首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herbage, predominantly perennial ryegrass (Lolium perenne) grown in Northern Ireland, was harvested at four dates from June to October 1996 (H1, H2, H3 and H4). At each harvest approximately one-fifth of the grass harvested was artificially dried and pelleted (G). The remainder of the grass was either wilted for 28–52 h (W), depending on the weather conditions, or ensiled directly, i.e. unwilted (UW). Within the W and UW treatments an inoculant or formic acid additive was applied to the herbage before ensiling. After a minimum ensiling period of 10 weeks, sixty steers, mean initial live weight 432 (s.d. 37) kg, were offered the twenty forages in a four-period partially balanced changeover design experiment. Each period was of 2 weeks’ duration. Dry-matter (DM) intakes were recorded daily, with intakes in the second week of each period used in the statistical analysis of the data. The digestibility of each of the forages was also determined in vivo using four castrated male sheep per silage. Wilting increased the DM content of the silage and the pH, the largest increase in DM content occurring at the second harvest. On average, wilting proportionally increased silage DM intake by 0·21 compared with the unwilted silage (P < 0·001), but the intake of the wilted silage was not significantly different from that of the artificially dried and pelleted grass (P > 0·05). The intake of the wilted silage was higher than that of the unwilted silage at each harvest, the proportional increases being 0·22 (P < 0·001), 0·41 (P < 0·001), 0·19 (P < 0·001) and 0·05 (P > 0·05) at harvests H1, H2, H3 and H4 respectively. Treatment of the grass with formic acid before ensiling resulted in a proportional increase in silage intake of 0·08 compared with the inoculant-treated silage (P < 0·05). Compared with the inoculant-treated silage, formic acid increased silage intake by 0·08, 0·02, 0·14 and 0·10 at harvests H1 (P > 0·05), H2 (P > 0·05), H3 (P < 0·01) and H4 (P < 0·05). The results of this study indicate that the effect of wilting on silage intake varies across different harvests and additive treatments. The difference in response to wilting across different harvests is mainly a result of the prevailing weather conditions during wilting.  相似文献   

2.
First and second harvests of lucerne (Medicago sativa L.), perennial ryegrass (Lolium perenne L.) and a lucerne–perennial ryegrass mixture [80 or 144 g kg?1 dry matter (DM) of ryegrass] at the first and second harvests were cut and conditioned, wilted to 500 or 700 g DM kg?1 then baled and stretch‐wrapped for silage on the same dates. Lucerne bales were denser (411 kg m?3) than bales of perennial ryegrass (331 kg m?3) (P < 0·05). After an 8‐month storage period, silage made from high DM‐content forage had a higher concentration of neutral‐detergent fibre (NDF) and was less digestible than that made from low DM‐content forage. Daily DM intakes by beef steers, when the silages of the second harvest were fed ad libitum, were 31·2, 31·2 and 22·3 g kg?1 live weight for lucerne, lucerne–perennial ryegrass mixture and perennial ryegrass silages, respectively (P < 0·01), when the herbage had been wilted to 500 g kg?1. In vivo digestibility of NDF in the lucerne–perennial ryegrass mixture silage (0·587) was significantly lower than that of perennial ryegrass silage (0·763) but higher than lucerne silage (0·518). Higher intakes of baled lucerne silage tended to offset its lower digestibility values. Lucerne–perennial ryegrass mixture silage had a higher DM and NDF digestibility than lucerne silage, indicating perhaps the presence of associative effects.  相似文献   

3.
Maize and amaranth forages, produced during the wet season, have the potential to bridge the gap in forage supply to ruminants during the dry season in Nigeria. In two growing seasons (2006 and 2007), effects of intercropping and fertilizer application on dry matter (DM) yield and chemical composition of forages, and land use efficiency, were studied in two experiments. The digestibility of sun‐dried or ensiled maize, amaranth or maize–amaranth mixtures was measured using West African dwarf sheep in a third experiment. Maize showed a higher response to fertilizer application than amaranth or maize–amaranth mixtures. With fertilizer application, DM yield varied significantly (P < 0·05) between species and intercropped mixtures. Dry matter yield ranged from 7·1 (amaranth) to 12·6 t ha?1 (maize) in 2006 and 6·9 (amaranth) to 11·3 t ha?1 (70:30 maize–amaranth population mixture) in 2007. Crude protein (CP) concentration of whole plants ranged from 99·0 (maize) to 227·0 g kg?1 DM (amaranth). Dry matter digestibility values of sun‐dried maize, sun‐dried maize:amaranth 50:50 mixture, sun‐dried amaranth, ensiled maize, ensiled maize:amaranth 50:50 mixture and ensiled amaranth were 0·718, 0·607, 0·573, 0·737, 0·553 and 0·526 respectively. Intercropping increased forage yield and land use efficiency compared to amaranth but had no yield advantage over maize. Although DM digestibility of maize was higher than that of amaranth or the maize:amaranth mixture, digestible CP yield ha?1 was higher with amaranth in the cropping mixture, showing that amaranth could complement maize in systems where CP is the limiting factor to livestock production.  相似文献   

4.
This study was conducted to determine the chemical composition and nutritive value of Prangos ferulacea, a plant found in the Mediterranean and Middle‐east regions, where it is used as animal fodder. Samples of mature plants were collected from S.E. Turkey. Metabolizable energy (ME) values were estimated from in vitro gas production measurements and from chemical composition. ME concentrations of the whole plant, leaves and stems were estimated to be 12·2, 11·9 and 12·7 MJ kg?1 dry matter (DM) respectively, which compares favourably with high‐quality forages commonly used in ruminant feeding. The DM degradability of the whole plant, leaves and stems increased up until 48 h of in situ incubation, 866, 915 and 784 g kg?1 DM respectively, but changed little between 48 and 72 h. In vitro DM and organic matter digestibility of the whole plant, leaves and stems were 0·769 and 0·806, 0·773 and 0·790, and 0·740 and 0·840 respectively. The results show that P. ferulacea may be regarded as a high‐energy forage, but further research is needed on its intake characteristics and the levels of animal performance that can be achieved from its inclusion in the diet.  相似文献   

5.
The objective of this experiment was to evaluate the Fieldscout CM 1000 NDVI and Yara N‐Tester as easy‐to‐use and cost‐effective tools for predicting foliar chlorophylls (a, b and total) and crude protein (CP) concentrations in herbage from three tropical grass species. Optical chlorophyll measurements were taken at three stages (4, 8 and 12 weeks) of regrowth maturity in Guinea grass (Panicum maximum) and Mulato II (Brachiaria hybrid) and at 6 and 12 weeks maturity in Paspalum spp (Paspalum atratum). Grass samples were harvested subsequent to optical measurements for laboratory analysis to determine CP and solvent‐extractable chlorophylls (a, b and total) concentrations. Optical chlorophyll measurements and CP concentrations were highly correlated (Yara N‐Tester: r2 = 0·77–0·89; Fieldscout CM 1000 NDVI: r2 = 0·52–0·84). Crude protein prediction models from the Yara N‐Tester and Fieldscout CM 1000 NDVI accounted for 70–89% and 44–73% CP variability, respectively, in Mulato II and Guinea grass. The Yara N‐tester produced more accurate and reliable CP estimates based on very high concordance correlation coefficient [CCC (0·73–0·91)] and low rMSPE, mean and regression bias. It is concluded that the Yara N‐Tester produces more accurate and reliable CP estimates of tropical pastures.  相似文献   

6.
The effects of forage matting on rate of grass drying and silage fermentation, digestibility, and intake were examined using perennial ryegrass swards. Treatments compared were: forage mats, where grass was processed through a laboratory scale macerator prior to matting and wilting to 228 g dry matter (DM) kg?1 (FM treatment); unconditioned grass which was direct ensiled at 163 g DM kg?1 (DE treatment); unconditioned grass which was wilted for the same period as FM to 213 g DM kg?1 (UC treatment); unconditioned grass which was wilted to 234 g DM kg?1 (UC25, treatment). All forages were dried on black plastic sheeting. For each treatment a total of approximately 80 kg grass DM was ensiled in seven 290 I plastic bins for 136 d prior to feeding to wether sheep. A further total of 14 kg grass DM from each treatment was ensiled in twenty-one plastic pipes (152 mm diameter, 762 mm long) to give a total of 84 pipes. Rate of silage fermentation was determined by destructively sampling pipes following 1, 2, 4, 6, 13, 20 and 50 d of ensilage. Over the mean wilting period of 6·9 h, grass from the FM treatment dried significantly faster (P < 0·001) and required less solar energy per unit of moisture loss than unconditioned grass. The rate of grass drying was highly correlated with solar radiation. The FM treatment did not influence the rate or extent of silage fermentation. The intakes and digestibilities of FM, UC and UC25 were not significantly (P < 0·05) different from each other but were higher than for the DE treatment (P < 0·05 for digestibility and NS for intake). In Northern Ireland it is unlikely that there will be sufficient solar radiation to allow forage mats to be made, wilted to a level to prevent effluent production and harvested within one working day. Further work is required to optimize mat-making technology for more rapid drying and to determine the effect of adverse weather on nutrient losses from mats.  相似文献   

7.
Abstract In 1993 and 1994, 40 cows in early lactation in early spring were assigned randomly to four feeding treatments. One group of cows was kept indoors with access to grass silage ad libitum, plus 6 kg of concentrate daily. The other three groups had access to grass pasture (5–6 h per day in 1993 and 11–12 h per day in 1994) plus grass silage similar to that fed to the previous group while indoors plus 6, 4 or 2 kg of concentrate daily. The average daily allocations of herbage (> 3·5 cm) were 8·5 and 14·0 kg DM cow?1 day?1 in 1993 and 1994 respectively. The treatments were applied for 8 weeks (26 February to 23 April) in 1993, and 7 weeks (11 March to 29 April) in 1994. Cows with access to pasture had lower (P < 0·001) silage dry‐matter (DM) intakes and higher (P < 0·001) total forage DM intakes in both years than those kept indoors. This resulted in significantly higher yields of milk, fat, protein and lactose. Similarly, milk protein concentration was higher (P < 0·05 in 1993; P < 0·001 in 1994). There was a significant linear increase in total DM intake in both years with increased concentrate supplementation. In 1993, there was a linear increase in milk (P < 0·01), fat (P < 0·01), protein (P < 0·001) and lactose (P < 0·01) yields with increased concentrate supplementation. In 1994, only milk protein yield (P < 0·05) was increased. Concentrate supplementation had no effect on milk composition or liveweight change. Cows with access to grazed grass had higher liveweight gains (P < 0·05) than those kept indoors in both years. In 1993, increasing the energy intake increased the processing qualities of the milk produced. The results showed that access to grass pasture resulted in higher milk production, in reduced silage requirement and in reduced level of concentrate supplementation required for a given level of milk production with spring‐calving cows in early lactation compared with those kept indoors.  相似文献   

8.
Warm‐season grasses and legumes have the potential to provide forage throughout the Mediterranean summer when there are high temperatures and low rainfall and when cool‐season grasses become less productive. Twenty‐nine non‐native, warm‐season pasture species (twenty‐three grasses and six legumes) were assessed for their adaptability to the coastal plain of southern Italy in terms of their productivity and nutritional quality. The investigated species were compared with two reference species widely used in a Mediterranean environment: a grass (Festuca arundinacea) and a legume (Medicago sativa). The species differed in their phenological and biological characteristics, i.e. start of vegetative resumption, first flowering and cold resistance, from each other and from the control species. From the second year after establishment, warm‐season perennial grasses had high dry‐matter (DM) yields and, in many cases, a more than adequate nutritional quality. As for legumes, the control, M. sativa gave the best results in all the investigated characters. Among the grasses, seven species (Chloris gayana, Eragrostis curvula, Panicum coloratum, Paspalum dilatatum, Pennisetum clandestinum, Sorghum almum, Sorghum spp. hybrid) had DM yields greater than the control species and had their maximum growth during the hottest period of the year, when F. arundinacea, the control grass species, was dormant. Eragrostis curvula had the highest annual DM yield (21·1 t ha?1) and P. clandestinum provided the best combination of agronomic and yield characteristics which were similar to those of M. sativa. The seven above‐mentioned species have the potential to supply hay or grazing and contribute to broadening and stabilizing the forage production calendar in Mediterranean‐type environments.  相似文献   

9.
A field experiment was conducted in 2006 and 2007 to determine the agronomic performance and nutritive value of Sorghum almum for introduction in the derived savannah area of Nigeria. The experiment was arranged in a 2 × 4 factorial design with 2 plant spacings (0·5 × 0·5 m and 1·0 × 1·0 m) and 4 nitrogen (N) fertilizer levels (0, 60, 120 and 180 kg N ha?1). Plant height, tiller number, leaf proportion, biomass yield and nutritive value of the herbage were evaluated as part of the search for alternatives (especially drought tolerant) to local forages for dry season feeding of ruminants. Herbage yield data were tested for linear, quadratic and cubic trends to identify the optimal fertilizer levels for both spacings. Spacing × N interactions (P < 0·05) were observed for plant height and tiller number in both years. Agronomic performance was marginally better in 2007 compared with 2006. The maximum dry‐matter (DM) yield of 3500 and 3740 kg ha?1 for the more dense row spacing (0·5 × 0·5 m) was achieved at N fertilizer levels of 144 and 149 kg N ha?1 for 2006 and 2007 respectively. For the less dense (1·0 × 1·0 m) row spacing, the maximum DM yield of 3020 and 3240 kg ha?1 was achieved at 51 and 97 kg N ha?1 for 2006 and 2007 respectively. The crude protein content of the grass ranged from 61 to 89 g kg?1 DM, while the neutral detergent fibre (NDF) content ranged from 700 to 734 g kg?1 DM. The ability of S. almum to persist into the second year in this region is seen as a promising index as persistence is one of the characteristics of a good forage plant. Considering the exorbitant price of N fertilizer, less dense row spacing with N fertilizer rate in the range of 50–100 kg N ha?1 is hereby recommended for this region.  相似文献   

10.
To test whether or not the ‘stay‐green’ (SG) characteristic confers benefits in terms of crop yield or distribution of dry matter (DM) in selected forage maize cultivars, an experiment was conducted in 1998 and 1999 at two sites in England: Writtle College, Essex and the University of Leeds, West Yorkshire. Five SG and five conventional (C) cultivars of forage maize were grown in replicated field‐scale plots at each site in both years. One‐metre lengths of single rows in each plot were harvested by hand, leaving a 20‐cm stubble, on four occasions each year over 3‐week periods (harvest 1 to harvest 4), prior to the harvest of the remainder of the fields. Plants were chopped, mixed and a subsample taken for determination of DM content by oven‐drying. Mean yields of whole plant DM were similar between SG and C cultivars. Both yield of DM and proportion of ear in the total plant DM increased from harvest 1 to harvest 4 (P < 0·01). The increase in DM yield between harvest 1 and harvest 4 was greater for C than for SG cultivars (P < 0·05). Within sites there were no differences in the concentration of whole plant DM between SG and C cultivars, which increased from harvest 1 to harvest 4 (P < 0·001). The proportion of ear DM in the whole plant DM tended to be higher for C than for SG cultivars in both years and increased (P < 0·001) from harvest 1 to harvest 4. The concentration of DM in the ear fraction was higher (P < 0·05) for C than for SG cultivars. We conclude that differences between SG and C cultivars of forage maize are likely to be relatively small when grown in the English climate and harvested after the same growing period.  相似文献   

11.
Yield profile characteristics of tall fescue (Festuca arundinacea Schreb.), cv. Retu, were compared with those of meadow fescue (Festuca pratensis Huds.). The study was conducted in Finland and was based on official variety trial data recorded between 1980 and 1998 at 17 trial sites between latitudes 60° and 66°N. The crops were managed according to silage‐cutting regimes. The pattern of yield formation of the tall fescue cv. Retu differed significantly from that of meadow fescue cultivars, both within a growing season as well as in sward age. Tall fescue cv. Retu established slowly, and the dry‐matter (DM) yield from the first cut, made in the first year of harvest, was significantly lower than that for meadow fescue. In the second and third years, the DM yield from the first cut did not differ between tall fescue and meadow fescue. Tall fescue produced significantly higher DM yield as regrowth (second and third cuts) than meadow fescue. The sward age significantly affected total DM production. In first‐year swards, there were no significant differences in total DM yield between tall fescue and meadow fescue but, in the second‐ and third‐year swards, tall fescue produced significantly higher DM yields than meadow fescue. The difference in yield profile between tall fescue and meadow fescue was similar in all the environments included in the study. DM yield for the first cut (kg DM ha–1) for tall fescue cv. Retu, in comparison with meadow fescue cultivars, was 2495 vs. 3099 (P < 0·001), 3735 vs. 3741 (NS, P=0·94) and 3553 vs. 3468 (NS, P=0·30) in the first‐, second‐ and third‐year swards respectively. The respective DM regrowth yields (second plus third cut) were: 6059 vs. 5416 (P < 0·001); 5445 vs. 4221 (P < 0·001); and 5580 vs. 4113 (P < 0·001) in first‐, second‐ and third‐year swards. Total DM yields per season for tall fescue vs. meadow fescue were (kg DM ha–1) 8554 vs. 8515 (NS, P=0·69), 9180 vs. 7962 (P < 0·001) and 9133 vs. 7581 (P < 0·001) in first‐, second‐ and third‐year swards respectively. Over the three‐year sward rotation period, which is common in Finland, tall fescue produced on average 12% higher DM yield than meadow fescue. Both tall fescue and meadow fescue suffered little winter damage in Finnish conditions; the differences between cultivars of the two species were small. The results indicated that tall fescue cv. Retu is a productive and persistent forage species suited to Finnish growing conditions.  相似文献   

12.
Two studies were conducted to examine the effects of incorporating small quantities of straw in the diets of dairy cows. In Experiment 1, forty Holstein Friesian dairy cows were used in a 2 × 4 factorial design experiment, with factors examined consisting of two parities (primiparous and multiparous animals) and four levels of straw inclusion in the diet (0, 0·08, 0·16 and 0·24 of forage dry matter). The basal forage offered in this study was grass silage, and the primiparous and multiparous animals were supplemented with 9·0 and 11·0 kg concentrate d–1 respectively. In Experiment 2, forty‐eight Holstein Friesian dairy cows were used in a 2 × 3 factorial design experiment, with factors examined consisting of two basal forage types (grass silage and zero‐grazed grass) and three levels of straw inclusion (0, 1·0 and 2·0 kg d–1). All animals were offered 7·0 kg d–1 of a concentrate supplement. Both experiments were partially balanced changeover designs, consisting of two, 4‐week periods. In Experiment 1, the total dry‐matter intake followed a significant quadratic relationship (P < 0·05), increasing with low levels of straw inclusion and decreasing at higher levels of inclusion. With increasing levels of straw inclusion, there was a linear decline in milk yield (P < 0·001) and milk protein concentration (P < 0·05), but milk fat concentration was unaffected (P > 0·05). In Experiment 2, the effect of straw inclusion on total dry‐matter intake was quadratic (P < 0·001), with intakes being maximum at the 1·0‐kg level of straw inclusion. Milk yield exhibited a linear decrease (P < 0·001) with increasing level of straw inclusion. Milk fat concentration was lowest at the 1·0 kg rate of straw inclusion (P < 0·05), but milk protein concentration was unaffected by straw inclusion. There were no significant interactions between basal forage type and level of straw inclusion for any of the variables examined (P > 0·05). Despite small increases in total dry‐matter intake at a low level of straw inclusion, there was no evidence that straw inclusion improved either nutrient utilization or animal performance. The reduction in milk yield observed with straw inclusion reflects, to a large extent, a reduction in metabolizable energy intake.  相似文献   

13.
Warm‐season pasture residue may create problems for no‐till overseeding with cool‐season grasses in the USA Southern Plains. Removal of residue to facilitate overseeding, however, represents additional cost and labour that may not be available on small livestock farms. Field experiments were undertaken to assess the effects of above‐surface residues of warm‐season pasture averaging 1·62, 2·48 or 3·36 t DM ha?1 on establishment and herbage production of Italian ryegrass (Lolium multiflorum) or tall fescue (Festuca arundinacea) overseeded by broadcasting or by no‐till drilling into dormant warm‐season pasture. On average, no‐till drilling was more effective than broadcasting in establishing both grass species, but it was no more effective than broadcasting when used with the greatest amount of residue. Cool‐season grass production was increased by 0·16 when no‐till drilled, but combined yearly total herbage production of cool‐ and warm‐season grasses was increased by 0·07 when cool‐season grasses were established by broadcasting. Amount of residue at sowing did not significantly affect herbage yield of cool‐season grass, but increased residue in autumn resulted in a 0·16 increase in total herbage production in the year following sowing. Residue amount did not affect over‐winter survival of grass seedlings, and productivity benefits of increased residue are small compared with reduced harvest arising from underutilization of warm‐season pasture residue in autumn.  相似文献   

14.
A 6 × 6 Latin square experiment with a 2 × 3 factorial arrangement of treatments was used to study forage preservation method and level of concentrate in a diet on organic matter (OM) and N digestion and rumen fermentation. Six bulls, each fitted with ruminal and duodenal cannulae, were given unwilted silage (S) or barndried grass (G) prepared simultaneously from the same timothy sward. The forages were fed together with 250 (L), 500 (M) or 750(H)g concentrate dry matter (DM)kg-1 total diet DM. The concentrate consisted of barley (875 gkg-1) and rapeseed meal (125g kg-1). The feeding level was 80g DMkg-1 live weight0·75. The apparent digestibility of OM was similar for S and G diets, and increased linearly (P < 0·001) with increasing level of concentrate. The flow of microbial N at the duodenum and the apparent efficiency of microbial protein synthesis in the rumen were higher (P < 0·05) with S than with G diets. Increasing the concentrate level increased linearly (P < 0·05) the amounts of total N and microbial N at the duodenum, whereas the synthetic efficiency was not significantly affected. The mean rumen pH decreased linearly (P < 0·001) from 6·43 to 6·03 with increasing concentrate level. The molar proportion of acetate (Ac) in the rumen volatile fatty acids (VFA) showed a linear (P < 0·001) and quadratic (P < 0·01) decrease, and that of butyrate (Bu) a linear (P < 0·001) increase when the level of concentrate was increased. The proportion of propionate decreased slightly with both forages when the amount of concentrate was increased from level L to M. A further increase to level H increased propionate from 157 to 170 mmol mol-1 of total VFA with S and from 157 to 188 mmol mol-1 with G, the effect of concentrate level being not significant. The number of protozoa increased linearly (P < 0·001) as the level of concentrate increased. The changes in the rumen fermentation patterns during the feeding cycle were greater for S than for G diets.  相似文献   

15.
Six mid‐lactation multiparous Holstein–Friesian dairy cows were used to examine the potential of a fermented whole‐crop barley (Hordeum vulgare)/kale (Brassica oleracea) bi‐crop as a feed compared with a first‐cut perennial ryegrass silage. The barley/kale bi‐crop was grown as a strip intercrop, and was harvested and ensiled as an intimate mixture [0·80 barley and 0·20 kale on a dry‐matter (DM) basis]. Animals were offered ad libitum access to one of three experimental diets in a duplicated Latin Square design experiment: (i) Bi‐crop (the barley/kale bi‐crop); (ii) Grass (the grass silage); and (iii) Mix (a 1:1 fresh mixture of Bi‐crop and Grass). All animals also received a standard dairy concentrate at a rate of 4 kg d?1 in equal portions at each of two milkings. The Bi‐crop and Grass silages contained 346 and 293 g DM kg?1, 108 and 168 g crude protein kg?1 DM, 268 and 36 g starch kg?1 DM, and had pH values of 3·87 and 3·80 respectively. Animals offered the two bi‐crop silage‐containing diets consumed more forage DM than those offered grass silage (14·6, 14·9 and 12·6 kg DM d?1 for Bi‐crop, Mix and Grass respectively; s.e.d. 0·45, P < 0·01) and yielded more milk (24·0, 23·9, 22·6 kg d?1 for Bi‐crop, Mix and Grass respectively; s.e.d. 0·26, P < 0·01). However, differences in the partitioning of dietary nitrogen towards milk protein and away from excretion in urine suggest a more efficient (rumen) utilization of feed protein by animals offered diets containing the bi‐crop silage. It is concluded that, despite having a low crude protein concentration, barley/kale bi‐crop silage offers excellent potential as a feed for lactating dairy cows.  相似文献   

16.
Abstract The response of a long‐term, mixed‐species hayfield in Maine, USA, to commercial fertilizers and liquid dairy manure was evaluated over a 6‐year period, including the effects on yield, nutrient concentration and cycling, forage species composition and soil nutrient levels. Nutrient treatments included an unamended control, N fertilizer, NPK fertilizer and liquid dairy manure (LDM). The application rates of plant‐available N, P, and K were constant across treatments. Application of nutrients in any form increased forage yield, generally by 2–4 t dry matter (DM) ha?1 year?1. Yield from NPK fertilizer was 0·05–0·25 higher than from LDM, due to differences in N availability. Yield responses to P and K were minimal and there appeared to be no difference between P and K in fertilizer and manure. The forage sward became increasingly dominated by grass species as the experiment progressed; application of P and K in fertilizer or LDM allowed Agropyron repens to increase at the expense of Poa pratensis. Forage nutrient removal accounted for all applied N and K, and nearly all applied P, throughout the study period, demonstrating the important role these forages can play in whole‐farm nutrient management.  相似文献   

17.
A randomized block design experiment involving thirty beef cattle (mean initial live weight 462 kg) was carried out to evaluate a bacterial inoculant based on a single strain of Lactobacillus plantarum as a silage additive and to provide further information in relation to its mode of action. Three herbages were harvested on 10 August 1989 using three double-chop forage harvesters from the first regrowth of a perennial ryegrass sward which had received 170 kg N, 25 kg P2O5, and 42 kg K2O ha?1. They received either no additive (silage C), formic acid at 2·91 (t grass)?1(silage F) or the inoculant at 3·21 (t grass)?1 (silage I). Mean dry-matter (DM), water-soluble carbohydrate and crude protein concentrations in the untreated herbages were 158g kg?1, 88 g (kg DM)? and 183g (kg DM)?1 respectively. For silages C, F and I respectively, pH values were 4·01, 3·57 and 3·62; ammonia N concentrations 117, 55 and 77 g (kg total N)?1; and butyrate concentrations 2·18, 0·50 and l·24g (kg DM)?1. The silages were offered ad libitum and supplemented with 2·5 kg concentrates per head daily for 77 days. For treatments C, F and I, silage DM intakes were 6·59, 7·25 and 6·80 (s.e. 0·074)kg d?1; metabolizable energy (ME) intakes 86,99 and 94 (s.e. 0·8) MJ d?1; liveweight gains 0·90, 0·97 and 1·02(s.e.0·066) kg d?1; carcass gains 541,656 and 680 (s.e. 34·0) g d?1. Inoculant treatment increased DM (P < 0·01), organic matter (P < 0·01), crude fibre (P < 0·05), neutral detergent fibre (NDF) (P < 0·05) and energy (P < 0·05) digestibilities, the digestible organic matter concentration (P < 0·01) and the ME concentration (P < 0·05) of the total diets. Additive treatment altered rumen fermentation patterns but had little effect on the rumen degradability of silage DM, modified acid detergent (MAD) fibre, NDF or hemicellulose. It is concluded that treatment with the inoculant improved silage fermentation and increased digestibility, had little effect on silage DM intake but significantly increased carcass gain to a level similar to that sustained by a well-preserved formic acid-treated silage  相似文献   

18.
Abstract The effects of level of concentrate supplementation on the response of dairy cows to grass silage‐based diets containing a constant proportion of fodder beet were examined. Forty Holstein‐Friesian dairy cows of mixed parity were used in a 2 × 5 factorial design experiment. Two basal diet types [grass silage alone or grass silage mixed with fodder beet in a 70:30 dry matter (DM) ratio] were offered ad libitum, and the effects of five levels of concentrate supplementation (mean = 3·0, 5·3, 7·5, 9·8 and 12·0 kg DM per cow d?1) were examined. Concentrate supplements were offered via an out‐of‐parlour feeding system. These treatments were examined in a three‐period (period length = 4 weeks) partially balanced changeover design experiment. Fodder beet inclusion had no significant effect on the estimated metabolizable energy (ME) concentration of the ration (P > 0·001). Total DM intake, estimated ME intake, milk yield, milk protein content and milk energy output all showed significant linear increases with increasing level of concentrate inclusion (P < 0·001) while, in addition, milk yield and milk energy output exhibited a significant quadratic increase (P < 0·01). The inclusion of fodder beet in the diet reduced silage DM intake (P < 0·01) but resulted in an increase in total DM intake and estimated ME intake (P < 0·001). However, inclusion of fodder beet had no significant effect on milk yield (P > 0·05), while increasing milk protein content and milk energy output (P ≤ 0·05). Milk energy output, as a proportion of estimated ME intake, was significantly (P < 0·001) reduced by fodder beet inclusion (0·44 vs. 0·38). Despite large increases in estimated ME intake with the inclusion of fodder beet at all levels of concentrate supplementation, milk energy output responses were small, resulting in an overall reduction in the efficiency of conversion of ME intake into milk energy output. An increased partitioning of dietary ME intake to tissue gain is suggested as the most likely explanation for the observations made.  相似文献   

19.
Two experiments were conducted to examine the effect of two winter feeding systems on the performance of dairy cows in early lactation. Experiments 1 (144 d duration) and 2 (146 d duration) involved sixty‐four (primiparous) and eighty‐six (primiparous and multiparous) Holstein Friesian dairy cows respectively. Rations offered comprised grass silage, maize silage [0·26–0·29 of forage dry matter (DM)] and concentrates (10–12 kg d?1). With the complete diet (treatment CD), the forage and concentrate components were mixed using a complete diet mixer wagon, and offered daily in the form of a ‘complete diet’. With the easy feed (treatment EF), the dairy cows were offered the forage component of the ration twice weekly in whole blocks, in quantities sufficient for the following 3‐ or 4‐d period, while the concentrate component of the diet was offered via electronic out‐of‐parlour feeding stations. Total DM intakes were similar, namely 17·6 and 17·0 kg d?1 (Experiment 1) and 18·7 and 18·5 kg d?1 (Experiment 2), for treatments CD and EF respectively. Feeding system had no significant effect on milk yield, milk fat or milk protein content, or on end of study indices of body tissue reserves in either experiment (P > 0·05). Similarly, feeding system had no significant effect on the digestibility of the ration measured in Experiment 2 (P > 0·05). Feeding times associated with each component of the two feeding systems were measured, and these were then used to calculate total feeding time for a 97‐cow dairy herd. Calculated feeding times for this herd were 209·3 and 156·0 min week?1 for treatments CD and EF respectively.  相似文献   

20.
The objective of this study was to investigate the effects of an early (February; F) or delayed (April; A) primary spring grazing date and two stocking rates, high (H) and medium (M), on the grazing management, dry matter (DM) intake of grass herbage and milk production of spring‐calving dairy cows grazing a perennial ryegrass sward in the subsequent summer. Sixty‐four Holstein‐Friesian dairy cows (mean of 58 d in milk) were assigned to one of four grazing treatments (n = 16) which were imposed from 12 April to 3 July 2004. Cows on the early spring‐grazing treatment were grazed at 5·5 cows ha?1 (treatment FH) and 4·5 cows ha?1 (treatment FM) while cows on the late‐grazing treatment were grazed at 6·4 cows ha?1 (treatment AH) and 5·5 cows ha?1 (treatment AM). The organic matter digestibility and crude protein concentration of the grass herbage were higher on the early‐grazing treatment than on the late‐grazing treatment. The cows on the FM treatment had significantly (P < 0·001) higher milk (24·5 kg), solids‐corrected milk (22·5 kg), fat (P < 0·01, 918 g) and protein (831 g) yields than the other three treatments. Cows on the FM treatment had a higher (P < 0·001) DM intake of grass herbage by 2·3 kg DM per cow per day than cows on the AH treatment, which had a DM intake significantly lower than all other treatments (15·2 kg DM per cow per day). The results of the present study showed that grazing in early spring has a positive effect on herbage quality in subsequent grazing rotations. The study also concluded that early spring‐grazed swards stocked at a medium stocking rate (4·5 cows ha?1; FM) resulted in the highest DM intake of grass herbage and milk production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号