首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 327 毫秒
1.
山核桃RAPD反应体系的优化   总被引:6,自引:4,他引:6  
建立山核桃RAPD反应优化体系是进行山核桃遗传多样性分析的前提。通过对影响PCR扩增结果的主要因子的组合研究,确定了山核桃Caryacathayensis的最适反应体系和扩增程序,即在20μL反应体系中,含2 5mg·L-1(50ng)模板,2 0μL10×Buffer,16 67pmol·s-1TaqDNA聚合酶;各0 2mmol·L-1dNTPs,3 0mmol·L-1MgCl2,0 3μmol·L-1引物。扩增程序为:94℃预变性300s,94℃变性30s,38℃退火30s,72℃链延伸90s,38次循环,72℃后延伸420s。图5表2参6  相似文献   

2.
建立柳杉Cryptomeria fortunei CAPS 反应优化体系是进行柳杉遗传多样性研究的前提。通过对影响柳杉CAPS 遗传标记反应体系结果主要因子的研究, 确定了最佳的柳杉CAPS 扩增反应体系:含有2.0 L 10 Buffer , 0.08 mmolL-1dNTPs , 200mgL-1铸型DNA , 1.5 mmolL-1MgCl2 , 0.1 molL-1引物和41.675 nkat Taq DNA 聚合酶的20 L 反应液。扩增程序是94℃预变性5min , 然后94 ℃变性40 s , 58 ℃退火40 s , 72 ℃延伸80 s , 共35 个循环, 然后在72 ℃延伸5 min 。PCR 产物10.0 L, 加入2.0 L 10 Buffer , 83.350 nkat 内切酶, 7.5 L 双蒸水构成20 L 酶切反应体系。图5 表1 参8  相似文献   

3.
长筒石蒜花被片DNA的提取及ISSR体系的建立   总被引:9,自引:0,他引:9  
以长筒石蒜为例,探讨了花被片DNA的提取方法。并在此基础上,确立其ISSR反应程序及体系。反应程序为: 94℃预变性3min,进入38个PCR循环( 94℃变性30s, 58℃复性30s, 72℃延伸90s),最后于72℃延伸7min。扩增反应总体积为20μL: 1×Taq酶扩增缓冲液, 1. 5mmol/LMg2+, 200μmol/LdNTP, 0. 5μmol/L随机引物, 0. 5UTaq聚合酶,DNA模板10~30ng。  相似文献   

4.
为确保樱花RAPD扩增结果的稳定性和重复性,对Mg2 、dNTP、引物、模板DNA浓度、Taq酶用量、退火温度,以及PCR循环次数等影响樱花RAPD结果的重要因素进行了初步探索。试验表明,樱花RAPD扩增最适反应体系为20μl反应液中:1×PCR buffer,2.5 mmol/L MgCl2,0.15 mmol/L dNTP,1 UTaq酶,0.2μmol/L 10bp随机引物,20~30 ng模板DNA。最佳扩增程序为:94℃预变性4 min,94℃变性30 s,38℃退火30 s,72℃延伸2 min,循环40次,最后72℃延伸10 min,12℃保存。  相似文献   

5.
以山核桃Carya cathayensis基因组DNA为模板,对聚合酶链式反应(PCR)体系各组分进行了梯度实验,优化出条带清晰、重复性好的相关序列扩增多态性聚合酶链式反应(SRAP-PCR)扩增体系,并筛选了引物。该体系(25.00 μL)为:1 × 缓冲液0.20 mmol·L-1,脱氧核糖核苷酸(dNTPs),0.20 μmol·L-1 引物,2.00 mmol·L-1镁离子(Mg2+),33.34 nkat Taq DNA 聚合酶,0.80 mg·L-1基因组DNA(以上均为终浓度)。反应条件为94 ℃预变性5 min;94 ℃变性30 s,35 ℃退火30 s,72 ℃延伸2 min,5个循环;94 ℃变性30 s,50 ℃退火30 s,72 ℃延伸2 min,30个循环;72 ℃延伸8 min,4 ℃保存,反应时间比其他体系缩短了一半。从100对引物中筛选出了适用于山核桃的引物15对。在山核桃中,随机扩增多态性DNA(RAPD),简单序列重复区间(ISSR),SRAP等3种标记,以SRAP标记每对引物扩增的位点数及每对引物扩增的多态性位点数为多,但SRAP多态性引物的比例、多态性位点比例居于另2种标记之间。在山核桃研究中可以考虑使用SRAP及RAPD标记。图6表4参28  相似文献   

6.
以4个新疆野苹果株系为试材,利用CTAB法提取DNA,对影响SSR-PCR扩增结果的主要因子设计了多梯度的优化试验。结果表明:新疆野苹果SSR-PCR反应体系(25μL)中含Taq DNA聚合酶0.5 U、模板DNA 5.0 ng、dNTPs 0.2 mmol/L、引物0.2μmol/L、Mg2+1.0 mmol/L、退火温度为60℃时效果最佳。最佳扩增程序为:94℃预变性2 min,94℃变性30 s,65℃退火1 min,72℃延伸1 min,4个循环;94℃变性30 s,60℃退火1 min,72℃延伸1 min,30个循环;72℃延伸5 min,4℃保存。利用此反应体系对30份新疆野苹果进行SSR-PCR扩增和电泳检测,扩增谱带清晰且多态性较好,表明该体系适用于新疆野苹果的基因连锁图谱构建和QTL定位。  相似文献   

7.
[目的]得到适用于罗布麻RAPD的最优体系.[方法]以伊犁地区新源县罗布麻硅胶干燥叶片为材料,采用TIANGEN试剂盒提取罗布麻基因组DNA,得到满足RAPD(Random amplified polymorphic DNA)分析的罗布麻基因组DNA.[结果]通过单因素优化实验,得到罗布麻RAPD分析的最佳反应体系为:Mg2+ (2.0mmol/L)、dNTPs(0.5 mmol./L)、primer(0.4 mmol/L)、DNA(1μL)、Tap酶取1μL、10×buffer取1μL,总反应体系为10 μL;扩增程序为:在94℃下预变性,然后进行42个循环(94℃变性30 s、38℃退火30 s、72℃延伸2min),最后在72℃延伸7 min.[结论]提取的罗布麻总DNA均有较高的质量,适合RAPD分析;Tiangen植物基因组DNA提取试剂盒对罗布麻基因组DNA有着良好的提取效果;对罗布麻RAPD-PCR中Mg2+、dNTPs、DNA聚合酶和引物浓度进行优化,较为理想的各因子用量和扩增程序为:Mg2+(2.0 mmol/L)、dNTPs(0.5mmol/L)、primer(0.4 mmol/L)、Tap酶(0.5 U/μL)、DNA(40 ng),总反应体系为10 μL;扩增程序为:在94℃下预变性5 min,然后进行42个循环(94℃变性30 s、38℃退火30 s、72℃延伸2 min),最后在72℃延伸7min.  相似文献   

8.
模板DNA、引物、三磷酸碱基脱氧核苷酸(dNTPs),镁离子(Mg2+)浓度、Taq DNA聚合酶的用量以及退火温度是影响简单序列重复区间扩增?鄄聚合酶链式反应(ISSR-PCR)的主要因素。以麻楝Chukrasia tabularis叶片基因组DNA为试验材料,系统地测试这6个因素对麻楝ISSR-PCR反应结果的影响。结果表明:最优的反应体系为20 L反应体系中含30 ng模板DNA,1.00 molL-1随机引物,0.15 mmolL-1dNTPs,2.50 mmolL-1 Mg2+,2.50 16.67 nkat Taq DNA聚合酶。最佳退火温度为56 ℃,ISSR-PCR反应程序为94 ℃预变性5.0 min,94 ℃变性45 s,56 ℃退火45 s,72 ℃延伸1.5 min,40个循环;72 ℃再延伸7.0 min,4 ℃保存。应用优化的ISSR-PCR反应体系对24份麻楝个体材料进行扩增,均能扩增出丰富稳定的条带。图8表1参27  相似文献   

9.
以改良的CTAB法提取的寒兰(Cymbidium kanran Makino)基因组DNA为模板,通过单因子试验建立最适的寒兰的ISS-PCR反应体系。结果表明,适宜寒兰ISSR-PCR反应体系的扩增条件为:25 μl PCR 反应体积中,1×PCR buffer,2.0 mmol/L MgCl2,300 ng 模板 DNA,200 μmol/L dNTP,1.40 U Taq DNA 聚合酶,0.4 μmol/L 引物。最佳扩增程序为:94 ℃预变性 5 min,然后进行40个循环:94 ℃ 变性 30 s,复性温度根据各引物的Tm值略低1~2 ℃,30 s,72 ℃ 延伸 50 s,循环结束后 72 ℃ 延伸7 min。  相似文献   

10.
黄皮RAPD-PCR反应体系的优化   总被引:2,自引:0,他引:2  
以5′-GTCGTTCCTG-3′为随机引物,以酸黄皮为试材,对黄皮RAPD反应体系进行了优化研究,结果表明:20μL反应体系中,Taq DNA聚合酶、Mg2 、随机引物、模板DNA和dNTPs 5种主要成分的适宜浓度和用量分别为2.0 U、2.5 mmol/L、0.5 umol/L、50 ng、0.20 mmol/L。适宜的扩增程序为94℃预变性3 min,1个循环;94℃变性45 s,36℃退火45 s,72℃延伸1 min,38个循环;72℃后延伸7 min。  相似文献   

11.
文冠果DNA提取及RAPD反应体系的优化   总被引:1,自引:0,他引:1  
以山西省20个县的文冠果为材料,采用改良的CTAB法提取文冠果基因组DNA,并对文冠果RAPD分析的最佳反应体系进行优化。结果表明,文冠果RAPD分析的最适反应体系为:PCR扩增的总体积为20μL,包括30ng的模板DNA,10×PCR buffer 2μL,2.0mmol.L-1 Mg2+,0.1mmol.L-1dNTP,Taq酶1U,不足的体积用超纯水补足。扩增程序为:94℃预变性120s,94℃变性30s,36.9℃退火45s,72℃延伸90s,45个循环后在72℃延伸300s,结束后在4℃条件下保存。在此最佳反应条件下,RAPD分析具有良好的稳定性和可重复性。  相似文献   

12.
木豆随机扩增多态性DNA的反应体系研究   总被引:1,自引:0,他引:1  
[目的]分析影响木豆RAPD-PCR反应中的主要因素,优化反应条件。[方法]以木豆品种ICPL87091为试材,以木豆基因组DNA为模板,通过对PCR反应体系中各种参数的优化设置,分析比较各种因素对RAPD扩增结果的影响,建立适宜的反应体系。[结果]试验得到了较为理想的适宜木豆的反应体系。优化的木豆RAPD反应条件为:模板DNA浓度30 ng,随机引物1.6μmol/L,dNTPs(dATP,dCTP,dGTP,dTTP)各0.2 mmol/L,Mg2+浓度2.0 mmol/L,Taq酶1.0 U,反应体积为25μl。循环体系为:先94℃1 min,35℃2 min,72℃2 min,5个循环;然后94℃30 s,37℃1 min,72℃1 min,35个循环;最后72℃延伸10 min。[结论]利用这一反应体系可有效地进行木豆随机扩增多态性DNA分析,极大地提高了实验结果的可重复性。  相似文献   

13.
以假臭草叶片为材料,对影响其随机扩增多态DNA(RAPD)反应的各因素进行优化.建立了假臭草RAPD的优化反应体系和程序,即在10μL反应体系中,5ng(/10μL)模板DNA,1.0μmol/L随机引物F15,150μmol/LdNTPs,2.0mmol/LMg^2+,1.0UTaqDNA聚合酶;扩增程序为95℃预变性4min,95℃变性40S,36℃退火40S,72℃延伸1min,10个循环,后94℃变性30s,35℃退火30s,72℃延伸1min,35个循环,72℃延伸5min,4℃保温。  相似文献   

14.
黄麻DNA提取与RAPD反应体系的建立   总被引:6,自引:0,他引:6  
以假黄麻、假长果、越南圆果 (圆果种黄麻 )等为材料 ,研究了黄麻 DNA的提取方法以及对 RAPD分析的影响因素 ,包括模板浓度、Mg2 + 、d NTP、引物和 Taq酶等 ,建立了适于黄麻种质 RAPD分析的 PCR反应体系 .即在 2 5μL反应体积中 ,Tris- HCl(p H8.0 )、KCl、Mg Cl2 、d NTP、随机引物的浓度分别为 10 mmol· L-1、5 0mmol·L-1、2 .5 mmol· L-1、15 0 μmol· L-1、0 .2 μmol· L-1,并含有 30 - 60 ng DNA与 1.5 U Taq DNA聚合酶 .扩增程序为 :94℃预变性 5 min;然后 94℃ 30 s,37℃ 1.5 min,72℃ 1min,4 1个循环 ;最后 72℃延伸 7mi  相似文献   

15.
为了建立鹧鸪茶RAPD-PCR的优化反应体系,首先通过单因素试验选定其各影响因子比较适宜的浓度范围,再利用正交试验设计方法,对影响鹧鸪茶RAPD-PCR反应的5种因素进行四水平优化试验。并运用SAS软件对试验结果进行了分析,最后确定优化的RAPD-PCR反应体系为:10×Buffer缓冲液2.5 μL+Mg2+ 2.5 mmol/L + dNTPs 0.2 mmol/L + TaqDNA聚合酶1.5 U + S28引物0.48 mmol/L + 80 ng模板,定容至25 μL。PCR扩增程序为:94℃预变性4 min,然后按94℃变性30 s,38℃退火45 s,72℃延伸120 s,进行45个循环,最后72℃延伸10 min;16℃保存。该优化的RAPD-PCR反应体系具有良好的稳定性和重现性,可应用于鹧鸪茶不同居群间亲缘关系和遗传多样性分析。  相似文献   

16.
正交设计优化茄子SSR反应体系   总被引:2,自引:0,他引:2  
以茄子基因组DNA为模板,利用正交设计方法对茄子SSR反应体系中的Mg^2+、模板DNA、Taq聚合酶、dNTP、引物5个因素进行了优化,同时对反应程序中的退火温度及循环次数进行筛选。结果确定了茄子10μL体积SSR反应体系的最优条件为:Buffer为1μL,Mg^2+为2.25mmol·L^-1,dNTP为400μmol·L^-1,上下游引物各为39.60ng,Taq聚合酶为0.75U,DNA约为100ng。PCR程序为94℃预变性2min:然后进行35个循环的94℃变性30s,52℃复性30s,72℃延伸45s;72℃延伸8min后4℃保存。  相似文献   

17.
长白山林下参基因组DNA提取及RAPD体系的优化   总被引:2,自引:1,他引:1  
采用改良的CTAB法提取林下参的基因组DNA,所得的DNA纯度高、质量好,可用于RAPD分析.筛选出的林下参RAPD反应的最佳体系为20“L,反应体系中包括模板DNA20ng,引物20pmol,dNTPs0.1875mmol/L,TaqDNA聚合酶1.5U,Mg^2+2.0mmol/L,10×Reaction Buffer2.0mmol/L,其余部分用无菌超纯水补充.PCR扩增程序为94℃预变性5min,94℃变性1min,37℃退火1min,72℃延伸2min,40次循环,72℃最终延伸7min.应用优化后的反应体系PCR扩增获得的RAPD指纹图谱带型清晰,重复性好,为通过分子标记获得丰富的林下参遗传信息奠定了基础.  相似文献   

18.
通过正交试验设计对影响苦丁茶冬青RAPD-PCR反应的5种因素4水平进行优化试验,最终确定苦丁茶冬青RAPD—PCR的最佳反应体系为:在25μL反应体系中,DNA模板20ng,Mg2+ 2.5mmol·L-1,引物浓度为0.3μmol·L-1,Taq聚合酶浓度为2.0U,dNTPs浓度为200μmol·L-1。最佳的RAPD-PCR扩增程序为:94℃预变性5min,然后94℃变性30s,36℃退火30s,72℃延伸120s,进行40个循环,最后72℃延伸10min;4℃保存。然后通过RAPD技术筛选了91条随机引物,共计有24条引物能在雌/雄DNA/样品池间显示多态性,其中引物S164和S191分别扩增得到2个雄性特异标记S164—900和S191—800。经多次重复实验,RAPD标记均能在雄性个体中稳定出现,故此标记可应用于苦丁茶冬青性别的早期鉴定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号