首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficacy of cyazofamid was tested against pearl millet downy mildew disease caused by Sclerospora graminicola Schroet. Significant inhibition of sporangial sporulation, zoospore release and motility was observed at 0.3 mg mL(-1), and this concentration also provided good fungicidal activity under in vitro conditions. Under glasshouse conditions, none of the concentrations tested, either 0.01-2 mg mL(-1) as seed treatment or 1-10 mg mL(-1) by foliar application, was found to be phytotoxic. The effect of cyazofamid was tested by seed treatment alone, seed treatment followed by foliar application and foliar application alone. Seed treatment with cyazofamid offered only 19.7% disease control, but seed treatment followed by a single foliar application to diseased plants provided good control over disease, seed treatment with two foliar applications was significantly superior and foliar application alone showed a high level of activity, with 10 mg mL(-1) giving 97.9% disease control. Lack of systemic activity of cyazofamid was evident, root treatment giving disease levels on a par with the untreated control. The fungicide exhibited strong curative activity, but only moderate translaminar activity, with only marginal (34.8%) disease control after treatment of the adaxial leaf surface at 10 mg mL(-1). Loss of cyazofamid activity over time was very low, indicating stable residual and rainfastness activity. These results indicate that cyazofamid has a high potential to be an effective fungicide for the control of downy mildew disease of pearl millet.  相似文献   

2.
BACKGROUND: The present study investigated the effect of chitosan seed priming on the induction of disease resistance in pearl millet against downy mildew disease caused by Sclerospora graminicola (Sacc.) Schroet. RESULTS: Pearl millet seeds were primed with chitosan at different concentrations: 0.5, 1.5, 2.5 and 3 g kg?1 seed. Of the different concentrations, 2.5 g kg?1 was found to be optimum, with enhanced seed germination of 99% and seedling vigour of 1782, whereas the untreated control recorded values of 87% and 1465 respectively. At optimum concentration, chitosan did not inhibit sporulation and release of zoospores from sporangia. Furthermore, pearl millet seedlings raised after seed treatment with chitosan showed an increased level of the defence‐related enzymes chitosanase and peroxidase as compared with the untreated pearl millet seedlings on downy mildew pathogen inoculation. The effect of chitosan in reducing downy mildew incidence was evaluated in both greenhouse and field conditions, in which respectively 79.08 and 75.8% disease protection was obtained. CONCLUSION: Chitosan was effective in protecting pearl millet plants against downy mildew under both greenhouse and field conditions by inducing resistance against the pathogen. Thus, chitosan formulation can be recommended for seed treatment in the management of downy mildew disease. Copyright © 2008 Society of Chemical Industry  相似文献   

3.
4.
Inoculation of plants by spraying with a suspension of zoospores (released from sporangia of Sclerospora graminicola ) induced immediate encystment of the zoospores and drastically reduced their ability to cause disease. The incidence of infection in spray-inoculated pearl millet seedlings was reduced from 90% when sporangia were sprayed, to less than 30% when zoospores were sprayed. Rapid encystment was observed when zoospores were sprayed from both a hand-pumped sprayer and a compressed-gas sprayer and was probably caused by shearing forces. Chilling suspensions of sporangia prior to spraying delayed zoospore release and was an effective method for maintaining infection potential. Disease incidence was higher when sporangia were chilled to 0·2°C rather than to 4°C. Chilling resulted in some abnormal zoospore structures being released from sporangia when suspensions were returned to 20°C. The frequency of these structures increased with increasing chilling time. For seedlings sprayed with sporangia before zoospore release, a small reduction in disease incidence was observed when chilled inoculum was used, probably due to cold disruption of zoosporogenesis. For large-scale disease resistance screening, this reduction is outweighed by the benefit of a uniform and adequately high disease pressure that can be obtained over many hours using chilled spore suspensions.  相似文献   

5.
In an earlier study, we described identification of a protein from a virulent pathotype of Sclerospora graminicola , the binding reaction of which differentiated susceptible and resistant cultivars of pearl millet to downy mildew disease. This protein and corresponding antibody were used in an enzyme-linked immunosorbent assay (ELISA) to screen suspension cells of pearl millet cultivars for their resistance to the downy mildew pathogen. Screening results for 31 pearl millet cultivars correlated positively with the established field screening method.  相似文献   

6.
Three commercial formulations of strobilurins, viz., azoxystrobin, kresoxim-methyl, and trifloxystrobin were evaluated for their efficacy against pearl millet downy mildew disease caused by Sclerospora graminicola. In vitro studies revealed inhibition of S. graminicola sporulation, zoospore release, and zoospore motility at 0.1-2 μg ml−1 of all the three fungicides. The fungicides were evaluated for phytotoxic effects on seed quality parameters and for their effectiveness against downy mildew disease by treating pearl millet by: (1) seed dressing, (2) seed dressing followed by foliar spray, and (3) also by foliar spray alone. The highest non-phytotoxic concentrations of 5, 10, and 10 μg ml−1 for azoxystrobin, trifloxystrobin, and kresoxim-methyl, respectively, were selected for further studies. Under greenhouse conditions, these fungicides showed varying degrees of protection against downy mildew disease. Among the three fungicides, azoxystrobin proved to be the best by offering disease protection of 66%. Further, seed treatment along with foliar application of these fungicides to diseased plants showed enhanced protection against the disease to 93, 82, and 62% in treatments of azoxystrobin, kresoxim-methyl and trifloxystrobin respectively. Foliar spray alone provided significant increase in disease protection levels of 91, 79, and 59% in treatments of azoxystrobin, kresoxim-methyl, and trifloxystrobin, respectively. Disease curative activity of azoxystrobin was higher compared to trifloxystrobin and kresoxim-methyl. Tested fungicides showed weaker translaminar activity, as the disease inhibition was marginal when applied on adaxial leaf surface. Partial systemic activity of azoxystrobin was evident by root uptake, while trifloxystrobin and kresoxim-methyl showed lack of systemic action in pearl millet. A trend in protection against downy mildew disease similar to greenhouse results was evident in the field trials. Grain yield was significantly increased in all strobilurin fungicide treatments over control and maximum increase in yield of 1673 kg ha−1 was observed in combination treatments of seed treatment and foliar spray with azoxystrobin.  相似文献   

7.
The synthetic 1-oxo-indanoyl-l-isoleucine methyl ester (Ind-Ile-Me) represents a highly active mimic of octadecanoic phytohormones, which are involved in plant defenses against pathogens and pests. Seed treatments and foliar spray with Ind-Ile-Me were tested for induced resistance against downy mildew disease caused by the phytopathogenic oomycete Sclerospora graminicola in pearl millet (Pennisetum glaucum) under greenhouse and field conditions. Under greenhouse conditions, a 50% protection level was achieved after seed treatment. Seed treatment in combination with foliar spray resulted in 60% protection. The induction of resistance was correlated with the enhanced activities of defense-related proteins such as phenylalanine-ammonia-lyase, peroxidase, and enhanced level of hydroxyproline-rich glycoproteins. Under field conditions, a maximum protection of 62% was recorded upon seed treatment along with foliar spray. Hence, it infers that Ind-Ile-Me can be used as a valuable protection compound at least in downy mildew disease management.  相似文献   

8.
The responses to cellulysin as an immune inducer in pearl millet that confers downy mildew resistance mediated through lipoxygenase (LOX), a jasmonate-dependent enzyme involved in defence signalling, are discussed in this paper. The susceptible pearl millet cultivar 7042S was treated with cellulysin at 10, 15, 20, 30 and 50 μg/ml concentrations. All tested concentrations showed enhanced seed germination and seedling vigour when compared with the untreated control. Maximum seed germination of 92 % and seedling vigour was obtained following 20 μg/ml cellulysin treatment. Significant (P?<?0.05) downy mildew disease protection of 67 % and 71 % was observed when cellulysin was used at 20 μg/ml under greenhouse and field conditions, respectively. Further studies showed that the resistance induced by cellulysin treatment in pearl millet plant was systemic, required a minimum of 4 days to achieve maximum resistance development after pathogen inoculation seedling inoculation (five-day-old), and was sustained throughout the plant’s life. Plants raised from cellulysin-treated seeds and challenge inoculated at tillering (25-day-old) and inflorescence (45-day-old) showed persistence in resistance till the end of the crop period. A notable increase in LOX activity was observed in all the tested concentrations of cellulysin in plants inoculated with the pathogen at 24 h, compared to the control. However, a maximum 6-fold increase in LOX activity was noticed using a cellulysin concentration of 20 μg/ml 48 hours post inoculation. In contrast, glucanase (GLU) activity was high in control inoculated seedlings, but was low in cellulysin treated samples at all time intervals. The optimal cellulysin treatment (20 μg/ml) provided enhanced vegetative and reproductive parameters that resulted in higher yield compared to the untreated control.  相似文献   

9.
Elicitors derived from the cell wall of fungi are shown to be active in eliciting resistance in plants against a wide range of pathogens. In the present study carbohydrate components from the autoclaved spore cell wall ofAspergillus niger were prepared as aqueous suspensions and tested for defense response in pearl millet (Pennisetum glaucum (L.) R.Br.) against the oomycetous downy mildew pathogenSclerospora graminicola (Sacc.) Schroet. The aqueous suspension derived from the spore cell wall ofA. niger was used as a seed soak treatment at concentrations of 0.25, 0.5, 1.0, 1.5 and 2.0 mg ml−1 for time intervals of 3, 6, 9 and 12 h. The concentration of 0.5 mg ml−1 for a 6 h soaking period offered 94% seed germination and seedling vigor index increased to 1526. The seed germination and the seedling vigor were significantly higher than the untreated check. Spore cell wall suspension as seed treatment at a concentration of 0.5 mg ml−1 required a 3-day time interval to provide 67% protection against downy mildew. Histological and biochemical studies were conducted to elucidate the mechanism of defense response in treated seedlings uponS. graminicola infection. Resistance host response was detected in the form of lignin and callose deposition in the epidermal cell wall of pearl millet seedlings, which is the site ofS. graminicola infection. A time course study showed rapid and localized deposition of lignin and callose in epidermal cell wall of carbohydrate components-treated pearl millet seedling coleoptiles. Increased levels of the defense-related enzyme peroxidase were detected in the treated seedlings. Peroxidase activity in elicitor-treated samples reached a peak at 8 h post-infection, which was 45% more than in their respective uninoculated control. Characterization of peroxidase isoforms by isoelectric focusing revealed 16 different isoforms, of which pI 6.8, 7.2 and 8.7 increased in elicitor-treated samples uponS. graminicola infection. http://www.phytoparasitica.org posting Nov. 14, 2005.  相似文献   

10.
Priming of pearl millet seedlings with nitric oxide (NO) donors sodium nitroprusside (SNP) and S-nitrosoglutathione (SNOG) induced hypersensitive reactions (HR) and accumulation of Proline/Hydroxyproline-rich glycoprotein (P/HRGP) during infection by downy mildew pathogen Sclerospora graminicola. Such defense responses were specifically altered by concentration of NO donors resulting in the modulation of endogenous NO in seedling tissues. The stoichiometric interactions of NO and hydrogen peroxide (H2O2) when followed in relation to HR and P/HRGP accumulation, the degree of defense response varied with H2O2 level, the latter being largely influenced by NO concentration. Therefore, balancing NO and H2O2 is vital for optimum expression of defense responses for imparting disease resistance.  相似文献   

11.
‘Priming’ the plant and seed induces a physiological state in which plants are able to activate defense responses. Plant-based exudates are excellent gum biopolymers which contain plant growth-regulating hormones with priming potential without any side effects. In this study, gum exudates of Acacia arabica, Moringa oleifera, Carica papaya and Azadirachta indica were evaluated for synergistic effects of seed priming with exuded gum biopolymer combined with metalaxyl (Apron 35 SD) on pearl millet seed quality, growth parameters, and resistance to Sclerospora graminicola. Seeds of 7042S were primed with gum biopolymers and metalaxyl 35 SD and evaluated under laboratory and greenhouse conditions. Seed germination and vigor were synergistically enhanced using gum biopolymers solution (1:2 w/v) with 3 g kg−1 metalaxyl 35 SD. A. arabica and A. indica gum biopolymers alone or with 3 g kg−1 of metalaxyl 35 SD resulted in seed germination of >91%. Seed priming with 6 g kg−1 of metalaxyl 35 SD gave 89% seed germination and was not significantly different from control. A similar trend in vigor was observed among treatments. Seed priming with gum biopolymers alone provided varied disease protection levels when compared with the control. A. arabica or A. indica gum with 3 g kg−1 of metalaxyl 35 SD was the superior treatment, offering significant 86% disease reduction while exhibiting a growth-promoting effect. Synergistic use of gum biopolymers and metalaxyl 35 SD by seed priming is highly effective in growth promotion and management of pearl millet downy mildew disease.  相似文献   

12.
Nitric oxide (NO) donors Nitroso-R-Salt, 2-Nitroso-1-Naphthol and Sodium Nitro Prusside (SNP) were evaluated for their effectiveness in protecting pearl millet [(Pennisetum glaucum L.) R. Br.] plants against downy mildew disease caused by Sclerospora graminicola [(Sacc). Schroet]. Optimization experiments with NO donors showed no adverse effect either on the host or pathogen. Aqueous SNP seed treatment with or without polyethylene glycol (PEG) priming was the most effective in inducing the host resistance against downy mildew both under greenhouse and field conditions. Potassium Ferrocyanide, a structural analog of NO donor lacking NO moiety failed to protect the pearl millet plants from downy mildew indicating a role for NO in induced host resistance. Spatio-temporal studies corroborated that the protection offered by NO donor treatment was systemic in nature and a minimum of 3-day time gap between the inducer treatment and subsequent pathogen inoculation was necessary for maximum resistance development. Disease protection ability of NO donors was also validated as durable in nature. Conversely, prior-treatment with NO scavenger 2-4-carboxyphenyl-4,4,5,5 tetrazoline-1-oxyl-3-oxide potassium salt (C-PTIO) rendered the pearl millet plants relatively susceptible for pathogen infection. Expression of primary defense responses like hypersensitive response, lignin deposition and defense related enzyme phenylalanine ammonialyase −EC 4.3.1.5 (PAL) were enhanced by NO donor treatments.  相似文献   

13.
Antibodies raised against whole sporangia of Sclerospora graminicola reacted specifically with sporangia and mycelium of this fungus. Agglutination studies localized the antigen on the cell-wall surfaces. Using this antibody, an indirect enzyme-linked immunosorbent assay (ELISA) with a biotin-avidin amplification system was developed for the quantification of S. graminicola in the host tissues of Pennisetum glaucum. This sensitive assay system, which could detect 3·1–5·5 μg dry weight of fungal biomass, was used to monitor the increase in fungal biomass during disease progression.  相似文献   

14.
BACKGROUND: The nature and durability of resistance offered by chitosan and the involvement of nitric oxide (NO) in chitosan‐induced defence reactions in pearl millet against downy mildew disease were investigated. RESULTS: It had previously been reported that chitosan seed priming protected pearl millet plants against downy mildew disease. Further elucidation of the mechanism of resistance showed that chitosan seed priming protects the plants systemically. A minimum 4 day time gap is required between the chitosan treatment and pathogen inoculation for maximum resistance development, and it was found to be durable. Chitosan seed priming elevated NO accumulation in pearl millet seedlings, beginning from 2 h post‐inoculation, and it was found to be involved in the activation of early defence reactions such as hypersensitive reaction, callose deposition and PR‐1 protein expression. Pretreatment with NO scavenger C‐PTIO and nitric oxide synthase (NOS) inhibitor L‐NAME before pathogen inoculation reduced the disease‐protecting ability of chitosan, and defence reactions were also downregulated, which indicated a possible role for NO in chitosan‐induced resistance. CONCLUSION: Protection offered by chitosan against pearl millet downy mildew disease is systemic in nature and durable. Chitosan‐induced resistance is activated via NO signalling, as defence reactions induced by chitosan were downregulated under NO deficient conditions. Copyright © 2009 Society of Chemical Industry  相似文献   

15.
A manipulatively simple, rapid, high-yielding and environmentally benign method for the integration of a heterocyclic ring, 1,3,4-oxadiazole, at the benzophenone nucleus has been achieved through intramolecular cyclization of substituted aroylaryloxyacetohydrazides to substituted 5-(2-aroyl)aryloxymethyl-2-phenyl-1,3,4-oxadiazoles under solventless 'dry' conditions using montmorillonite K10 clay and microwave irradiation. A comparison is made of the microwave-accelerated reaction with conventional heating conditions. Certain of the derivatives tested showed significant anti-mildew activity against Sclerospora graminicola (Sacc) Schroeter, the downy mildew pathogen of pearl millet.  相似文献   

16.
Proline/hydroxyproline-rich glycoprotein (P/HRGP) level in pearl millet genotypes resistant to downy mildew increase after inoculation with the oomycete pathogen Sclerospora graminicola. Using purified P/HRGPs from pearl millet cell walls, polyclonal antibodies (Pab-P/HRGP) were raised in rabbit. Based on this antiserum, an enzyme immunoassay was developed that displays a linearity detection range from 0.01 to 10 μg P/HRGP. Western blot analysis, confirming the induction of three marker P/HRGPs in the infected resistant genotype, and immunocytochemical studies on P/HRGP localization either in epidermal peelings or in suspension-cultured cells demonstrated the specificity of the antiserum. Besides its characterization, Pab-P/HRGP was employed to screen various genotypes of pearl millet for fast, sensitive and specific detection of induced P/HRGPs upon infections. The results presented are discussed with presumed importance to downy mildew disease and the use of this new antiserum in pearl millet screening for disease resistance.  相似文献   

17.
There is a growing necessity to replace chemical agents with ecofriendly materials, arising from the impact on the environment and/or human health, which calls for the design of new broad-spectrum fungicides. In this work, chitosan oligomers (COs), propolis (Ps) and silver nanoparticles (AgNPs) mixtures in solution were assessed to control the growth of different phytopathogenic fungi and oomycetes in vitro. Binary solutions of COs-Ps and COs-AgNPs evinced the highest antifungal effect against Fusarium circinatum and Diplodia pinea fungi, respectively, with a ca. 80% reduction in their mycelial growth. The COs solution by itself also proved to be greatly effective against Gremmeniella abietina, Cryphonectria parasitica and Heterobasidion annosum fungi, causing a reduction of 78%, 86% and 93% in their growth rate, respectively. Likewise, COs also attained a 100% growth inhibition on the oomycete Phytophthora cambivora. On the other hand, Ps inhibited totally the growth of Phytophthora ×alni and Phytophthora plurivora. The application of AgNPs reduced the mycelial growth of F. circinatum and D. pinea. However, the AgNPs in some binary and ternary mixtures had a counter-productive effect on the anti-fungal/oomycete activity. In spite of the fact that the anti-fungal/oomycete activity of the different treatments showed a dependence on the particular type of microorganism, these solutions based on natural compounds can be deemed as a promising tool for control of tree diseases.  相似文献   

18.
Metalaxyl (Apron 35WS) as a seed treatment has been used extensively to control downy mildew (caused by Sclerospora graminicola) in pearl millet in India. However, the extent of disease control has varied across cultivars, years and locations. We investigated the effects of fungicide dosage, storage time and storage temperature of metalaxyl-treated seed on disease incidence in four pearl millet lines having varying levels of resistance. A linear relationship was found between fungicide dosage (0.5, 1.5 and 2 g a.i. kg−1 seed) and reduction in disease incidence up to 40 days after emergence in all the lines. The normal fungicide dose (2 g a.i. kg−1 seed) protected the crop for up to 20, 40 and 50 days after emergence in highly susceptible (7042S), moderately susceptible (4042R), and moderately resistant (ICMP 451) lines, respectively. However, the quarter and half the normal dosage of fungicide provided protection only up to 20 days after emergence in 7042R and 40 days after emergence in ICMP 451. Storage duration of metalaxyl-treated seed (2 g a.i. kg−1) up to 9 months at 25 ± 2°C did not affect fungicide efficacy. Storage temperatures (5, 25 and 40°C) and duration (30, 60 and 90 days) of metalaxyl-treated seed (2 g a.i. kg−1) showed differential effects in two pearl millet lines 7042S and 843B with downy mildew incidence being significantly lower in 7042S than in 843B. Metalaxyl-treated seed of 7042S and 843B stored at 40°C for different durations showed phytotoxic effects and it was more pronounced in 843B stored for 60 and 90 days where seed germination was inhibited in pot soil.  相似文献   

19.
Differential induction of superoxide dismutase (SOD) in downy mildew-resistant and -susceptible genotypes of pearl millet ( Pennisetum glaucum ) was observed on inoculation with Sclerospora graminicola . SOD activity was studied in resistant (IP18292) and susceptible (23B) pearl millet seedlings inoculated with S. graminicola . SOD activity increased by 2·3-fold in resistant seedlings upon inoculation. SOD activity was greatest in roots, with a specific activity of 3182 U per mg protein, after inoculation. SOD activity increased in all the resistant genotypes upon inoculation with S. graminicola . Native PAGE analysis showed four isozymes of SOD, three of which (SOD-1, -2 and -4) were Cu/Zn-SOD, whereas isozyme SOD-3 was Mn-SOD. This study also revealed increased intensity of all four isozymes of SOD in the resistant genotype upon inoculation. The involvement of SOD in pearl millet (host)–downy mildew pathogen interaction is discussed.  相似文献   

20.
Journal of Plant Diseases and Protection - Variability in aggressiveness was studied in seven Plasmopara halstedii (sunflower downy mildew) parental isolates of races 100, 300, 304, 314, 704, 710...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号