首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cook E 《Science (New York, N.Y.)》1979,206(4423):1141-1147
Helium appears indispensable for certain energy-related uses that may be important 50 years from now, when helium-bearing natural gas, a much cheaper source than air, may be exhausted. Present demand, however, is lower than productive capacity, and much helium is being dissipated into the atmosphere as natural gas is burned for fuel. Controversy over the need for a government-directed helium-conservation program reflects fundamental differences in viewpoints on the economic future of industrial society, on the limits of substitution of labor and capital for a depleting resource, and on intergenerational equity and risk-bearing.  相似文献   

2.
3.
4.
5.
6.
Major advances in observational astronomy over the past 20 years have revolutionized our view of cosmic history, transforming our understanding of how the hot, smooth, early universe evolved into the complex and beautiful universe of stars and galaxies in which we now live. I describe how astronomers have used a range of complementary techniques to map out the rise and fall of star formation over 95% of cosmic time, back to the current observational frontier only ~500 million years after the Big Bang.  相似文献   

7.
8.
9.
On the largest scales, matter is strung out on an intricate pattern known as the cosmic web. The tendrils of this web should reach right into our own cosmic backyard, lacing the Galactic halo with lumps of dark matter. The search for these lumps, lit up by stars that formed within them, is a major astronomical endeavor, although it has failed to find the huge expected population. Is this a dark matter crisis, or does it provide clues to the complexities of gas physics in the early universe? New technologies in the coming decade will reveal the answer.  相似文献   

10.
The Cosmic Microwave Background provides our most ancient image of the universe and our best tool for studying its early evolution. Theories of high-energy physics predict the formation of various types of topological defects in the very early universe, including cosmic texture, which would generate hot and cold spots in the Cosmic Microwave Background. We show through a Bayesian statistical analysis that the most prominent 5 degrees -radius cold spot observed in all-sky images, which is otherwise hard to explain, is compatible with having being caused by a texture. From this model, we constrain the fundamental symmetry-breaking energy scale to be (0) approximately 8.7 x 10(15) gigaelectron volts. If confirmed, this detection of a cosmic defect will probe physics at energies exceeding any conceivable terrestrial experiment.  相似文献   

11.
The earliest generation of stars, far from being a mere novelty, transformed the universe from darkness to light. The first atoms to form after the Big Bang filled the universe with atomic hydrogen and a few light elements. As gravity pulled gas clouds together, the first stars ignited and their radiation turned the surrounding atoms into ions. By looking at gas between us and distant galaxies, we know that this ionization eventually pervaded all space, so that few hydrogen atoms remain today between galaxies. Knowing exactly when and how it did so is a primary goal of cosmologists, because this would tell us when the early stars formed and in what kinds of galaxies. Although this ionization is beginning to be understood by using theoretical models and computer simulations, a new generation of telescopes is being built that will map atomic hydrogen throughout the universe.  相似文献   

12.
13.
14.
15.
The universe is filled with thermal radiation having a current temperature of 2.75 K. Originating in the very early universe, this radiation furnishes strong evidence that the Big Bang cosmology best describes our expanding universe from an incredibly hot, compacted early stage until now. The model can be used to extrapolate our physics backward in time to predict events whose effects might be observable in the 2.75 K radiation today. The spectrum and isotropy are being studied with sophisticated microwave radiometers on the ground, in balloons, and in satellites. The results are as predicted by the simple theory: the spectrum is that of a blackbody (to a few percent) and the radiation is isotropic (to 0.01 percent) except for a local effect due to our motion through the radiation. However, a problem is emerging. Primordial fluctuations in the mass density, which later became the great clusters of galaxies that we see today, should have left an imprint on the 2.75 K radiation-bumpiness on the sky at angular scales of about 10 arc minutes. They have not yet been seen.  相似文献   

16.
Cosmic ray nuclei have been observed with the use of plastic trackdetecting solids in satellites and high-altitude balloon flights. Nuclear emulsions in the stacks of plastic sheets allowed the positive identification of cosmic raynuclei as light as nitrogen. The most striking new information was the failure to observe relativistic iron nuclei, a result which has led to an advance in the understanding of track registration criteria.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号