首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A controlled trial was conducted to assess suitability of combinations of medetomidine and ketamine for the ovariectomy of cats, to investigate the possible side effects, and to compare medetomidine/ketamine with a combination of xylazine and ketamine. Three hundred and thirty-seven cats were submitted to surgery; 100 were anaesthetised with 80 micrograms/kg medetomidine and 5 mg/kg ketamine, 137 with 80 micrograms/kg medetomidine and 7.5 mg/kg ketamine, and 100 were anaesthetised with 1 mg/kg xylazine and 10 mg/kg ketamine. The combinations were injected intramuscularly in the same syringe. The anaesthesia provided by the medetomidine/ketamine combinations was characterised by good muscle relaxation, good analgesia and minimal side effects. The only difference between the two doses of ketamine was the length of the period of anaesthesia. The advantages of the medetomidine/ketamine combination in comparison with xylazine/ketamine were the need for a lower dose of ketamine, a longer duration of action and better analgesia. Similar side effects were observed with both medetomidine/ketamine and xylazine/ketamine combinations.  相似文献   

2.
We studied four different drug regimes for anaesthetic management in chinchillas and evaluated and compared their cardiovascular and respiratory effects. In this randomized, cross-over experimental study, seven adult chinchillas, five females, two males [515 +/- 70 (SD) g] were randomly assigned to one of the following groups: group 1 [midazolam, medetomidine and fentanyl (MMF), flumazenil, atipamezole and naloxone (FAN); MMF-FAN] received 1.0 mg/kg midazolam, 0.05 mg/kg medetomidine and 0.02 mg/kg fentanyl i.m., and for reversal 0.1 mg/kg flumazenil, 0.5 mg/kg atipamezole and 0.05 mg/kg naloxone s.c. after 45 min; group 2 (MMF) 1.0 mg/kg midazolam, 0.05 mg/kg medetomidine and 0.02 mg/kg fentanyl i.m.; group 3 [xylazine/ketamine (X/K)] 2.0 mg/kg xylazine and 40.0 mg/kg ketamine i.m.; and group 4 [medetomidine/ketamine (M/K)] 0.06 mg/kg medetomidine and 5.0 mg/kg ketamine i.m. Reflexes were judged to determine anaesthetic stages and planes. Anaesthesia with X/K and M/K was associated with a prolonged surgical tolerance and recovery period. By reversing MMF, recovery period was significantly shortened (5 +/- 1.3 min versus 40 +/- 10.3 min in MMF without FAN, 73 +/- 15.0 min in X/K, and 31 +/- 8.5 min in M/K). Without reversal, MMF produced anaesthesia lasting 109 +/- 16.3 min. All combinations decreased respiratory and heart rate but compared with X/K and M/K, respiratory and cardiovascular complications were less in the MMF groups. Focussing on the clinical relevance of the tested combinations, completely reversible anaesthesia showed two major advantages: anaesthesia can be antagonized in case of emergency and routinely shortens recovery. In small animals particularly these advantages lead to less complications and discomfort and thus often can be lifesaving. As all analgesic components (medetomidine and fentanyl) are reversed, postoperative analgesia should be provided before reversal of anaesthesia.  相似文献   

3.
Seven Thoroughbred horses were castrated under total intravenous anesthesia (TIVA) using propofol and medetomidine. After premedication with medetomidine (5.0 μg/kg, intravenously), anesthesia was induced with guaifenesin (100 mg/kg, intravenously) and propofol (3.0 mg/kg, intravenously) and maintained with constant rate infusions of medetomidine (0.05 μg/kg/min) and propofol (0.1 mg/kg/min). Quality of induction was judged excellent to good. Three horses showed insufficient anesthesia and received additional anesthetic. Arterial blood pressure changed within an acceptable range in all horses. Decreases in respiratory rate and hypercapnia were observed in all horses. Three horses showed apnea within a short period of time. Recovery from anesthesia was calm and smooth in all horses. The TIVA-regimen used in this study provides clinically effective anesthesia for castration in horses. However, assisted ventilation should be considered to minimize respiratory depression.  相似文献   

4.
The anaesthetic and physiological effects of a combination of 40 micrograms medetomidine with 2.5 ketamine, 5.0 or 7.5 mg/kg administered intramuscularly were compared with the effects of a combination of 1 mg/kg xylazine and 15 mg/kg ketamine. All the combinations rapidly induced an anaesthetic state that permitted endotracheal intubation, with the absence of the pedal reflex and with good muscle relaxation, and induced bradycardia that was less pronounced as the dose of ketamine was increased. All the combinations produced a decrease in respiratory rate. Increasing the dose of ketamine combined with medetomidine resulted in a very significant prolongation of the duration of anaesthesia, the duration of muscle relaxation and the arousal time. The duration of the anaesthetic effects of 40 micrograms/kg medetomidine with 5 mg/kg ketamine was comparable to that provided by the recommended xylazine/ketamine combination but the period of muscle relaxation was significantly longer. The recovery from medetomidine/ketamine took longer than recovery from xylazine/ketamine but there were fewer side effects.  相似文献   

5.
This study was designed to evaluate 2 combinations for immobilization of bison. Seven wood bison received 1.5 mg/kg body weight (BW) of xylazine HCl + 1.5 mg/kg BW of zolazepam HCl and 1.5 mg/kg BW of tiletamine HCl on one occasion. The bison received 60 micrograms/kg BW of medetomidine HCl + 0.6 mg/kg BW of zolazepam HCl and 0.6 mg/kg BW of tiletamine HCL on another occasion. Xylazine was antagonized with 3 mg/kg BW of tolazoline HCl and medetomidine HCl was antagonized with 180 micrograms/kg (BW) of atipamezole HCl. Temporal characteristics of immobilization and physiological effects (acid-base status, thermoregulatory, cardiovascular, and respiratory effects) of the drug combinations were compared. Induction was significantly faster with xylazine HCl-zolazepam HCl/tiletamine HCl. Recovery following antagonist administration was significantly faster with medetomidine HCl-zolazepam HCl/tiletamine HCl. The average drug volumes required were 7.00 mL of xylazine HCl-zolazepam HCl/tiletamine HCL and 2.78 mL of medetomidine HCl-zolazepam HCl/tiletamine HCl. Hypoxemia, hypercarbia, and rumenal tympany were the major adverse effects with both drug combinations.  相似文献   

6.
The objectives of this trial were to determine the ability of atipamezole, 4-aminopyridine and yohimbine to reverse the anaesthetic effects of a combination of medetomidine and ketamine in cats. Forty healthy cats were anaesthetised with 80 micrograms/kg medetomidine combined with 5 mg/kg ketamine. Thirty minutes later atipamezole (200 or 500 micrograms/kg), 4-aminopyridine (500 or 1000 micrograms/kg) or yohimbine (250 or 500 micrograms/kg) were injected intramuscularly. The doses of antagonists were randomised, so that each dose was administered to five cats, and 10 cats were injected only with physiological saline. Atipamezole clearly reversed the anaesthesia and bradycardia induced by medetomidine and ketamine. The mean (+/- sd) arousal times were 28 (+/- 4.7), 5.8 (+/- 1.8) and 7 (+/- 2.1) minutes in the placebo group, and the groups receiving 200 and 500 micrograms/kg atipamezole, respectively. The heart rates of the cats receiving 200 micrograms/kg atipamezole rapidly returned to values close to the initial ones, but 15 minutes after the injection of 500 micrograms/kg atipamezole a significant tachycardia was observed. All the cats showed moderate signs of ataxia during the recovery period. A dose of 500 micrograms/kg yohimbine also clearly reversed the anaesthetic effects of medetomidine/ketamine but 250 micrograms/kg was not effective. The dose of 500 micrograms/kg allowed a smooth recovery with no particular side effects except for some signs of incomplete antagonism of the ketamine effects, ie, ataxia and muscular incoordination. With 4-aminopyridine there were no statistically significant effects on the recovery, or the heart and respiratory rates of the cats anaesthetised with medetomidine/ketamine.  相似文献   

7.
OBJECTIVE: To determine anesthetic effects of ketamine and medetomidine in bonitos and mackerels and whether anesthesia could be reversed with atipamezole. DESIGN: Clinical trial. ANIMALS: 43 bonitos (Sarda chiliensis) and 47 Pacific mackerels (Scomber japonica). PROCEDURE: 28 bonitos were given doses of ketamine ranging from 1 to 8 mg/kg (0.5 to 3.6 mg/lb), i.m., and doses of medetomidine ranging from 0.2 to 1.6 mg/kg (0.1 to 0.7 mg/lb), i.m. (ratio of ketamine to medetomidine, 2.5:1 to 20:1). Doses of atipamezole equal to 1 or 5 times the dose of medetomidine were used. The remaining 15 bonitos were used to determine the anesthetic effects of ketamine at a dose of 4 mg/kg (1.8 mg/lb) and medetomidine at a dose of 0.4 mg/kg (0.2 mg/lb). The mackerels were given ketamine at doses ranging from 11 to 533 mg/kg (5 to 242 mg/lb) and medetomidine at doses ranging from 0.3 to 9.1 mg/kg (0.1 to 4.1 mg/lb; ratio of ketamine to medetomidine, 3:1 to 800:1). Doses of atipamezole equal to 5 times the dose of medetomidine were used. RESULTS: I.m. administration of ketamine at a dose of 4 mg/kg and medetomidine at a dose of 0.4 mg/kg in bonitos and ketamine at a dose of 53 to 228 mg/kg (24 to 104 mg/lb) and medetomidine at a dose of 0.6 to 4.2 mg/kg (0.3 to 1.9 mg/lb) in mackerels was safe and effective. For both species, administration of atipamezole at a dose 5 times the dose of medetomidine reversed the anesthetic effects. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that a combination of ketamine and medetomidine can safely be used for anesthesia of bonitos and mackerels and that anesthetic effects can be reversed with atipamezole.  相似文献   

8.
The cardiovascular effects of medetomidine, detomidine, and xylazine in horses were studied. Fifteen horses, whose right carotid arteries had previously been surgically raised to a subcutaneous position during general anesthesia were used. Five horses each were given the following 8 treatments: an intravenous injection of 4 doses of medetomidine (3, 5, 7.5, and 10 microg/kg), 3 doses of detomidine (10, 20, and 40 microg/kg), and one dose of xylazine (1 mg/kg). Heart rate decreased, but not statistically significant. Atrio-ventricular block was observed following all treatments and prolonged with detomidine. Cardiac index (CI) and stroke volume (SV) were decreased with all treatments. The CI decreased to about 50% of baseline values for 5 min after 7.5 and 10 microg/kg medetomidine and 1 mg/kg xylazine, for 20 min after 20 microg/kg detomidine, and for 50 min after 40 microg/kg detomidine. All treatments produced an initial hypertension within 2 min of drug administration followed by a significant decrease in arterial blood pressure (ABP) in horses administered 3 to 7.5 microg/kg medetomidine and 1 mg/kg xylazine. Hypertension was significantly prolonged in 20 and 40 microg/kg detomidine. The hypotensive phase was not observed in 10 microg/kg medetomidine or detomidine. The changes in ABP were associated with an increase in peripheral vascular resistance. Respiratory rate was decreased for 40 to 120 min in 5, 7.5, and 10 microg/kg medetomidine and detomidine. The partial pressure of arterial oxygen decreased significantly in 10 microg/kg medetomidine and detomidine, while the partial pressure of arterial carbon dioxide did not change significantly. Medetomidine induced dose-dependent cardiovascular depression similar to detomidine. The cardiovascular effects of medetomidine and xylazine were not as prolonged as that of detomidine. KEY WORDS: cardiovascular effect, detomidine, equine, medetomidine, xylazine.  相似文献   

9.
The efficacies and ease of administration of four oral preanesthetic sedation protocols were compared in 18 adult, male rhesus macaques (Macaca mulatta) to achieve heavy sedation and alleviate anxiety, agitation, and potential trauma associated with remote anesthesia induction. The macaques, with average age and weight of 10 yr and 12.5 kg, respectively, were randomly assigned to one of four groups. Group 1 was given 10 mg/kg tiletaminezolazepam and 0.05 mg/kg medetomidine p.o., group 2 was given 1 mg/kg midazolam and 20 mg/kg ketamine p.o., group 3 was given 20 mg/kg ketamine and 0.05 mg/kg medetomidine p.o., and group 4 was given 3 mg/kg midazolam p.o. All protocols produced effects ranging from mild sedation to no response to noxious stimuli, depending on the success of administration. The mean interval to peak effect was 27-43 min in all groups. Ketamine and medetomidine provided significantly better sedation than midazolam alone; there were no other statistically significant differences among the four protocols. Oral tiletamine-zolazepam and medetomidine provided smooth, mild to moderate sedation with few side effects. The midazolam and ketamine combination resulted in severe ataxia. Orally administered ketamine and medetomidine provided smooth, easily reversible, heavy sedation leading to no response to noxious stimuli. Midazolam alone provided only mild sedation. No statistically significant differences in palatability of the four protocols were identified. Orally administered ketamine and medetomidine (group 3) provided the most consistently heavy sedation. A compounding pharmacy may be able to increase the palatability and level of acceptance of these combinations. Alternatively, oral midazolam syrup is well accepted by some animals and provides a mild sedative and calming effect, which may decrease stress associated with the induction of anesthesia via darting, pole syringes, etc.  相似文献   

10.
The relative efficacies and cardiorespiratory effects of three injectable anesthetic combinations containing medetomidine were evaluated in ring-tailed lemurs (Lemur catta). In addition, the direct effects of medetomidine on heart rate and blood pressure were evaluated in lemurs anesthetized with isoflurane. For injectable anesthesia, captive adult ring-tailed lemurs were anesthetized with medetomidine and ketamine (0.04-0.06 mg/kg, i.m. and 3 mg/kg, i.m., respectively), medetomidine, butorphanol, and ketamine (0.04 mg/kg, i.m., 0.4 mg/kg, i.m., and 3 mg/kg, i.m., respectively), or medetomidine, butorphanol, and midazolam (0.04 mg/kg, i.m., 0.4 mg/kg, i.m., and 0.3 mg/kg, i.m., respectively). For inhalation anesthesia, lemurs were mask-induced and maintained with isoflurane for 30 min before receiving medetomidine (0.04 mg/kg, i.m.). Sedation produced by medetomidine-ketamine was unpredictable and of short duration. Both medetomidine-butorphanol-ketamine (MBK) and medetomidine-butorphanol-midazolam (MBMz) provided adequate anesthesia for routine physical exams; however, the effects of MBMz lasted longer than those of MBK. Heart rates and respiratory rates were within clinically normal ranges for all groups, and lemurs remained normotensive throughout the study. Common side effects such as hypertension and bradycardia associated with the use of alpha2-adrenergic receptor agonist combinations in other species were not observed. Likewise, medetomidine administration had no effect on HR in lemurs receiving isoflurane. Lemurs in all groups were well ventilated and remained well oxygenated throughout the procedures, though arterial partial pressure of O2 was lowest in the MBMz group. All three injectable medetomidine combinations were effective in ring-tailed lemurs but only MBK and MBMz provided adequate depth and duration of anesthesia for use as sole regimes. For many clinical procedures in lemurs, MBMz offers advantages over MBK because of its longer duration of action and its rapid and more complete reversibility with specific antagonists.  相似文献   

11.
Ten nesting leatherback sea turtles on Trinidad were anaesthetised for electroretinogram (ERG) measurements, using ketamine and medetomidine, reversed with atipamezole. They weighed 242 to 324 kg and were given initial doses of 3 to 8 mg/kg ketamine and 30 to 80 microg/kg medetomidine administered into an external jugular vein; six of the turtles received supplementary doses of 2.6 to 3.9 mg/kg ketamine combined with 0 to 39 microg/kg medetomidine. The lower doses were used initially to ensure against overdosage and reduce the chances of residual effects after the turtles returned to the water, but successful ergs called for step-wise dose increases to the required level of anaesthesia. Respiratory rate, heart rate, electrocardiogram, cloacal temperature, and venous blood gases were monitored, and blood was collected for plasma biochemistry. At the end of the erg procedure, atipamezole was administered at 150 to 420 microg/kg (five times the dose of medetomidine), half intramuscularly and half intravascularly. The turtles were monitored and prevented from re-entering the water until their behaviour was normal. No apparent mortalities or serious anaesthetic complications occurred. The observed within-season return nesting rate of the anaesthetised turtles was comparable with that of unanaesthetised turtles.  相似文献   

12.
OBJECTIVE: To determine sedative and cardiorespiratory effects of i.m. administration of medetomidine alone and in combination with butorphanol or ketamine in dogs. DESIGN: Randomized, crossover study. ANIMALS: 6 healthy adult dogs. PROCEDURES: Dogs were given medetomidine alone (30 micrograms/kg [13.6 micrograms/lb] of body weight, i.m.), a combination of medetomidine (30 micrograms/kg, i.m.) and butorphanol (0.2 mg/kg [0.09 mg/lb], i.m.), or a combination of medetomidine (30 micrograms/kg, i.m.) and ketamine (3 mg/kg [1.36 mg/lb], i.m.). Treatments were administered in random order with a minimum of 1 week between treatments. Glycopyrrolate was given at the same time. Atipamezole (150 micrograms/kg [68 micrograms/lb], i.m.) was given 40 minutes after administration of medetomidine. RESULTS: All but 1 dog (given medetomidine alone) assumed lateral recumbency within 6 minutes after drug administration. Endotracheal intubation was significantly more difficult when dogs were given medetomidine alone than when given medetomidine and butorphanol. At all evaluation times, percentages of dogs with positive responses to tail clamping or to needle pricks in the cervical region, shoulder region, abdominal region, or hindquarters were not significantly different among drug treatments. The Paco2 was significantly higher and the arterial pH and Pao2 were significantly lower when dogs were given medetomidine and butorphanol or medetomidine and ketamine than when they were given medetomidine alone. Recovery quality following atipamezole administration was unsatisfactory in 1 dog when given medetomidine and ketamine. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that a combination of medetomidine with butorphanol or ketamine resulted in more reliable and uniform sedation in dogs than did medetomidine alone.  相似文献   

13.
Sedative and analgesic effects of medetomidine in dogs   总被引:3,自引:0,他引:3  
The sedative and analgesic effects of medetomidine were studied in 18 laboratory beagles in a randomized cross-over study which was carried out in a double-blind fashion. Xylazine was included as a positive control and placebo as a negative control. Medetomidine was used at doses of 10, 30, 90 and 180 micrograms/kg i.m. compared to a dose of 2.2 mg/kg xylazine i.m. Parameters closely related to sedation were used to measure the degree of sedation. These were a posture variable (including evaluation of the dog's posture without external disturbance and resistance when laid recumbent) and a relaxation variable (including relaxation of the jaws, upper eyelids and anal sphincter). The first signs of sedation were recorded 1.5-3.5 min after administration of both drugs. The dogs sat down at 0.6-2.6 min post-injection and became prone at 1.9-5.9 min. Medetomidine dose-dependently affected the posture of the dogs and the relaxation variable--the higher the dose, the stronger and longer lasting the effect recorded. The sedative effect of xylazine was comparable to a medetomidine dose of 30 micrograms/kg. The analgesic effect was assessed as changes in the response to superficial pain induced by electrical stimuli. The response threshold increased significantly with both drugs and the effect of medetomidine was dose-dependent. The effects of the doses of 30 micrograms/kg medetomidine and 2.2 mg/kg xylazine did not differ significantly. In summary, medetomidine possessed an excellent sedative effect associated with analgesia in dogs.  相似文献   

14.
OBJECTIVE: To evaluate the effects of three anaesthetic combinations in adult European badgers (Meles meles). STUDY DESIGN: Prospective, randomized, blinded, experimental trial. ANIMALS: Sixteen captive adult badgers. METHODS: The badgers were each anaesthetized by intramuscular injection using the three techniques assigned in random order: romifidine 0.18 mg kg(-1), ketamine 10 mg kg(-1) and butorphanol 0.1 mg kg(-1) (RKB); medetomidine 0.1 mg kg(-1), ketamine 9 mg kg(-1) and butorphanol 0.1 mg kg(-1) (MKB); and medetomidine 0.1 mg kg(-1) and ketamine 10 mg kg(-1) (MK). Initial drug doses were calculated based on a body mass of 10 kg. Additional anaesthetic requirements, time to drug effect, duration of action and recovery from anaesthesia were recorded. Heart rate and rhythm, respiratory rate and rhythm, rectal and subcutaneous microchip temperature and oxygen saturation were recorded every 5 minutes. Depth of anaesthesia was assessed using: muscle tone; palpebral and pedal reflexes; and tongue relaxation at these time points. Blood samples and a tracheal aspirate were obtained under anaesthesia. Atipamezole was administered if the badger had not recovered within 60 minutes Parametric data were analysed using anova for repeated measures, and nonparametric data using Friedman's, and Cochran's Q tests: p < 0.05 was considered significant. RESULTS: All combinations produced good or excellent muscle relaxation throughout the anaesthetic period. RKB had the shortest duration of anaesthesia (16.8 minutes compared with MKB 25.9 minutes and MK 25.5 minutes) and antagonism was not required. RKB depressed respiratory rate less than MK and MKB. There was no significant difference between techniques for heart rate and rhythm. CONCLUSIONS AND CLINICAL RELEVANCE: All combinations provided anaesthetic conditions suitable for sampling and identification procedures in adult badgers. The RKB protocol provided a significantly shorter period of anaesthesia when compared with the combinations containing medetomidine.  相似文献   

15.
The sedative effects in horses of the new α2-agonist medetomidine were compared with those of xylazine. Four ponies and one horse were treated on separate occasions with two doses of medetomidine (5 mμ/kg bodyweight and 10 μg/kg bodyweight) and with one dose of xylazine (1 μg/kg bodyweight) given by intravenous injection. Medetomidine at 10 μg/kg was similar to 1 mg/kg xylazine in sedative effect but produced greater and more prolonged ataxia. Ataxia was so severe following 10 μg/kg of medetomidine that one animal fell over during the study. Medetomidine (5 μg/kg) produced less sedation but a similar degree of ataxia to 1 mg/kg xylazine.  相似文献   

16.
OBJECTIVE: To examine stress-related neurohormonal and metabolic effects of butorphanol, fentanyl, and ketamine administration alone and in combination with medetomidine in dogs. ANIMALS: 10 Beagles. PROCEDURE: 5 dogs received either butorphanol (0.1 mg/kg), fentanyl (0.01 mg/kg), or ketamine (10 mg/kg) IM in a crossover design. Another 5 dogs received either medetomidine (0.02 mg/kg) and butorphanol (0.1 mg/kg), medetomidine and fentanyl (0.01 mg/kg), medetomidine and ketamine (10 mg/kg), or medetomidine and saline (0.9% NaCI) solution (0.1 mL/kg) in a similar design. Blood samples were obtained for 6 hours following the treatments. Norepinephrine, epinephrine, cortisol, glucose, insulin, and nonesterified fatty acid concentrations were determined in plasma. RESULTS: Administration of butorphanol, fentanyl, and ketamine caused neurohormonal and metabolic changes similar to stress, including increased plasma epinephrine, cortisol, and glucose concentrations. The hyperglycemic effect of butorphanol was not significant. Ketamine caused increased norepinephrine concentration. Epinephrine concentration was correlated with glucose concentration in the butorphanol and fentanyl groups but not in the ketamine groups, suggesting an important difference between the mechanisms of the hyperglycemic effects of these drugs. Medetomidine prevented most of these effects except for hyperglycemia. Plasma glucose concentrations were lower in the combined sedation groups than in the medetomidine-saline solution group. CONCLUSIONS AND CLINICAL RELEVANCE: Opioids or ketamine used alone may cause changes in stress-related biochemical variables in plasma. Medetomidine prevented or blunted these changes. Combined sedation provided better hormonal and metabolic stability than either component alone. We recommend using medetomidine-butorphanol or medetomidine-ketamine combinations for sedation or anesthesia of systemically healthy dogs.  相似文献   

17.
The sedative effects in horses of the new alpha 2 agonist medetomidine were compared with those of xylazine. Four ponies and one horse were treated on separate occasions with two doses of medetomidine (5 micrograms/kg bodyweight and 10 micrograms/kg bodyweight) and with one dose of xylazine (1 mg/kg bodyweight) given by intravenous injection. Medetomidine at 10 micrograms/kg was similar to 1 mg/kg xylazine in its sedative effect but produced more severe and more prolonged ataxia, and one animal fell over during the study. Medetomidine at 5 micrograms/kg produced less sedation but a similar degree of ataxia to 1 mg/kg xylazine.  相似文献   

18.
Cardiovascular and pulmonary effects of a new sedative/analgesic (medetomidine) as a preanaesthetic drug in the dog. A study was carried out to investigate the possible usefulness of medetomidine (Farmos Group, Turku, Finland) for premedication prior to general anaesthesia with thiopental sodium and halothane. The main emphasis was laid on the circulatory and respiratory effects of medetomidine. Dogs treated with xylazine (2 mg/kg) or placebo (physiological saline solution) served as controls. Medetomidine caused a decrease in blood pressure, heart rate and respiratory rate at all dose levels tested. These decreases were essentially dose -dependent, but there were great individual variations.It is concluded that the drug can be useful for premedication at the lowest dose level tested (10 μ/kg). The sedative effect, however, is so strong that an even lower dose might be sufficient for the present purpose.  相似文献   

19.
OBJECTIVE: To assess the sedative and cardiopulmonary effects of medetomidine and xylazine and their reversal with atipamezole in calves. ANIMALS: 25 calves. PROCEDURES: A 2-phase (7-day interval) study was performed. Sedative characteristics (phase I) and cardiopulmonary effects (phase II) of medetomidine hydrochloride and xylazine hydrochloride administration followed by atipamezole hydrochloride administration were evaluated. In both phases, calves were randomly allocated to receive 1 of 4 treatments IV: medetomidine (0.03 mg/kg) followed by atipamezole (0.1 mg/kg; n = 6), xylazine (0.3 mg/kg) followed by atipamezole (0.04 mg/kg; 7), medetomidine (0.03 mg/kg) followed by saline (0.9% NaCl; 6) solution (10 mL), and xylazine (0.3 mg/kg) followed by saline solution (10 mL; 6). Atipamezole or saline solution was administered 20 minutes after the first injection. Cardiopulmonary variables were recorded at intervals for 35 minutes after medetomidine or xylazine administration. RESULTS: At the doses evaluated, xylazine and medetomidine induced a similar degree of sedation in calves; however, the duration of medetomidine-associated sedation was longer. Compared with pretreatment values, heart rate, cardiac index, and PaO(2) decreased, whereas central venous pressure, PaCO(2), and pulmonary artery pressures increased with medetomidine or xylazine. Systemic arterial blood pressures and vascular resistance increased with medetomidine and decreased with xylazine. Atipamezole reversed the sedative and most of the cardiopulmonary effects of both drugs. CONCLUSIONS AND CLINICAL RELEVANCE: At these doses, xylazine and medetomidine induced similar degrees of sedation and cardiopulmonary depression in calves, although medetomidine administration resulted in increases in systemic arterial blood pressures. Atipamezole effectively reversed medetomidine- and xylazine-associated sedative and cardiopulmonary effects in calves.  相似文献   

20.
OBJECTIVE: To determine effects of low doses of medetomidine administered with and without butorphanol and glycopyrrolate to middle-aged and old dogs. DESIGN: Prospective randomized clinical trial. ANIMALS: 88 healthy dogs > or = 5 years old. PROCEDURE: Dogs were assigned randomly to receive medetomidine (2, 5, or 10 micrograms/kg [0.9, 2.3, or 4.6 micrograms/lb] of body weight, i.m.) alone or with glycopyrrolate (0.01 mg/kg [0.005 mg/lb], s.c.), medetomidine (10 micrograms/kg) and butorphanol (0.2 mg/kg [0.1 mg/lb], i.m.), or medetomidine (10 micrograms/kg), butorphanol (0.2 mg/kg), and glycopyrrolate (0.01 mg/kg). Anesthesia was induced with thiopental sodium and maintained with isoflurane. Degree of sedation and analgesia were determined before and after medetomidine administration. Respiratory rate, heart rate, and mean arterial blood pressure were determined 10 and 30 minutes after medetomidine administration. Adverse effects and amounts of thiopental and isoflurane used were recorded. RESULTS: Sedation increased after medetomidine administration in 79 of 88 dogs, but decreased in 7 dogs that received 2 or 5 micrograms of medetomidine/kg. Mean postsedation analgesia score and amounts of thiopental and isoflurane used were less in dogs that received medetomidine and butorphanol, compared with other groups. Respiratory rate, heart rate, and blood pressure were not different among groups. Significantly more adverse effects developed in dogs that did not receive glycopyrrolate. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of medetomidine (10 micrograms/kg, i.m.) and butorphanol (0.2 mg/kg, i.m.) induced sedation and analgesia and reduced amounts of thiopental and isoflurane required for anesthesia in middle-aged and old dogs. Glycopyrrolate decreased frequency of medetomidine-associated adverse effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号