AHPWS) in cattle growing (Exp. 1) and finishing (Exp. 2) diets. In Exp. 1, 162 crossbred steers (257 kg) were fed 66% roughage diets in an 84-d growth trial to compare AHPWS to corn silage (CS) and to evaluate different supplemental CP sources and levels. A completely randomized design with a 3 x 3 factorial arrangement of treatments was used. Factors were roughage source (CS, a 1:1 mixture of CS:AHPWS [MIX] and AHPWS) and CP treatment (13 and 11% CP with supplemental CP provided by soybean meal [13-SBM] and [11-SBM] and 11% CP with a combination of urea, corn gluten meal, and fish meal [UGF]). Lasalocid was fed at the rate of 200 mg per steer daily. Steers fed AHPWS had decreased (P less than .01) DMI compared with steers fed MIX and CS. This may be due to increased dietary Na from residual Na in AHPWS. With each incremental increase in AHPWS, ADG and gain/feed decreased (P less than .01). Dry matter intakes (kg/d), ADG (kg), and gain/feed for CS, MIX, and AHPWS were 8.0, 1.56, and .19; 8.2, 1.33, and .16; and 7.5, 1.08, and .14, respectively. Decreased performance by steers fed AHPWS may be due, in part, to a negative interaction between the lasalocid and dietary minerals. There were no differences in performance due to CP supplementation. In Exp. 2, AHPWS was compared to alfalfa hay (AH) and CS at 10 and 20% of dietary DM (2 x 3 factorial) in a 127-d finishing trial with 108 crossbred steers (341 kg).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Two experiments were conducted to investigate the effects of proportion of dietary corn silage during periods of feed restriction on performance of steers. In Exp. 1, Simmental x Angus steer calves (n = 107; initial BW = 273 +/- 3.8 kg) were allotted to 12 pens with eight or nine steers/pen and four pens/treatment. Periods of growth were 273 to 366 kg BW (Period 1), 367 to 501 kg BW (Period 2), and 502 to 564 kg BW (Period 3). In two of the dietary regimens, steers were given ad libitum access to feed throughout the experiment and were fed either a 15% corn silage diet in each period or an 85, 50, and 15% corn silage diet in Periods 1, 2, and 3; respectively. In the third feeding regimen, a programmed intake feeding regimen was used. Steers were fed a 15% corn silage diet in each period. However, feed intake was restricted to achieve a predicted gain of 1.13 kg/d in Period 1 and 1.36 kg/d in Period 2, and feed was offered for ad libitum consumption in Period 3. For the entire experiment, ADG was similar (P = 0.41) among treatments and feed efficiency was lower (P < 0.10) for steers in the corn silage regimen than for steers in the programmed intake and ad libitum regimens. In Exp. 2, Simmental x Angus steer calves (n = 106; initial BW = 233 +/- 2 kg) were allotted by BW to 12 pens (three pens/treatment) and fed in three periods similar to those described in Exp. 1. Four feeding regimens were investigated: 1) AL; steers were offered a 15% corn silage diet for ad libitum consumption in all three periods; 2) PI; DMI was programmed to achieve gains as described in Exp. 1; 3) CS-HLL; programmed intake as described above except diets contained 85, 15, and 15% corn silage in Periods 1, 2, and 3, respectively; and 4) CS-HIL; same feeding regimens as CS-HLL, except diets contained 85, 50, and 15% corn silage in Periods 1, 2, and 3, respectively. Steers were given ad libitum access to feed in Period 3. Overall ADG was lower (P < 0.05) for steers in the CS-HLL and CS-HIL feeding regimens than for steers in the AL and PI regimens; feed efficiency was greatest for steers in the PI regimen. Few effects of feeding regimen on carcass characteristics were observed.  相似文献   

13.
A series of experiments was conducted to determine the effects of limit-feeding high-concentrate (LFHC) diets on dietary CP requirements of steer calves. When steer calves were fed 80% concentrate diets at 78 g/kg of BW.75, increasing dietary CP resulted in increased ADG (P less than .001). Average daily gain was increased in steers as daily monensin dosage increased from 120 to 180 mg (P less than .05). Increasing the daily monensin dosage to 240 mg did not increase ADG further. There were no (P greater than .10) CP X monensin interactions, suggesting that the monensin response was caused by improved energy utilization and not be the possible protein-sparing effects of ionophores. Steer calves in the second feedyard experiment expressed similar ADG when provided equal NEg as limit-fed, high-moisture ear corn (HMEC) or when given ad libitum access to corn silage. The basal diet did not affect the steers' daily N requirement for growth. Gain per unit of protein intake declined quadratically (P less than .05) with increasing CP intake, indicating that CP requirements were near NRC estimates on both diets. The corn silage-based diet was less digestible (70.3 vs 77.4%; P less than .01) than the HMEC diet when fed to lambs. Fecal output differed (P less than .10) substantially (342 g/d of corn silage vs 205 g/d of HMEC), whereas fecal N output was only slightly higher (6.97 vs 6.34 g/d, respectively; P less than .10). Limited feeding of higher-concentrate diets to steer calves seemed to be an effective management procedure and did not cause acute digestion upset.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The brown midrib-3 (bm3) gene mutation has been incorporated into corn plants to potentially improve fiber digestibility. The objectives of this study were to determine the effect of bm3 corn silage on digestion and performance of growing beef steers and to determine whether limiting intake would further enhance fiber digestibility of bm3 corn silage. A bm3 hybrid and its isogeneic normal counterpart were harvested at three-quarters kernel milk line. Neutral detergent fiber, ADF, and ADL were 4.5, 6.9, and 1.9 units lower, respectively, and DM was 5.4 units higher for bm3 than for normal silage. In Trial 1, eight ruminally fistulated Angus crossbred steers (224 +/- 24 kg) were randomly assigned to a 2 x 2 factorial arrangement of treatments in a replicated 4 x 4 Latin square design. Steers had ad libitum feed access or were restricted to 80% of ad libitum intake of diets containing 86% normal corn silage (Control) or bm3 corn silage (BMCS). The remainder of the diets consisted of soybean meal, urea, monensin, vitamins, and minerals. Dry matter intake was greater (P < 0.01) for steers offered ad libitum access to BMCS than for those with ad libitum access to the Control diet. The BMCS treatment resulted in improved (P < 0.05) apparent total-tract digestibility of DM, OM, NDF, and ADF. Mean concentration of total VFA and molar proportions of acetate were increased (P < 0.05) by feeding BMCS. There tended to be a DMI x hybrid interaction (P = 0.16) for apparent total-tract digestibility of NDF. When diets were offered ad libitum, BMCS increased NDF digestibility by 10.5 percentage units compared with Control, but, when DMI was limited, BMCS increased NDF digestibility by 15.8 percentage units. In Trial 2, 128 steer contemporaries of those used in Trial 1 (245 +/- 13 kg) were offered ad libitum access to BMCS or Control diets as used in Trial 1. After a 112-d treatment period, concentrate in the diet was increased, and all steers were fed a common finishing diet. During the 112-d treatment period, steers receiving BMCS consumed 0.45 kg more DM/d (P < 0.05) and had similar ADG (P > 0.10), compared with those steers receiving the Control silage. This resulted in poorer (P < 0.01) feed efficiency for steers receiving BMCS. Finishing phase and overall performance of the steers was not different (P > 0.10) due to treatment. Although feeding BMCS in growth-phase diets resulted in increased daily DMI and improved digestibility of DM and fiber, it did not result in improved steer feedlot ADG compared with Control silage.  相似文献   

15.
A 4-yr study was conducted to determine the effects of two grazing methods (GM) at two stocking rates (SR) on alfalfa pasture plant productivity and animal performance and to ascertain the effect of grazing systems on subsequent performance of steers fed a high-concentrate diet. Eight pasture plots (.76 ha) were seeded in 1988 with alfalfa (Medicago sativa L. var. WL225) and divided into two blocks of four pastures each. Grazing methods consisted of a traditional four-paddock or an intensive 13-paddock system. Pastures were managed to allow a 36-d rest period with an average grazing season of 110 d. The low and high SR were 5.9 vs 11.7, 5.3 vs 10.5, 5.3 vs 7.9, and 5.3 vs 7.9 steers/ha for years 1989 to 1992, respectively. Following the grazing season, steers were placed in a feedlot and fed a high-concentrate diet (81% high-moisture corn, 14% corn silage, 5% protein-mineral supplement) for an average of 211 d. There was no effect of GM on herbage mass, pasture phase ADG, or live weight gain/hectare. Increasing the number of paddocks was beneficial when herbage mass was limited and stocking rate was above 7.9 steers/ha. Increasing SR above 7.9 steers/ha decreased herbage mass and pasture-phase ADG. As forage allowance increased, pasture-phase ADG increased quadratically (R2 = .82, P < .001), reached a plateau, and then decreased. Previous grazing system did not influence the performance of steers in the feedlot or their carcass characteristics. Optimum SR is dependent on herbage mass produced.  相似文献   

16.
Methane emissions from feedlot cattle fed barley or corn diets   总被引:2,自引:0,他引:2  
Methane emitted from the livestock sector contributes to greenhouse gas emissions worldwide. Understanding the variability in enteric methane production related to diet is essential to decreasing uncertainty in greenhouse gas emission inventories and to identifying viable greenhouse gas reduction strategies. Our study focused on measuring methane in growing beef cattle fed corn- or barley-based diets typical of those fed to cattle in North American feedlots. The experiment was designed as a randomized complete block (group) design with two treatments, barley and corn. Angus heifer calves (initial BW = 328 kg) were allocated to two groups (eight per group), with four cattle in each group fed a corn or barley diet. The experiment was conducted over a 42-d backgrounding phase, a 35-d transition phase and a 32-d finishing phase. Backgrounding diets consisted of 70% barley silage or corn silage and 30% concentrate containing steam-rolled barley or dry-rolled corn (DM basis). Finishing diets consisted of 9% barley silage and 91% concentrate containing barley or corn (DM basis). All diets contained monensin (33 mg/kg of DM). Cattle were placed into four large environmental chambers (two heifers per chamber) during each phase to measure enteric methane production for 3 d. During the backgrounding phase, DMI was greater by cattle fed corn than for those fed barley (10.2 vs. 7.6 kg/d, P < 0.01), but during the finishing phase, DMI was similar for both diets (8.3 kg/d). The DMI was decreased to 6.3 kg/d with no effect of diet or phase while the cattle were in the chambers; thus, methane emissions (g/d) reported may underestimate those of the feedlot industry. Methane emissions per kilogram of DMI and as a percentage of GE intake were not affected by grain source during the backgrounding phase (24.6 g/kg of DMI; 7.42% of GE), but were less (P < 0.05) for corn than for barley during the finishing phase (9.2 vs. 13.1 g/kg of DMI; 2.81 vs. 4.03% of GE). The results indicate the need to implement dietary strategies to decrease methane emissions of cattle fed high-forage backgrounding diets and barley-based finishing diets. Mitigating methane losses from cattle will have long-term environmental benefits by decreasing agriculture's contribution to greenhouse gas emissions.  相似文献   

17.
Two growth studies were conducted to determine the Met and Lys requirements of growing cattle. In each 84-d trial, steer calves were fed individually diets containing 44% sorghum silage, 44% corn cobs, and 12% supplement (DM basis) at an equal percentage of BW. In Trial 1, 95 crossbred steers (251 kg) were supplemented with urea or meat and bone meal (MBM). Incremental amounts of rumen-protected Met were added to MBM to provide 0, .45, .9, 1.35, 3, and 6 g/d metabolizable Met. In Trial 2, 60 steers (210 kg) were supplemented with urea or corn gluten meal (CGM). Incremental amounts of rumen-protected Lys were added to CGM to provide 0, 1, 2, 3, 4, 5, 6, 8, and 10 g/d metabolizable Lys. Supplementation with MBM and CGM increased the supply of metabolizable protein to the animal. Steers fed MBM plus 0 Met gained 49 g/d more than steers fed urea, whereas steers fed CGM plus 0 Lys gained 150 g/d more than steers fed urea. Supplementation of rumen-protected Met and Lys improved ADG in steers fed MBM and CGM, respectively (P < .10). Nonlinear analysis, comparing gain vs supplemental Met and Lys intake, predicted supplemental Met and Lys requirements of 2.9 and .9 g/d, respectively. This amount of additional Met promoted .13 kg/ d gain greater than MBM alone, and this amount of additional Lys promoted .10 kg/d gain greater than the CGM alone. Metabolizable Met and Lys requirements were predicted from Level 1 of NRC (1996) calculated metabolizable protein supply, amino acid analysis of abomasal contents, and the maximum response to supplemental AA. Steers gaining .39 kg/d required 11.6 g/ d Met or 3. 1% of the metabolizable protein requirement, whereas steers gaining .56 kg/d required 22.5 g/d Lys or 5.7% of the metabolizable protein requirement.  相似文献   

18.
Effects of plastic pot scrubbers on feedlot performance and ruminal metabolism of steers fed all-concentrate diets were determined. In Trial 1, 31 crossbred steers (means initial BW, 290 kg) were penned and fed individually. Treatments were 1) 85% concentrate-15% corn silage diet, 2) 100% concentrate diet, and 3) 100% concentrate diet + ruminal insertion of eight plastic pot scrubbers per steer. During the first 112 d of the trial, steer ADG did not differ (P greater than .10) due to treatment. From d 113 to 152, steers provided with pot scrubbers had 16% greater ADG than those fed the 100% concentrate diet without pot scrubbers (P = .18). In Trial 2, 78 crossbred steers (means initial BW, 315 kg) were penned individually and fed the diets used in Trial 1. Steers fed the 100% concentrate diet received zero, four or eight pot scrubbers. From d 113 to 167, steers provided with four or eight pot scrubbers or fed the 85% concentrate diet had greater (P less than .10) gains than steers fed the 100% concentrate diet without pot scrubbers. In Trial 3, 120 steers (means initial BW, 286 kg) were grouped in 12 pens and limit-fed an all-concentrate diet for 84 d. Sixty steers were provided with six pot scrubbers each. Performance was not affected (P greater than .10) by the use of pot scrubbers during the 84-d growing phase. During the subsequent 84-d finishing phase, half the steers receiving each treatment were switched to either an 85% concentrate-15% corn silage or an 100% concentrate diet offered for ad libitum consumption.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Six Hereford steers averaging 256 kg were used in a 2 x 3 factorial arrangement within a 6 x 6 Latin square design to study the effect of forage conservation (silage vs hay) and N supplementation (0, 200 g of fish meal plus 43 g of urea, or 400 g of fish meal) on ruminal characteristics, digestibility, blood urea, and in situ degradability of DM, N, and ADF. Dry matter intake of forage and total DMI did not differ among treatments (P greater than .05) and averaged 5.3 and 5.5 kg, respectively. Steers fed silage had greater (P less than .05) pH and concentrations of ammonia N, isobutyrate, isovalerate, and valerate in the rumen than in the rumen of those fed hay. Nitrogen supplementation increased (P less than .05) concentrations of total VFA and valerate in the rumen. Digestibility of N and ADF was greater (P less than .05) for silage than for hay, and N supplementation increased digestibility of N. Plasma urea concentrations were greater (P less than .05) for steers fed silage than for those fed hay. These data suggest that feed utilization is better with silage than with hay and is increased by N supplementation.  相似文献   

20.
The objective of two experiments was to correlate plasma levels of urea N (PUN) and the percentage of urine N in the form of urea (UUN) to weight gain in response to different dietary protein regimens for growing Angus steers. In Exp. 1, 60 steers (302 kg BW) were assigned to various levels of dietary N (control plus supplemental N to provide from 100 to 400 g more crude protein daily) within two sources of supplemental N (soybean meal [SBM] or a mixture of two parts corn gluten meal:one part blood meal [CGM:BM]). In Exp. 2, 27 steers (229 kg BW) were fed two levels of SBM, and half of the steers received growth-promoting implants. Steers were housed in groups of 12 and fed individually for 84 d in both experiments. Corn silage was fed at a restricted rate to minimize orts. Jugular blood and urine samples were collected during the experiments. In Exp. 1, maximal ADG of steers fed SBM (1.0 kg) was reached with 671 g/d total crude protein, or 531 g/d metabolizable protein. Maximal ADG of steers fed CGM:BM (0.91 kg) was reached with 589 g/d total crude protein, or 539 g/d metabolizable protein. The DMI was higher (P < 0.07) for steers fed SBM (6.37 kg/d) than for steers fed CGM:BM (6.14 kg/d). Increasing ruminal escape protein from 36% (SBM) to 65% (CGM:BM) of CP decreased (P < 0.05) endogenous production of urea, as evidenced by lower concentrations of urea in blood and lower UUN. In Exp. 2, increasing supplemental protein from 100 to 200 g/d increased (P < 0.05) ADG and PUN. Implants lowered (P < 0.05) UUN, particularly at the higher level of supplemental protein. Protein supplementation of growing steers can be managed to maintain acceptable ADG yet decrease excretion of urea in the urine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号