首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
旋转折射式喷头水量分布与喷灌均匀性试验   总被引:4,自引:0,他引:4  
为了研究喷头工作压力、喷嘴直径和安装间距对喷灌喷洒水深和喷灌均匀度的影响规律,选用喷嘴直径为2.98、3.37、3.77 mm的R3000型旋转式喷盘的折射式喷头进行了研究。测量了3种喷头在0.1、0.2、0.3 MPa工作压力下的径向水量分布,喷灌强度随着喷头工作压力或喷嘴直径的增加而增大。叠加计算了安装间距为2、3、4、5、6 m几种情况下的组合均匀性系数,并通过组合试验与计算结果进行对比,得出组合均匀性系数试验值与模拟计算值的误差在0.5%~11.0%之间,影响因素的主次顺序为喷头安装间距、工作压力、喷嘴直径。结果表明:喷嘴流量系数平均值在0.9以上,说明喷头的性能良好。3种喷嘴的最佳喷灌均匀性系数分别为75.9%、78.2%和85.1%。提出了自制R3000型旋转折射式喷头最佳组合间距为4 m的计算均匀性系数经验公式,为其在工程中的应用提供了理论数据。  相似文献   

2.
流道结构对非旋转折射式喷头水力性能影响的试验研究   总被引:1,自引:0,他引:1  
以非旋转折射式喷头为研究对象,设计散水盘的流道长度、流道个数和流道出口形状,通过正交试验测试了单喷头水量分布,采用线性插值法计算射程,通过直接叠加法得到组合水量分布,计算了2.5m喷头间距下的组合均匀性系数,并运用极差分析法研究了流道结构参数对喷头水力性能的影响。结果表明:不同流道长度、流道个数和流道出口形状非旋转折射式喷头的单喷头水量分布呈波浪形上下浮动,但波动的幅度有差异。流道结构参数对射程影响的主次顺序为流道长度、流道个数、流道出口形状,对喷灌强度峰值影响的主次顺序为流道个数、流道长度、流道出口形状,对组合喷洒均匀性系数影响的主次顺序为流道个数、流道长度、流道出口形状。  相似文献   

3.
基于弹道轨迹方程的折射式喷头水量分布计算模型   总被引:2,自引:0,他引:2  
针对折射式喷头水量分布模拟研究较少的问题,通过高速摄像技术测得了不同工作压力和喷嘴型号下水滴射流速度和射流弧度,构建了折射式喷头水束射流速度及弧度的指数模型,在此基础上基于弹道轨迹方程和水滴蒸发模型,采用Eclipse作为开发工具编写出折射式喷头水量分布的计算程序。该软件能够在已知喷头工作参数及环境条件下,模拟出水滴粒径分布、水量分布、能量分布等指标。采用软件计算出不同工况下Nelson D3000型喷头喷洒水力特性,并依据模拟出的单喷头水量分布数据,以24 m平移式喷灌机为例进行多喷头组合叠加,与实测值进行对比,结果表明:基于3种模型下开发出的单喷头水量分布计算软件模拟出的水滴粒径分布及单喷头水量分布与实测值变化的规律相符,模拟准确度较高。不同间距下多喷头组合叠加时,喷灌均匀度相对误差在0.04%~14.77%,变化规律的差异性较小。该软件能够为移动式喷灌机优化设计提供技术支持。  相似文献   

4.
以低压旋转式喷头为研究对象,选择喷盘空间流道的结构参数:出口截面形状、流道偏转角、流道型线弧长、出口仰角作为试验因素,采用L34(9)的正交设计,测量了工作压力为250 kPa时,不同因素水平下各试验喷头的水量分布和流量,并利用线性插值法计算了单喷头的射程,选用Matlab软件模拟了正方形布置下喷头的组合均匀系数,分析...  相似文献   

5.
喷灌水量分布动态模拟与均匀性研究   总被引:4,自引:0,他引:4  
韩文霆  王玄  孙瑜 《农业机械学报》2014,45(11):159-164
为研究压力、喷头组合方式和插值方法对喷灌均匀系数CU和分布均匀系数DU这两个评价指标计算结果的影响规律,利用雨量筒径向间隔为1 m的FY RB-471型喷头无风喷洒试验数据,模拟出了喷头在不同压力下的水量分布情况。在喷头矩形组合方式和正三角形组合方式下,采用线性插值、立方插值、三次样条插值、距离插值和平面插值法计算了不同压力下的喷灌均匀系数和分布均匀系数。结果表明,采用三角形组合方式比矩形组合方式计算的喷灌均匀系数CU高1.56~4.77个百分点,同样,三角形组合方式比矩形组合方式计算的分布均匀系数DU高4.26~9.19个百分点;不同的插值方法对喷灌均匀系数与分布均匀系数的计算结果影响不明显,而压力是影响喷灌均匀系数的一个重要因素。  相似文献   

6.
旋转式微喷头转速对水力性能影响的试验研究   总被引:1,自引:0,他引:1  
通过试验分析了旋转式微喷头的转速对水力性能的影响,试验处理设置为:3种喷嘴直径,分别为1.4mm、1.8 mm和2.4 mm;5种阻尼脂量,分别为无阻尼、1/6阻尼脂、1/3阻尼脂、2/3阻尼脂和全阻尼。结果表明,利用阻尼脂可以显著降低微喷头的转速,在100~250 kPa工作压力下,微喷头的转速可以从无阻尼时的2230~4225 r/min降到全阻尼时的0.1~1.1 r/min。与无阻尼的高速旋转微喷头比较,低转速微喷头可以显著增加射程,在100~250 kPa工作压力时,其射程增加20.5%~31.8%。而在低转速区,微喷头的射程变化不大,在200kPa工作压力下,直径1.8 mm喷嘴微喷头转速从0.41 r/min增加到6.1 r/min时,射程仅降低4.4%。与无阻尼的高转速微喷头比较,低转速微喷头水量分布更趋近于三角形分布。  相似文献   

7.
为研究喷头压力对水量分布模型的影响,以低压喷头为例,对其进行水力性能试验.通过计算矩形组合下不同压力的喷灌组合均匀系数Cu和组合分布均匀系数Du,探索喷头压力对水量分布模型的影响.结果表明:对于低压喷头,喷灌强度随压力增大先逐渐增大,达到一定值后基本保持不变.在距喷头不同距离时,不同压力下的喷灌强度变化情况不同.在低压范围内,压力对喷灌组合均匀系数和组合分布均匀系数的影响较明显.在100~200 kPa范围下,CuDu均随着压力的增大而增大.在200~300 kPa范围下,CuDu均变化不大.最终提出二者的函数关系式,为多因素下水量分布模型的建立提供理论依据.  相似文献   

8.
试验探究不同压力下微喷带水量分布均匀系数的变化规律,通过公式计算了垂直于微喷带、沿微喷带方向和总面积的水量分布均匀系数,分析不同水头工作压力对不同类型微喷带在水量分布均匀性上的影响。试验对常见的机械打孔的Ф28,Ф32和Ф40微喷带,通过改变微喷带的工作压力值,设置6种不同的微喷带首部工作压力,探究不同结构类型的微喷带在不同的首部工作压力下的水量分布均匀系数。微喷带的水量分布均匀系数与首部工作水头及管径均匀性密切相关,在一定的工作压力范围内,微喷带的灌溉效果能达到最好;随着工作压力的变化,Ф28与Ф40微喷带的水量分布均匀系数变化较平缓,而Ф32微喷带的水量分布均匀系数变化波动大,3种结构类型微喷带的水量分布均匀系数均在工作压力值为32~36 kPa的范围内出现最大值。为保证较好的灌溉均匀度,一定作用压力条件下微喷带存在极限铺设长度;实际使用中,应根据微喷带的具体结构形式设定铺设长度与首部工作压力。  相似文献   

9.
为了评价新研制的园林升降式旋转射线喷头对再生水灌溉的适应性,测试了喷头不同运行时间的水力性能,评价了不同清洗时间间隔(50~200h)对喷头性能的影响。结果表明,喷头流量-压力关系可用幂函数表示,流态指数为0.49;无风条件下,正方形组合间距系数为1.0~1.4时,组合均匀系数为79%~68%,喷头在再生水条件下运行过程中,每运行50h清洗喷头进口滤网,可以有效防止堵塞造成的流量降低,将流量下降幅度控制在5%以内。喷头在再生水条件下运行1 400h后,结构完好,流量、射程未发生明显改变,表明喷头质量较好,对再生水灌溉具有较好的适应性。  相似文献   

10.
详细总结了提高喷灌均匀性的改进措施,主要有四类:第一,采用副喷嘴;第二,应用异形喷嘴;第三,采用多股流道结构;第四,增加粉碎机构或者压力流量调节机构等辅助装置.其中异形喷嘴和增加粉碎机构能改善喷头低压条件下的水量分布,具有降低喷头工作压力,节省系统能耗的优点.目前这些改进措施都未形成系统的设计方法,应加强主副喷嘴尺寸配比、异形喷嘴的设计方法、散水机构入水深度等方面的基础理论研究.  相似文献   

11.
基于弹道理论有风条件下折射式喷头喷灌均匀度研究   总被引:3,自引:0,他引:3  
为计算有风条件下折射式喷头水量分布及喷灌均匀度,以弹道轨迹理论为基础,依据风速分布模型,建立有风条件下折射式单喷头水量分布计算方法,采用该方法模拟出有风条件下Nelson D3000型喷头倒挂安装方式下水量分布特性,通过与实测资料进行对比,验证了模拟具有较高的准确度,可应用于有风条件下折射式喷头水量分布计算。在此基础上,选用4.76 mm(24号)喷嘴直径,模拟出不工况下单喷头水量分布,计算出组合情况下喷灌均匀度,分析了风速、风向、喷头间距、工作压力和安装高度5种因素对喷灌均匀度的影响,并对蒸发漂移损失进行了分析。结果表明:95%的置信区间下,喷头布置间距对喷灌均匀度的影响最显著,其次是安装高度和喷头工作压力,风速和风向对喷灌均匀度影响不显著。风速、喷头工作压力和安装高度都会对蒸发漂移损失产生影响,其中工作压力影响最大。当选用Nelson D3000型喷头在风速小于6 m/s的环境下喷灌时,应将喷头安装间距固定在2.13~3.04 m范围内。另外,该安装间距范围内,喷头安装高度和喷灌压力增大后,喷灌均匀度增大的效果不明显,因此应采用低压喷灌以降低喷灌系统运行成本;考虑到较高的喷头安装高度会产生较大的蒸发漂移损失,喷灌时还应适当降低喷头安装高度,以提高喷灌水分利用率。  相似文献   

12.
为解决非旋转式折射喷头水量分布集中,打击动能较大的问题,构建了动态水压喷灌测试平台。选择Nelson D3000型喷头为研究对象,施加以三角函数型动态变化的水压,对喷头的径向水量分布与能量分布进行测试,并与恒压条件下的水量和能量分布进行对比。结果表明:构建的动态水压测试平台能够满足对动态供水压力的要求,施加了动态水压的Nelson D3000型喷头径向湿润范围由恒压时的0.85~1.36 m增加到2.55~4.42 m,喷灌强度最大值降低67.6%~78.4%,能量通量密度最大值降低52.9%~71.6%,说明采用动态水压供水可以有效地改善Nelson D3000型喷头的径向水量分布和能量分布。  相似文献   

13.
为了探索全射流喷头均匀系数(CU)与分布系数(DU)之间的关系,选择圆形出口盖板的全射流喷头作为研究对象,设计了5个盖板出口直径,得出直径小于5.0 mm或大于7.0 mm时喷头不能工作。在工作压力为200、250和300 kPa下测量出喷头盖板直径为5.5、6.0和6.5 mm时的径向水量分布。布置方式选取为正方形,组合间距选取为7~15 m,采用三次样条插值法对组合CU和DU进行了仿真计算。结果表明:圆形出口盖板随着工作压力的增大,距喷头近处的水量增加,盖板出口的最优直径为6.0 mm。工作压力对组合CU和DU的影响并不明显;CU随组合间距的增加变化趋势是先相对平稳后急剧下降;DU随组合间距的增加经历了下降、增加和再下降的3个过程。通过对上述结果进行回归分析,初步提出了全射流喷头CU与DU之间的近似计算公式,为其在工程应用中提供理论基础。  相似文献   

14.
动态水压坡地喷灌水量分布特性与均匀度研究   总被引:1,自引:0,他引:1  
针对坡地喷灌水量分布不均匀、灌溉质量较低的问题,将动态水压供水技术引入坡地喷灌,以雨鸟LF1200型喷头为研究对象,分析了动态水压喷灌对喷头流量、射程、喷洒湿润面积、单喷头水量分布和组合喷头水量分布及均匀度的影响。结果表明:对于单喷头而言,采用动态水压喷灌的上下坡射程差在2.3 m左右,动压参数中动压振幅对射程影响较显著,动压喷灌时,振幅建议采用喷头正常工作压力范围内的较大值;单喷头水量分布均匀度在56%左右,动态水压参数对单喷头水量分布和喷灌均匀度影响不显著。在组合喷头的情况下,采用正三角形和矩形布置的均匀度高于正方形布置,其中采用矩形布置喷灌质量最佳。综合考虑工程投资、水量分布以及均匀度,动态水压喷灌时,当喷头采用三角形布置方式时,建议喷头间距为1.0~1.2R(R是喷头平地射程),当喷头采用矩形布置方式时,坡向间距宜采用0.6~0.8R,垂直坡向间距宜采用1.0~1.2R。  相似文献   

15.
折射式喷头喷灌强度及能量空间变化规律研究   总被引:3,自引:0,他引:3  
采用自计雨量筒、视频雨滴谱仪(2DVD)测得不同工作压力下Nelson D3000型蓝色喷盘、喷嘴直径4.76 mm喷头的喷洒水量、喷灌水滴落地速度及粒径等指标,研究了不同压力下该喷头的水量、能量分布及其扩散规律,建立了不同工况下水量峰值、能量峰值与工作压力及喷灌高度的回归关系式。结果表明:增大喷头工作压力、升高喷头安装高度均有利于水量及能量的扩散;喷头的安装高度过低会导致较高的水量峰值和能量峰值,易产生地表径流,0.5 m高度水量峰值变化范围为166.4~196.4 mm/h,能量峰值变化范围为0.607~0.821 W/m2。喷头水量峰值和能量峰值的计算式可为确定喷灌系统工作压力和喷头安装高度提供参考依据,避免因水量峰值和能量峰值过大而产生地表径流。  相似文献   

16.
喷灌作为一项先进的节水灌溉技术,有着广阔的发展空间,其均匀系数是表征灌水质量的基本参数之一。从喷灌均匀系数的表征方法、测算方法、土壤水分均匀系数以及均匀系数对作物影响等4个方面,分析了喷灌均匀系数研究的现状及发展趋势。结论如下,鉴于不同均匀系数表征方法的统计特性和实质,应根据实际需要酌情选用,并可充分利用计算机技术提高...  相似文献   

17.
旋转喷盘喷头已经广泛应用于中心支轴式喷灌机上。针对旋转喷盘过高的转速可能导致喷灌范围减小以及喷灌强度增加问题,试验观测了不同压力(0.070、0.140和0.200 MPa)下安装7种不同直径的喷嘴(2.78、3.97、4.76、5.56、6.35、6.75和7.54mm)时的喷盘转速、喷头流量和喷洒半径。结果表明,(1)当工作压力为0.070、0.140和0.200 MPa时,喷盘转速分别为0.431~0.737、0.987~1.639和1.921~3.128r/min,喷嘴直径增大,喷盘转速也增大,喷嘴直径达5.56mm后,转速基本稳定;(2)喷盘转速随喷头流量的增加而增加,0.070、0.140和0.200 MPa下流量分别达0.714、1.135和3.023m3/h时,转速基本稳定;(3)当喷嘴直径大于5.56mm时,喷洒半径开始减小;(4)喷灌强度随喷嘴直径增加而增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号