首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N2 fixation, photosynthesis of whole plants and yield increases in soybeans inoculated with mixed cultures of Bradyrhizobium japonicum 110 and Pseudomonas fluorescens 20 or P. fluorescens 21 as well as Glomus mosseae were found in pot experiments in gray forest soil carried out in a growth chamber. The effects of pseudomonads and vesicular-arbuscular (VA) mycorrhizal fungus on these parameters were found to be the same. Dual inoculation of soybeans with mixed cultures of microorganisms stimulated nodulation, nitrogenase activity of nodules and enhanced the amount of biological nitrogen in plants as determined by the 15N dilution method in comparison to soybeans inoculated with nodule bacteria alone. An increased leaf area in dually infected soybeans was estimated to be the major factor increasing photosynthesis. P. fluorescens and G. mosseae stimulated plant growth, photosynthesis and nodulation probably due to the production of plant growth-promoting substances. Increasing phosphorus fertilizer rates within the range of 5–40 mg P 100 g-1 1:1 (v/v) soil: sand in a greenhouse experiment led to a subsequent improvement in nodulation, and an enhancement of N2 fixation and yield in soybeans dually inoculated with B. japonicum 110 and P. fluorescens 21. These indexes were considerably higher in P-treated plants inoculated with mixed bacterial culture than in plants inoculated with nodule bacteria alone.  相似文献   

2.
Summary In an experiment performed under greenhouse conditions, four cultivars of Phaseolus vulgaris L. (Venezuela-350; Aroana; Moruna; Carioca) were inoculated with three Rhizobium leguminosarum biovar phaseoli strains (C-05; C-40 = CIAT 255; C-89 = CIAT 55) and were fertilized with an N-free mineral nutrient solution. The plants were harvested 25, 40, and 55 days after emergence and the following paramenters were evaluated: Nitrogenase activity of nodulated roots, H2 evolution by the nodules; relative efficiency of nitrogenase; respiration rates of nodulated roots and detached nodules; dry weight and total N of stems, leaves, pods, roots, and nodules. Generally the bean cultivar, Rhizobium strain, had an effect and there was an interaction effect with both symbiotic partners, on all parameters. On average, nodules represented 23% of total root respiration but the best symbiotic combinations showed lower ratios of C respired to N fixed. The maximum N-assimilation rate (between 40 and 55 days after emergence) of 11.93 mg N plant–1 day–1 occurred with the symbiotic combination of Carioca × C-05, while the poorest rate of 0.55 mg N plant–1 day–1 was recorded with Venezuela-350 × C-89. The best symbiotic combinations always showed the highest relative nitrogenase efficiency, but the differences in N2-fixation rates cannot be explained solely in terms of conservation of energy by recycling of H2. This requires further investigation.  相似文献   

3.
Summary In a series of short-term experiments root systems of young sorghum and millet plants inoculated with N2-fixing bacteria were exposed to 15N2-enriched atmospheres for 72 h. The plants were grown in a normal atmosphere for up to 22 days after the end of the exposure to allow them to take up the fixed N2. Environmental conditions and genotypes of sorghum and millet were selected to maximise N2-fixation in the rhizosphere. Detectable amounts of fixed N (> 16 g/plant) were rapidly incorporated into sorghum plants grown in a sand/farmyard manure medium, but measurable fixation was found on only one occasion in plants grown in soil. N2 fixation was detectable in some experiments with soil-grown millet plants but the amounts were small (2–4 g/plant) and represented less than 1 % of plant N accumulated over the same period. In many cases there was no detectable 15N2 incorporation despite measurable increases in ethylene concentration found during an acetylene reduction assay.Published as ICRISAT Journal Article No. JA 740  相似文献   

4.
Summary Root and stem nodulation, nitrogen fixation (acetylene-reducing activity), growth and N accumulation bySesbania rostrata as affected by season and inoculation were studied in a pot experiment. The effects ofS. rostrata as a green manure on succeeding wet-season and dry-season rice yields and total N balance were also studied.S. rostrata grown during the wet season showed better growth, nodulation, and greater acetylene-reducing activity than that grown during the dry season. Inoculation withAzorhizobium caulinodans ORS 571 StrSpc® (resistant to streptomycin and spectinomycin) on the stem alone or on both root and stem significantly increased N2 fixation by the plants. Soil and seed inoculation yielded active root nodules under flooded conditions. Plants that were not inoculated on the stem did not develop stem nodules. The nitrogenase activity of the root nodules was greater than that of the stem nodules in about 50-day-oldS. rostrata. S. rostrata incorporation, irrespective of inoculation, significantly increased the grain yield and N uptake of the succeeding wet season and dry season rice crops. The inoculated treatments produced a significantly greater N gain (873 mg N pot–1) than the noinoculation (712 mg N pot–1) treatment. About 80% of the N gained was transferred to the succeeding rice crops and about 20% remained in the soil. The soil N in the flooded fallow-rice treatment significantly declined (–140 mg N pot–1) but significantly increased in bothS. rostrata-rice treatments (159 and 151 mg N pot–1 in uninoculated and inoculated treatments respectively). The N-balance data gave extrapolated values of N2 fixed per hectare at about 303 kg N ha–1 per two crops forS. rostrata (uninoculated)-rice and 383 forS. rostrata (inoculated)-rice.  相似文献   

5.
Summary In three field trials conducted during the summer season of 1986, 1987 and 1989 in an alkaline soil, 17 accessions of annual Sesbania spp. were evaluated for nodulation, N2 fixation (acetylene reduction assay), dry weight of roots and shoots, woody biomass production, and nutrient uptake. At 50 days after sowing all the accessions were effectively nodulated (average 36.4 root nodules plant-1) with a high nodule score (3.4). There was a lot of variation in nodule volume and mass and in acetylene reduction activity but not in N content (5.2%). N uptake in shoots, roots and nodules averaged 639, 31, and 13 mg plant-1, respectively, and much of the fixed N remained in shoots. Accessions of S. cannabina complex performed better than others. S. rostrata had poor root nodulation but exhibited excellent stem nodulation (300 nodules plant-1) even though not inoculated with Azorhizobium sp. Average concentrations of N, P, K, S, Ca, and Mg in the shoots were high, at 3.2, 0.28, 1.5, 0.28, 1.5, and 0.4% respectively, and Na was low (0.15%), reflecting the usefulness of Sesbania spp. as an integrated biofertilizer source. Green matter production was 26.0 Mg ha-1 (5.9 Mg dry matter) and N uptake was 158 kg ha-1, 54 days after sowing. Average woody biomass of six accessions at maturity, 200 days after sowing, was high (19.9 Mg ha-1), showing its potential for shortterm firewood production. Total nutrient uptake for production of woody biomass (200 days of growth) was no more demanding than growing the plant to the green-manuring stage of 50–60 days' growth.  相似文献   

6.
Summary Field experiments were carried out to determine the effects of single and mixed inoculations with Rhizobium and vesicular-arbuscular mycorrhiza (VAM) on nodulation, symbiotic N2 fixation and yield of soybeans in six Taiwan subtropical-tropical sites. Inoculation with Rhizobium alone significantly increased nodulation, nodule weight and nitrogenase activity of nodules in three out of six experimental fields, and affected soybean yields in the range –13% to + 134%. Inoculation with VAM fungi alone did not have a significant effect on nodulation and nitrogenase activity. Mycorrhiza inoculation affected soybean yields in the range –13% to + 65%, but only the yield increases at one out of six sites with N application were statistically significant. Mixed inoculation with Rhizobium and mycorrhiza affected yields in the range –8% to + 145% A synergistic effect from mixed inoculation of Rhizobium-mycorrhiza on soybean yields was found in one out of six experimental fields. The yield response to N application (40 kg N ha–1) in these six paddy-field trials was not significant. These results suggest that single or mixed inoculation of rhizobia can greatly assist soybean grain yields and can replace N fertilizers.  相似文献   

7.
Summary Following screening, selection, characterization, and symbiotic N2 fixation with 12,5, 25.0, and 40.0 mg N kg–1 in normal and saline-sodic soils, only two Phaseolus vulgaris genotypes (HUR 137 and VL 63) and two Rhizobium spp. strains (ND 1 and ND 2) produced maximum nodulation, nitrogenase activity, plant N contents, and grain yields in saline-sodic soil, with 12.5 mg N kg–1, compared with the other strains. However, interactions between strains (USDA 2689, USDA 2674, and ND 5) and genotypes (PDR 14, HUR 15, and HUR 138) were significant and resulted in more nodulation, and greater plant N contents, nitrogenase activity, and grain yields in normal soils with 12.5 mg N kg–1 compared with salt-tolerant strains. Higher levels of N inhibited nodulation and nitrogenase activity without affecting grain yields. To achieve high crop yields from saline-sodic and normal soils in the plains area, simultaneous selection of favourably interacting symbionts is necessary for N economy, so that bean yields can be increased by the application of an active symbiotic system.  相似文献   

8.
Summary This study is an attempt to describe the dominant N2-fixing microflora associated with the roots of wetland rice. Rice cultivar Giza 171 was grown in a phytotron on two alluvial Egyptian soils for 8 days, a stage when the nitrogenase activity of undisturbed plants reached a level of 245 × 10–6 mol C2H4 h–1 g–1 dry weight of leaf. The roots and rhizosphere soils were then used for counting and isolating dominant diazotrophs. Counts and initial enrichment steps were carried out on a selective medium made of an axenic rice plantlet, the spermosphere model, incubated under 1 % acetylene. The counts were very high, exceeding 108 bacteria g–1 dry weight of rhizosphere soil. Enterobacteriaceae were dominant; most isolates were Enterobacter cloacae belonging to different biotypes in the two soils. Enterobacter agglomerans, Citrobacter freundii and Klebsiella planticola were also present as members of the dominant microflora. Azospirillum brasilense and Azospirillum lipoferum were present as well, but less abundant.  相似文献   

9.
Summary Containers filled with soil mixed with potassium nitrate highly enriched in 15N were planted with corn (Zea mays L.) and kept in a phytotron under controlled conditions for 79 days. Soil water content was normally maintained at exactly 60% water-holding capacity (–33 kPa), but it was increased several times to 85% (–5 kPa) for short periods to favour denitrification. The soil headspace was sealed from the phytotron atmosphere and aerated by a continuous stream of air. Nitrous oxide emission was measured by estimating the N2O concentration differences in the air entering and leaving the containers. Emission of N2 was estimated by mass spectroscopy from changes in the N2 composition in the temporarily enclosed soil headspace. Both methods were carefully checked for accuracy by different tests. At specific times during the experiment the distribution of 15N between plants and soil was determined and a 15N balance established. Emission of N gases peaked at times of increased water content and reached maxima of 149 and 142 g N pot–1 day–1 for N2O and N2, respectively. While N losses of 5% ± 2% were indicated by the 15N balance, only 1.1% ± 0.3% loss from 2.7 g applied N was estimated from the N2O and N2 measurements after 79 days. Possible reasons for these differences are discussed.  相似文献   

10.
Summary The legume Medicago sativa (+Rhizobium melilott) was grown under controlled conditions to study the interactions between soluble P in soil (four levels), or a mycorrhizal inoculum, and the degree of water potential (four levels) in relation to plant development and N2 fixation. 15N-labelled ammonium sulphate was added to each pot for a qualitative estimate of N2 fixation, in order to rank the effects of the different treatments.Dry-matter yield, nutrient content and nodulation increased with the amount of plant-available P in the soil, and decreased as the water stress increased, for each P-level. The mycorrhizal effect on dry matter, N yield, and on nodulation was little affected by the water potential. Since P uptake was affected by the water content in mycorrhizal plants, additional mechanisms, other than those mediated by P, must be involved in the mycorrhizal activity.There was a positive correlation between N yield and nodulation for the different P levels and the mycorrhizal treatment at all water levels. A high correlation between plant unlabelled N content and atom% 15N excess was also found for all levels of P. In mycorrhizal plants, however, the correlation between unlabelled N yield and 15N was lower. This suggests that mycorrhiza supply plants with other N sources in addition to those derived from the improvement on N2 fixation.  相似文献   

11.
The objective of this study was to determine whether differences in canopy structure and litter composition affect soil characteristics and microbial activity in oak versus mixed fir-beech stands. Mean litter biomass was greater in mixed fir-beech stands (51.9t ha−1) compared to oak stands (15.7t ha−1). Canopy leaf area was also significantly larger in mixed stands (1.96m2 m−2) than in oak stands (1.73m2 m−2). Soil organic carbon (C org) and moisture were greater in mixed fir-beech stands, probably as a result of increased cover. Soil microbial biomass carbon (C mic), nitrogen (N mic), and total soil nitrogen (N tot) increased slightly in the mixed stand, although this difference was not significant. Overall, mixed stands showed a higher mean C org/N tot ratio (22.73) compared to oak stands (16.39), indicating relatively low rate of carbon mineralization. In addition, the percentage of organic C present as C mic in the surface soil decreased from 3.17% in the oak stand to 2.26% in the mixed stand, suggesting that fir-beech litter may be less suitable as a microbial substrate than oak litter.  相似文献   

12.
Summary The nitrogenase activity of irrigated and rainfed plants of mung bean, cluster bean and moth bean was studied throughout the growth period in order to estimate the reduction in the potential nitrogen fixation (C2H2 reduction) rate due to field water deficits. Nitrogenase activity followed a similar trend in all crops and was dependent on both plant ontogeny and soil moisture levels. The loss of activity due to water deficits varied from 13% to 100% at different growth stages and was related to the plant water potential. The specific activity was directly correlated with the plant water potential under both the treatments. The average loss of nitrogen fixation rate during the season did not differ markedly among crops. There was an accumulation of ureides in the nodules with increasing field moisture stress in mung bean and moth bean while no such effect was found in cluster bean. The significance of these results is discussed in the N-economy of these legumes grown in the drought-prone areas of the Indian desert.  相似文献   

13.
14.
Summary Plants grown from seed with high (1.5–7.3 g Mo seed-1) and low (0.07–1.4 g Mo seed-1) Mo contents were grown in the presence and absence of Mo in growth media (perlite) or in a flowing-solution culture, in a controlled environment. Neither the high (1.5 g Mo seed-1) nor the low (0.1 g Mo seed-1) Mo content in seed from a small-seeded genotype (BAT 1297) was able to prevent Mo deficiency (reduced shoot, root and nodule dry weight, N2 fixation and seed production) in growth media without an external supply of Mo, whereas both the high (7.3 g Mo seed-1) and the low (0.07 g Mo seed-1) contents in seed were able to prevent Mo deficiency in a large-seeded genotype (Canadian Wonder). Responses to Mo treatment by the Two genotypes were inconsistent between the growth media and solution culture experiments. Seed with a large Mo content (3.5 g Mo seed-1) from the Canadian Wonder genotype was unable to prevent Mo deficiency (reduced shoot and nodule dry weight and N2-fixation) in a solution culture without an external source of Mo, whereas both the large (1.7 g Mo seed-1) and the small (0.13 g Mo seed-1) contents in seed prevented a deficiency in BAT 1297. Growing plants from seed with a small Mo content, without additional Mo, reduced the seed Mo content by 83–85% and seed production by up to 38% in both genotypes. Changes in seed size and increases in shoot, root and nodule dry weight occurred, but varied with the genotype and growth conditions. These effects were also observed in some cases where plants were grown with additional Mo, demonstrating that the amount of Mo in the seed sown can influence plant nutrition irrespective of the external Mo supply. Nodule dry weight, total N content of shoots and seed production were improved by using seed with a small Mo content (1.64–3.57 g Mo seed-1) on acid tropical soils in Northern Zambia. Plants of both the large- and small-seeded genotypes grown from seed with a small Mo content (<1.41 g Mo seed-1) had a smaller nodule weight, accumulated less N and produced less seed. The viability of seed with a small Mo content was lower (germination up to 50% less) than that of seed with a large Mo content.  相似文献   

15.
Summary We used 15N technology to investigate N2 fixation by Sesbania speciosa and Sesbania rostrata and its transfer to a lowland rice crop after incorporation of the Sesbania spp. into soil as green manure. During the first 50 days after establishment in November–December 1989, S. speciosa and S. rostrata produced 1126 and 923 kg dry matter ha-1 respectively. They gathered 31 and 23 kg N ha-1 respectively, of which 62%±5% and 55%±3% respectively, came from N2 fixation. Both these species produced a greater biomass during September–October 1989, with S. rostrata producing more than S. speciosa. These results reflected differential responses by the plants to different day lengths at different times of the year. Furthermore, the dry matter yield and %N of 15N-labelled S. speciosa were smaller than those of the unlabelled plants, possibly due to inhibition of N2 fixation in root nodules by the chemical N fertilizers added during labelling. These differences were not so pronounced in the stem-nodulated S. rostrata. The increased grain yield of rice fertilized with N in the form of chemical fertilizer or green manure was a result of an increased number of panicles per hill. The rice crop manured with S. speciosa produced a lower grain yield, with a lower grain weight than that manured with S. rostrata. This was due to a low uptake of soil N by rice manured with S. speciosa. Recovery of N from the green manure in rice straw with S. speciosa was significantly higher than from rice manured with S. rostrata, because of the higher applied N uptake by rice manured with the former.  相似文献   

16.
Summary Wheat seedlings, treated with the auxine 2,4-dichlor-phenoxy acetic acid (2,4-D) during germination developed only a residual root system. Root elongation was extremely restricted and root tips were deformed to thick club-shaped tumours. When 2,4-D was added in a later stage of plant growth the plants developed additional nodule-like knots along primary roots. Root and shoot dry-matter production was slightly repressed in all 2,4-D treatments and N translocation from roots to shoots was repressed as well. When transferred to an auxine-free growth medium, the 2,4-D-affected roots were not capable of complete recovery. In plants inoculated gnotobiotically with Azospirillum brasilense, either with the wild type or with the NH 4 + -excreting mutant strain C3, a 2,4-D addition increased rhizosphere acetylene-reduction activity at pO2 1.5 kPa. The O2 sensitivity of root-associated nitrogenase activity tended to be reduced. The number of root-colonizing bacteria, at approximately 108 colony-forming units (cfu) per g dry root, was similar in the 2,4-D treatments and untreated controls. Plant treatment with high concentrations of the chemical isomer 3,5-dichlor-phenoxy acetic acid (3,5-D) did not have comparable effects, either on plant development or on rhizosphere-associated nitrogenase activity. Root-tumour tissue inhabited by A. brasilense showed purple staining when subjected to a tetrazolium chloride solution, which may indicate intensive local nitrogenase activity in this tissue. Exposed to an 15N2-enriched atmosphere, plants treated with 2,4-D and with A. brasilense incorporated significantly higher amounts of 15N than untreated controls. In all cases the highest values of 15N enrichment were found following inoculation with the NH 4 + -excreting mutant strain C3. Present address: F. A. Janssens Laboratory of Genetics, Catholic University of Leuven, Willem de Croylan 42, B-3001 Heverlee, Belgium  相似文献   

17.
The perennial legume, Winged Bean (Psophocarpus tetragonolobus (L) DC), has potential as a high protein food crop for the humid, tropical regions of the world. Edible seed pods, oil seed grain, leaves, flowers, and unique high protein tubers provide abundant nutritious components desirable for improved human diets. However, soil characteristics and fertility levels influence plant growth, yields and nitrogen fixation capability of this legume. Objectives of this study were to determine soil‐plant nutrient influences on vigorous regrowth, pod and tuber yields, nitrogenase (C2H2 red.) activity levels, and nodule cytosol components of the perennial Siempre cultivar grown on a Typic Eutrustox during three years, 1978–1980.

Available soil phosphorus was a first limiting plant nutrient during all three years of plant age. Effects of combined 100 mg P with 200 mg K/kg soil were highly significant for every parameter and plant age. Pod and seed yields more than doubled with PK addition compared to the check. Tuber growth, nodule mass and nitrogenase activity levels more than trebled with PK treatments as compared to the check. Both elemental P and K were significantly increased within the nodule cytosol of fertilized plants. Cytosol Na was significantly decreased with soil K additions. The best fit multiple regression was: nitrogenase = 1.99 nodule wt. + 6.34 tuber wt. + 0.39 tuber % N + 5.08 cytosol P + 1.55 cytosol K ‐ 0.45 cytosol Na, R2 = 95.5, C.V. = 11.2%. The dominant nodule cytosol enzymes, aspartate aminotransferase (AST) and glutamine synthetase (GS), significantly increased with soil K additions regardless of P treatments. Glutamate dehydrogenase (GDH) and glutamate synthase (GOGAT) also contributed significantly with multiple regression for nitrogenase = 1.07 GS + 2.1 AST + 1.74 GOGAT ‐ 1.76 GDH + 12.89 Ureide, R2 = .89, C.V. = 17.3%. Highly significant increases in nodule cytosol ureide composition with K soil additions has interest because of the role as a nitrogenous nonprotein component for many legumes. Increases in growth, nodulation and nitrogenase activity levels resulted with increased K levels of 0, 100, 200 and 300 mg K/kg soil when soil P and Ca were not limiting.  相似文献   


18.
Summary There were significant differences among pigeonpea [Cajanus cajan (L.) Millsp] Rhizobium sp. strains (IC 3506, IC 3484, IC 3195, and IC 3087) in their ability to nodulate and fix N2 under saline conditions. Pigeonpea plants inoculated with IC 3087 and IC 3506 were less affected in growth by salinity levels of 6 and 8 dS m-1 than plants inoculated with the other strains. For IC 3506, IC 3484, and IC 3195, there was a decrease in the number of nodules with increasing salinity, while the average nodule dry weight and the specific nitrogenase activity remained unaffected. However, in IC 3087, the number of nodules increased slightly with increasing salinity. Leaf-P concentrations increased with salinity in the inoculated plants irrespective of the Rhizobium sp. strain, and leaf-N concentrations decreased with increasing salinity in IC 3484 and IC 3195 only. Shoot-Na and-Cl levels were further increased in these salt-sensitive strains only at 8 dS m-1. Therefore there may be scope for selecting pigeonpea Rhizobium sp. symbioses better adapted to saline conditions. The Rhizobium sp. strains best able to form effective symbioses at high salinity levels are not necessarily derived from saline soils.Submitted as JA No. 919 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)  相似文献   

19.
Residues from some tree species may contain allelopathic chemicals that have the potential to inhibit plant growth and symbiotic N2-fixing microorganisms. Soybean [Glycine max (L.) Merr] was grown in pots to compare nodulation and N2-fixation responses of the following soil amendments: control soil, leaf compost, red oak (Quercus rubra L.) leaves, sugar maple (Acer saccharum Marsh) leaves, sycamore (Platanus occidentalis L.) leaves, black walnut (Juglans nigra L.) leaves, rye (Secale cereale L.) straw, and corn (Zea mays L.) stover. Freshly fallen leaves were collected from urban shade trees. Soil was amended with 20 g kg-1 air-dried, ground plant materials. Nodulating and nonnodulating isolines of Clark soybean were grown to the R2 stage to determine N2-fixation by the difference method. Although nodulation was not adversely affected, soybean grown on leaf-amended soil exhibited temporary N deficiency until nodulation. Nodule number was increased by more than 40% for soybean grown on amended soil, but nodule dry matter per plant generally was not changed compared with control soil. Nonnodulating plants were severely N deficient and stunted as a consequence of N immobilization. Nodulating soybean plants grown on leaf or crop residue amended soil were more dependent on symbiotically fixed N and had lower dry matter yields than the controls. When leaves were composted, the problem of N immobilization was avoided and dry matter yield was not reduced. No indication of an allelopathic inhibition on nodulation or N2-fixation from heavy application of oak, maple, sycamore, or walnut leaves to soil was observed.  相似文献   

20.
Summary Once symbiosis between the pigeonpea cultivar ICPL 227 and the Rhizobium sp. strain IC 3024 is established, it is efficient in fixing N2 under saline conditions and can support growth comparable to N-fed plants in growth media with up to 6 dS m-1 salinity. However, the early stages of establishment of the pigeonpea-IC 3024 symbiotic system have proved sensitive to salinity. The present study showed that the number of nodules was markedly reduced at 8 dS m-1 salinity; however, nodule development and functioning were not affected by salinity in the pigeonpea-IC 3024 symbiosis. The symbiotic system of Atylosia platycarpa and Rhizobium sp. strain IC 3087 was established successfully even at 12 dS m-1 and supported growth comparable to that of N-fed plants. P levels in leaves were increased under saline conditions in N-fed and N2-fixing pigeonpea and A. platycarpa. There were no consistent differences in the leaf Na and chloride levels between N-fed and N2-fixing plants of pigeonpea and A. platycarpa. The present study suggests that the rhizobial symbiosis may not be a necessary factor for initial screening of pigeonpea and related wild species for salinity tolerance.Submitted as JA No. 964 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号