首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amino sugars, as a microbial residue biomarker, are highly involved in microbial-mediated soil organic matter formation. However, accumulation of microbial biomass and responses of bacterial and fungal residues to the management practices are different and poorly characterized in rice soils. The objectives of this study were to evaluate the effects of mineral fertiliser (MIN), farmyard manure (FYM) and groundnut oil cake (GOC) on crop yield and co-accumulation of microbial residues and microbial biomass under rice-monoculture (RRR) and rice–legume–rice (RLR) systems. In the organic fertiliser treatments and RLR, rice grain yield and stocks of soil and microbial nutrients were significantly higher than those of the MIN treatment and RRR, respectively. The increased presence of saprotrophic fungi in the organic fertiliser treatments and RRR was indicated by significantly increased ergosterol/Cmic ratio and extractable sulphur. In both crop rotation systems, the long-term application of FYM and GOC led to increased bacterial residues as indicated by greater accumulation of muramic acid. In contrast, the higher fungal C/bacterial C ratio and lower ergosterol/Cmic ratio in the MIN treatment, is likely caused by a shift within the fungal community structure towards ergosterol-free arbuscular mycorrhizal fungi (AMF). The organic fertiliser treatments contributed 22 % more microbial residual C to soil organic C compared to the MIN treatment. Our results suggest that the negative relationship between the ratios ergosterol/Cmic and fungal C/bacterial C encourages studying responses of both saprotrophic fungi and AMF when assessing management effects on the soil microbial community.  相似文献   

2.
The activity and biomass of soil microorganisms were determined in samples at 0—140 cm depth taken from an arable site, where the soil has been developed by erosion and colluvial deposition overlaying a black earth at 70—110 cm depth. The central aim was to get an insight into the breakdown of increasingly old and thus recalcitrant soil organic matter down the profile, effects on the availability of C to microorganisms and the microbial community structure. From 0 to 140 cm depth, microbial biomass C decreased by 96%, biomass N by 97%, the adenylates ATP, ADP, and AMP as well as the basal respiration rate by 89%. No ergosterol was measured at 120—140 cm depth. All soil biological properties decreased in distinct steps after 30 cm and 50 cm depth. At 30—90 cm depth, the amounts of soil organic C and microbial biomass C per hectare of the present colluvium exceeded nearly three‐fold those in undisturbed aeolian loess sediments. The cation exchange significantly affected the relationships between microbial biomass C, biomass N, and the adenylates. As a consequence, none of the ratios between the soil microbial biomass properties revealed constant gradients throughout the profile. The adenylate energy charge (AEC) varied between the different soil layers insignificantly around a mean of 0.71. It was the most stable ratio down the profile showing absolutely no depth gradient, the lowest depth‐to‐depth variation, and also the lowest within depth variability. The other ratios between soil organic C, basal respiration, ergosterol, microbial biomass C and biomass N also did not reveal any marked changes in the microbial community structure.  相似文献   

3.
In this study, leguminous crops like Atylosia scarabaeoides, Centrosema pubescens, Calopogonium mucunoides, and Pueraria phaseoloides. grown as soil cover individually in the interspaces of a 19‐yr‐old coconut plantation in S. Andaman (India) were assessed for their influence on various microbial indices (microbial biomass C, biomass N, basal respiration, ergosterol, levels of ATP, AMP, ADP) in soils (0–50 cm) collected from these plots after 10 years. The effects of these cover crops on . CO2 (metabolic quotient), adenylate energy charge (AEC), and the ratios of various soil microbial properties viz., biomass C : soil organic C, biomass C : N, biomass N : total N, ergosterol : biomass C, and ATP : biomass C were also examined. Cover cropping markedly enhanced the levels of organic matter and microbial activity in soils after the 10‐yr‐period. Microbial biomass C and N, basal respiration, . CO2, ergosterol and levels of ATP, AMP, ADP in the cover‐cropped plots significantly exceeded the corresponding values in the control plot. While the biomass C : N ratio tended to decrease, the ratios of biomass N : total N, ergosterol : biomass C, and ATP : biomass C increased significantly due to cover cropping. Greater ergosterol : biomass C ratio in the cover‐cropped plots indicated a decomposition pathway dominated by fungi, and high . CO2 levels in these plots indicated a decrease in substrate use efficiency probably due to the dominance of fungi. The AEC levels ranged from 0.80 to 0.83 in the cover‐cropped plots, thereby reflecting greater microbial proliferation and activity. The ratios of various microbial and chemical properties could be assigned to three different factors by principal components analysis. The first factor (PC1) with strong loadings of ATP : biomass C ratio, AEC, and . CO2 reflected the specific metabolic activity of soil microbes. The ratios of ergosterol : biomass C, soil organic C : total N, and biomass N : total N formed the second factor (PC2) indicating a decomposition pathway dominated by fungi. The biomass C : N and biomass C : soil organic C ratios formed the third principal component (PC3), reflecting soil organic matter availability in relation to nutrient availability. Overall, the study suggested that Pueraria phaseoloides. or Atylosia scarabaeoides were better suited as cover crops for the humid tropics due to their positive contribution to soil organic C, N, and microbial activity.  相似文献   

4.
The dynamics of fungal and bacterial residues to a one-season tillage event in combination with manure application in a grassland soil are unknown. The objectives of this study were (1) to assess the effects of one-season tillage event in two field trials on the stocks of microbial biomass, fungal biomass, microbial residues, soil organic C (SOC) and total N in comparison with permanent grassland; (2) to determine the effects of repeated manure application to restore negative tillage effects on soil microbial biomass and residues. One trial was started 2 years before sampling and the other 5 years before sampling. Mouldboard ploughing decreased the stocks of SOC, total N, microbial biomass C, and microbial residues (muramic acid and glucosamine), but increased those of the fungal biomarker ergosterol in both trials. Slurry application increased stocks of SOC and total N only in the short-term, whereas the stocks of microbial biomass C, ergosterol and microbial residues were generally increased in both trials, especially in combination with tillage. The ergosterol to microbial biomass C ratio was increased by tillage, and decreased by slurry application in both trials. The fungal C to bacterial C ratio was generally decreased by these two treatments. The metabolic quotient qCO2 showed a significant negative linear relationship with the microbial biomass C to SOC ratio and a significant positive relationship with the soil C/N ratio. The ergosterol to microbial biomass C ratio revealed a significant positive linear relationship with the fungal C to bacterial C ratio, but a negative one with the SOC content. Our results suggest that slurry application in grassland soil may promote SOC storage without increasing the role of saprotrophic fungi in soil organic matter dynamics relative to that of bacteria.  相似文献   

5.
An incubation experiment was carried out to investigate the impacts of residue particle size and N application on the decomposition of post-harvest residues of fast-growing poplar tree plantations as well as on the microbial biomass. Crown and root residues, differing in their C/N ratios (crown 285, root 94), were ground to two particle sizes and incubated with and without application of inorganic nitrogen (N) for 42 days in a tilled soil layer from a poplar plantation after 1 year of re-conversion to arable land. Carbon and N mineralization of the residues, microbial biomass C and N, ergosterol contents, and recovery of unused substrate as particulate organic matter (POM) were determined. Carbon mineralization of the residues accounted for 26 to 29 % of added C and caused a strong N immobilization, which further increased after N addition. N immobilization in the control soil showed that even 1 year after re-conversion, fine harvest residues still remaining in the soil were a sink for mineral N. Irrespective of the particle size, C mineralization increased only for crown residues after application of N. Nevertheless, the overall decrease in amounts of POM-C and a concurrent decrease of the C/N ratio in the POM demonstrate the mineralization of easily available components of woody residues. Microbial biomass significantly decreased during incubation, but higher cumulative CO2 respiration after N application suggests an increased microbial turnover. Higher ergosterol to microbial biomass C ratios after residue incorporation points to a higher contribution of saprotrophic fungi in the microbial community, but fungal biomass was lower after N addition.  相似文献   

6.
Total soil organic carbon (TOC) and nitrogen (Nt) and labile soil N and C fractions were investigated in a field experiment in the Swabian Mountains, Germany. The plots used had been farmed conventionally or organically since 1972 and treated with either mineral or organic fertiliser. There were no significant differences between organic and conventional plots in terms of TOC, Nt, C and N mineralisation potentials (Cpot, Npot) and microbial C/N ratio. Microbial biomass C and N, however, were significantly higher on organic plots in spring. There was only a weak correlation between Npot and microbial N. It is proposed that limitations in microbial N availability, as reflected in the microbial N/C ratio, control net N mineralisation rates in the incubation experiments, as indicated by the highly significant correlations between both Npot and Npot/Cpot ratios and microbial N/C ratios. The conclusion reached is that, under these field conditions, the positive effect of organic farming on the microbial biomass N pool does not contribute to an (relative or absolute) increase in the N available to plants.  相似文献   

7.
There is growing interest in investigations into soil carbon (C) sequestration, plant nutrients and biological activities in organic farming since it is regarded as a farming system that could contribute to climate mitigation and sustainable agriculture. However, most comparative studies have focused on annual crops or farming systems with crop rotations, and only a few on perennial crops without rotations, e.g. tea (Camellia sinensis (L.) O. Kuntze). In this study, we selected five pairs of tea fields under organic and conventional farming systems in eastern China to study the effect of organic farming on soil C sequestration, plant nutrients and biological activities in tea fields. Soil organic C, total nitrogen (N), phosphorus (P), potassium (K) and magnesium (Mg), available nutrients, microbial biomass, N mineralization and nitrification were compared. Soil pH, organic C and total N contents were higher in organic tea fields. Soil microbial biomass C, N and P, and their ratios in organic C, total N and P, respectively, net N mineralization and nitrification rates were significantly higher in organic fields in most of the comparative pairs of fields. Concentrations of soil organic C and microbial biomass C were higher in the soils with longer periods under organic management. However, inorganic N, available P and K concentrations were generally lower in the organic fields. No significant differences were found in available calcium (Ca), Mg, sodium (Na), iron (Fe), manganese (Mn), copper (Cu) and zinc (Zn) concentrations between the two farming systems. These findings suggest that organic farming could promote soil C sequestration and microbial biomass size and activities in tea fields, but more N-rich organic fertilizers, and natural P and K fertilizers, will be required for sustainable organic tea production in the long term.  相似文献   

8.
Eight vineyards in Pfaffenheim (P) and Turckheim (T) close to Colmar, France, forming four pairs of organic and conventional vineyards, were analyzed for microbial biomass and activity indices in relation to important soil chemical properties (carbon, nutrient elements, heavy metals) and also to differences between the bottom and top positions on the vineyard slope. The question was whether the vineyard management affects especially the soil microbiological indices. Three locations were on limestone (P-I, P-II, T-II), one on granite (T-I). The gravel content (>2 mm) ranged from 9 to 47%. The management systems had no significant main effect on the contents of organic C, total N, P, and S. The mean total contents of man-derived heavy metals decreased in the order Cu (164 μg g−1 soil) > Zn (100 μg g−1 soil) > Pb (32 μg g−1 soil). The contents of microbial biomass C varied between 320 and 1,000 μg g−1 soil. The significantly highest content was found at location P-II, the significantly lowest at the moderately acidic location T-I. The contents of microbial biomass N and adenosine triphosphate showed a similar trend. At location T-I, the fungal ergosterol-to-microbial biomass C ratio and the metabolic quotient qCO2 were significantly highest, whereas the percentage of soil organic C present as microbial biomass C was lowest. Highest percentages of soil organic C present as microbial biomass C and lowest qCO2 values were found in the organic in comparison with the conventional vineyards. None of the soil microbiological indices was significantly affected by the position on the slope, but all were significantly affected by the management system. This was mainly due to the highest index levels in the organic vineyard location P-II with the longest history in organic management.  相似文献   

9.
《Applied soil ecology》2011,47(3):405-412
The nutrient-specific effects of tillage on microbial activity (basal respiration), microbial biomass (C, N, P, S) indices and the fungal cell-membrane component ergosterol were examined in two long-term experiments on loess derived Luvisols. A mouldboard plough (30 cm tillage depth) treatment was compared with a rotary harrow (8 cm tillage depth) treatment over a period of approximately 40 years. The rotary harrow treatment led to a significant 8% increase in the mean stocks of soil organic C, 6% of total N and 4% of total P at 0–30 cm depth compared with the plough treatment, but had no main effect on the stocks of total S. The tillage effects were identical at both sites, but the differences between the sites of the two experiments were usually stronger than those between the two tillage treatments. The rotary harrow treatment led to a significant increase in the mean stocks of microbial biomass C (+18%), N (+25%), and P (+32%) and to a significant decrease in the stocks of ergosterol (−26%) at 0–30 cm depth, but had no main effect on the stocks of microbial biomass S or on the mean basal respiration rate. The mean microbial biomass C/N (6.4) and C/P (25) ratios were not affected by the tillage treatments. In contrast, the microbial biomass C/S ratio was significantly increased from 34 to 43 and the ergosterol-to-microbial biomass C ratio significantly decreased from 0.20% to 0.13% in the rotary harrow in comparison with the plough treatment. The microbial biomass C-to-soil organic C ratio varied around 2.1% in the plough treatment and declined from 2.6% at 0–10 cm depth to 2.0 at 20–30 cm depth in the rotary harrow treatment. The metabolic quotient qCO2 revealed exactly the inverse relationships with depth and treatment to the microbial biomass C-to-soil organic C ratio. Rotary harrow management caused a reduction in the microbial turnover in combination with an improved microbial substrate use efficiency and a lower contribution of saprotrophic fungi to the soil microbial community. This contrasts the view reported elsewhere and points to the need for more information on tillage-induced shifts within the fungal community in arable soils.  相似文献   

10.
Little information is available about the long‐term effects of deforestation and cultivation on biochemical and microbial properties in wet tropical forest soils. In this study, we evaluated the general and specific biochemical properties of soils under evergreen, semi‐evergreen, and moist deciduous forests and adjacent plantations of coconut, arecanut, and rubber, established by clear felling portions of these forests. We also examined the effects of change in land use on microbial indices and their interrelationships in soils. Significant differences between the sites occurred for the biochemical properties reflecting soil microbial activity. Microbial biomass C, biomass N, soil respiration, N mineralization capacity, ergosterol, levels of adenylates (ATP, AMP, ADP), and activities of dehydrogenase and catalase were, in general, significantly higher under the forests than under the plantations. Likewise, the activities of various hydrolytic enzymes such as acid phosphomonoesterase, phosphodiesterase, casein‐protease, BAA‐protease, β‐glucosidase, CM‐cellulase, invertase, urease, and arylsulfatase were significantly higher in the forest soils which suggested that deforestation and cultivation markedly reduced microbial activity, enzyme synthesis and accumulation due to decreased C turnover and nutrient availability. While the ratios of microbial biomass C : N and microbial biomass C : organic C did not vary significantly between the sites, the ratios of ergosterol : biomass C and ATP : biomass C, qCO2 and AEC (Adenylate Energy Charge) levels were significantly higher in the forest sites indicating high energy requirements of soil microbes at these sites.  相似文献   

11.
《Soil biology & biochemistry》2001,33(12-13):1591-1597
We measured the activity and soil microbial biomass in volcanic ash soils from 10 sites under ecological farming (no pesticides, shallow ploughing, mulching, organic fertilizers, crop rotation) and 15 sites under conventional farming (pesticides, mineral fertilizers, deep ploughing). Our aim was to determine the effects of management system on soil quality and soil fertility in tropical Nicaragua in relation to soil type. None of these sites were irrigated. Conventional management led to significantly increased amounts of total soil P and a significantly larger biomass C-to-P ratio compared to ecological management. Almost all of the other microbial properties, i.e. soil basal respiration, ergosterol and biomass C were significantly improved by ecological management. Also the biomass C-to-soil C ratio was significantly increased, but not the metabolic quotient qCO2 or the ergosterol-to-biomass C ratios, indicating that the positive effects of ecological management were mainly due to increased C input rates. Biomass C, ergosterol, and basal respiration rate were significantly larger at the loamy sites than at the sandy sites. The same was true for the biomass C-to-soil C ratio, but the ergosterol-to-biomass C ratio and the metabolic quotient qCO2 were larger at the sandy sites. Our results demonstrate that ecological management is an important tool for soil conservation and sustainable management of arable land in Nicaragua. However, the decline in total P and the low P availability to soil microorganisms need attention as a precaution against P deficiency. The improvement was greatest at the loamy sites, although the effects of management system were in most cases independent of the soil type. For this reason, ecological management should be preferably promoted on loamy soils.  相似文献   

12.
Organic farming may contribute substantially to future agricultural production worldwide by improving soil quality and pest control, thereby reducing environmental impacts of conventional farming. We investigated in a comprehensive way soil chemical, as well as below and aboveground biological parameters of two organic and two conventional wheat farming systems that primarily differed in fertilization and weed management strategies. Contrast analyses identified management related differences between “herbicide-free” bioorganic (BIOORG) and biodynamic (BIODYN) systems and conventional systems with (CONFYM) or without manure (CONMIN) and herbicide application within a long-term agricultural experiment (DOK trial, Switzerland). Soil carbon content was significantly higher in systems receiving farmyard manure and concomitantly microbial biomass (fungi and bacteria) was increased. Microbial activity parameters, such as microbial basal respiration and nitrogen mineralization, showed an opposite pattern, suggesting that soil carbon in the conventional system (CONFYM) was more easily accessible to microorganisms than in organic systems. Bacterivorous nematodes and earthworms were most abundant in systems that received farmyard manure, which is in line with the responses of their potential food sources (microbes and organic matter). Mineral fertilizer application detrimentally affected enchytraeids and Diptera larvae, whereas aphids benefited. Spider abundance was favoured by organic management, most likely a response to increased prey availability from the belowground subsystem or increased weed coverage. In contrast to most soil-based, bottom-up controlled interactions, the twofold higher abundance of this generalist predator group in organic systems likely contributed to the significantly lower abundance of aboveground herbivore pests (aphids) in these systems. Long-term organic farming and the application of farmyard manure promoted soil quality, microbial biomass and fostered natural enemies and ecosystem engineers, suggesting enhanced nutrient cycling and pest control. Mineral fertilizers and herbicide application, in contrast, affected the potential for top-down control of aboveground pests negatively and reduced the organic carbon levels. Our study indicates that the use of synthetic fertilizers and herbicide application changes interactions within and between below and aboveground components, ultimately promoting negative environmental impacts of agriculture by reducing internal biological cycles and pest control. On the contrary, organic farming fosters microbial and faunal decomposers and this propagates into the aboveground system via generalist predators thereby increasing conservation biological control. However, grain and straw yields were 23% higher in systems receiving mineral fertilizers and herbicides reflecting the trade-off between productivity and environmental responsibility.  相似文献   

13.
The aim of this study was to investigate the response of soil microbial biomass and organic matter fractions during the transition from conventional to organic farming in a tropical soil. Soil samples were collected from three different plots planted with Malpighia glaba: conventional plot with 10 years (CON); transitional plot with 2 years under organic farming system (TRA); organic plot with 5 years under organic farming system (ORG). A plot under native vegetation (NV) was used as a reference. Soil microbial biomass C (MBC) and N (MBN), soil organic carbon (SOC) and total N (TN), soil organic matter fractioning and microbial indices were evaluated in soil samples collected at 0–5, 5–10, 10–20 and 20–40 cm depth. SOC and fulvic acids fraction contents were higher in the ORG system at 0–5 cm and 5–10 cm depths. Soil MBC was highest in the ORG, in all depths, than in others plots. Soil MBN was similar between ORG, TRA and NV in the surface layer. The lowest values for soil MBC and MBN were observed in CON plot. Soil microbial biomass increased gradually from conventional to organic farming, leading to consistent and distinct differences from the conventional control by the end of the second year.  相似文献   

14.
The fungi-to-bacteria ratio in soil ecological concepts and its application to explain the effects of land use changes have gained increasing attention over the past decade. Four different main approaches for quantifying the fungal and bacterial contribution to microbial tissue can be distinguished: (1) microscopic methods, (2) selective inhibition, (3) specific cell membrane components and (4) specific cell wall components. In this review, the different methods were compared and we hypothesized that all these approaches result in similar values for the fungal and bacterial contribution to total microbial biomass, activity, and residues (dead microbial tissue) if these methods are evenly reliable for the estimation of fungal biomass. The fungal contribution to the microbial biomass or respiration varied widely between 2 and 95% in different data sets published over the past three decades. However, the majority of the literature data indicated that fungi dominated microbial biomass, respiration or non-biomass microbial residues, with mean percentages obtained by the different methodological approaches varying between 35 and 76% in different soil groups, i.e. arable, grassland, and forest soils and litter layers. Microscopic methods generally gave the lowest average values, especially in arable and grasslands soils. Very low ratios in fungal biomass C-to-ergosterol obtained by microscopic methods suggest a severe underestimation of fungal biomass by certain stains. Relatively consistent ratios of ergosterol to linoleic acid (18:2ω6,9) indicate that both cell membrane components are useful indicators for saprotrophic and ectomycorrhizal fungi. More quantitative information on the PLFA content of soil bacteria and the 16:1ω5 content of arbuscular mycorrhizal fungi is urgently required to fully exploit the great potential of PLFA measurements. The most consistent results have been obtained from the analysis of fungal glucosamine and bacterial muramic acid in microbial residues. Component-specific δ13C analyses of PLFA and amino sugars are a promising prospect for the near future.  相似文献   

15.
The relationships between microbial biomass C, organic C, and environmental parameters were studied in soils under corn (Zea mays. L) in the mountainous areas of southwest China. Three yellowish-red (Ultisols), yellow (Ultisols) and yellowish-brown (Alfisols) soils were relatively weathered, leached and impoverished, with most having a low input of aboveground corn residues. Seasonal changes in soil microbial C at 0-10 cm depth were significant at each sampling site, with the highest value (120 g C m-2) in winter, and lowest value in summer (21 g C m-2). Microbial biomass C was significantly and negatively correlated with site elevation and positively correlated with mean annual temperature. The seasonal change in microbial biomass C was significantly correlated with total soil organic C. The decline in microbial biomass C estimated as a percentage of the total soil organic C was negatively correlated with the elevation above sea level, ranging from 3.9ǂ.9% below 600 m to 1.4ǂ.5% above 1,500 m, suggesting higher turnover rates of soil microbial biomass C at warmer air temperatures. Temperature influenced the decomposition of organic C in soils mainly through its effects on microbial biomass C, and the microbial biomass C/organic C ratio appears to be a sensitive index of the change in organic matter content of soil.  相似文献   

16.
Effects of goat manure application combined with charcoal and tannins, added as feed additives or mixed directly, on microbial biomass, microbial residues and soil organic matter were tested in a 2-year field trial on a sandy soil under Omani irrigated subtropical conditions. Soil microbial biomass C revealed the fastest response to manure application, followed by microbial residue C, estimated on the basis of fungal glucosamine and bacterial muramic acid, and finally soil organic C (SOC), showing the slowest, but still significant response. At the end of the trial, microbial biomass C reached 220 μg g?1 soil, i.e. contents similar to sandy soils in temperate humid climate, and showed a relatively high contribution of saprotrophic fungi, as indicated by an average ergosterol to microbial biomass C ratio of 0.35 % in the manure treatments. The mean fungal C to bacterial C ratio was 0.55, indicating bacterial dominance of microbial residues. This fraction contributed relatively low concentrations of between 20 and 35 % to SOC. Charcoal added to manure increased the SOC content and the soil C/N ratio, but did not affect any of the soil microbial properties analysed. Tannins added to manure reduce the 0.5 M K2SO4-extractable N to N total ratio compared to manure control. These effects occurred regardless of whether charcoal or tannins were supplied as feed additive or directly mixed to the manure.  相似文献   

17.
Temperature, drying, and rewetting are important climatic factors that control microbial properties. In the present study we looked at the respiration rates, adenosine 5′‐triphosphate (ATP) content, and adenylate energy charge (AEC) as a measure for energy status of microbial biomass in the upper 5 cm of mineral soils of three beech forests at different temperatures and after rewetting. The soils differed widely in pH (4.0 to 6.0), microbial biomass C (92 to 916 μg (g DW)—1) and ATP content (2.17 to 7.29 nmol ATP (g DW)—1). The soils were incubated for three weeks at 7 °C, 14 °C, and 21 °C. After three weeks the microbial properties were determined, retaining temperature conditions. The temperature treatment did not significantly affect AEC or ATP content, but respiration rates increased significantly with increasing temperature. In a second experiment the soils were dried for 12 hours at 40 °C. Afterwards the soils were rewetted and microbial properties were monitored for 72 hours. After the drying, respiration rates dropped below the detection limit, but within one hour after rewetting respiration rates increased above control level. Drying reduced AEC by 16 % to 44 % and ATP content by 47 % to 78 %, respectively. Rewetting increased AEC and ATP content significantly as compared to dry soil, but after 72 hours the level of the controls was still not reached. The level of AEC values indicated dormant cells, but ATP content increased. These results indicate that the microbial carbon turnover was not directly linked to microbial growth or microbial energy status. Furthermore our results indicate that AEC may describe an average energy status but does not reflect phases of growing, dormant, or dying cells in the complex microbial populations of soils.  相似文献   

18.
In a pot experiment using a strongly P‐fixing Andosol from Nicaragua, the effects of sugarcane–filter cake application on the growth of white mustard (Sinapis alba L.) were compared with those of 13C‐labeled pea residues. The application of pea residues led to a 50% increase and the application of filter cake to a 30% decrease in soil organic matter–derived microbial biomass C compared with the control. In contrast, the application of filter cake resulted in a four times higher content of substrate‐derived microbial biomass C than that of pea residues. The application of organic substrates generally increased microbial biomass N. Mustard growth led to significant increases in microbial biomass P in the control, but also in the organic‐amendment treatments, which always resulted in decreased microbial biomass C : P ratios. Mustard growth also led to increased contents of Bray‐1‐extractable P, but this increase was only significant in the filter cake treatment. The application of pea residues had no effect on the yield of shoot C, but a positive effect on the yield of root C in comparison with the nonamended control. In contrast, the application of filter cake significantly depressed yields of shoot C and root C, due to N immobilization, presumably due to the high concentration of lignin.  相似文献   

19.
 The effect of long-term waste water irrigation (up to 80 years) on soil organic matter, soil microbial biomass and its activities was studied in two agricultural soils (Vertisols and Leptosols) irrigated for 25, 65 and 80 years respectively at Irrigation District 03 in the Valley of Mezquital near Mexico City. In the Vertisols, where larger amounts of water have been applied than in the Leptosols, total organic C (TOC) contents increased 2.5-fold after 80 years of irrigation. In the Leptosols, however, the degradability of the organic matter tended to increase with irrigation time. It appears that soil organic matter accumulation was not due to pollutants nor did microbial biomass:TOC ratios and qCO2 values indicate a pollutant effect. Increases in soil microbial biomass C and activities were presumably due to the larger application of organic matter. However, changes in soil microbial communities occurred, as denitrification capacities increased greatly and adenylate energy charge (AEC) ratios were reduced after long-term irrigation. These changes were supposed to be due to the addition of surfactants, especially alkylbenzene sulfonates (effect on denitrification capacity) and the addition of sodium and salts (effect on AEC) through waste water irrigation. Heavy metals contained in the sewage do not appear to be affecting soil processes yet, due to their low availability. Detrimental effects on soil microbial communities can be expected, however, from further increases in pollutant concentrations due to prolonged application of untreated waste water or an increase in mobility due to higher mineralization rates. Received: 28 April 1999  相似文献   

20.
Soil organic matter contents, soil microbial biomass, potentially mineralizable nitrogen (N) and soil pH values were investigated in the Ap horizons of 14 field plots at 3 sites which had been under organic farming over various periods. The objective was to test how these soil properties change with the duration of organic farming. Site effects were significant for pH values, microbial biomass C and N, and for potentially mineralizable N at 0—10 cm depth. The contents of total organic C, total soil N, and potentially mineralizable N tended to be higher in soils after 41 versus 3 years of organic farming, but the differences were not significant. Microbial biomass C and N contents were higher after 41 years than after 3 years of organic farming at 0—10 cm depth, and the pH values were increased at 10—27 cm depth. Nine years of organic farming were insufficient to affect soil microbial biomass significantly. Increased biomass N contents help improve N storage by soil micro‐organisms in soils under long‐term organic farming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号