首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
芥菜型多室油菜的产量比普通两室油菜更高,定位乃至克隆多室基因可为油菜遗传改良及解释多室角果形成机制创造条件。本研究通过验证JD11-2家系衍生群体仅在BjMc2位点上存在差异,可用于BjMc2的定位。采用AFLP结合BSA法分析BC5和BC6群体,筛选到1个与BjMc2连锁的AFLP标记并转化为SCAR标记SC1。基于该AFLP标记序列信息,利用白菜同源序列设计SSR引物和SCAR引物,获得11对SSR标记和1对SCAR标记。通过在芥菜型油菜BAC文库中的挑选,获得2个覆盖目标区域的单克隆,由此开发1个SSR标记。将获得的SCAR和SSR标记扫描BC7群体,构建了两室性状基因BjMc2的遗传连锁图,两侧最近标记ZX17和BACsr96与目标基因之间的遗传距离分别为0.048 cM和0.340 cM,并定位到白菜A7 scaffold000019的946~1014 kb之间,约68 kb物理距离。  相似文献   

2.
K. Williams    P. Bogacki    L. Scott    A. Karakousis  H. Wallwork   《Plant Breeding》2001,120(4):301-304
Seedlings of the barley line ‘B87/14’ were resistant to 22 out of 23 Australian isolates of Rhynchosporium secalis, the causal agent of leaf scald.‘B87/14’‐based populations were developed to determine the location of the resistance locus. Scald resistance segregated as a single dominant trait in BC1F2 and BC1F3 populations. Bulked segregant analysis identified amplified fragment length polymorphisms (AFLPs) with close linkage to the resistance locus. Fully mapped populations not segregating for scald resistance located these AFLP markers on chromosome 3H, possibly within the complex Rrs1 scald locus. Microsatellite and restriction fragment length polymorphism markers adjacent to the AFLP markers were identified and validated for their linkage to scald resistance in a second segregating population, with the closest marker 2.2 cM from the resistance locus. These markers can be used for selection of the Rrs.B87 scald‐resistance locus, and other genes at the chromosome 3H Rrs1 locus.  相似文献   

3.
Soybean is a major source of protein meal in the world. Soybean kunitz trypsin inhibitor (SKTI) protein is a responsible for the inferior nutritional quality of unheated or incompletely heated soybean meal. The primary objective of this research was to identify DNA markers linked to the Ti locus controlling presence and absence of kunitz trypsin inhibitor protein. Two mapping populations were developed. Population 1 was derived from a cross between cultivar Jinpumkong2 (TiTi) and C242 (titi). Population 2 was made from a mating between cultivar Clark (TiTi) and C242. The F1 plants were grown in the greenhouse to produce F2 seeds. Each F2 seed from F1 plants was analyzed electrophoretically to determine the presence of the SKTI protein band. One-thousand RAPD primers, 342 AFLP primer sets, and 35 SSR primers were used to map Ti locus in population 1 and 2. The presence of SKTI protein was dominant to the lack of a SKTI protein and kunitz trypsin inhibit protein band was controlled by a single locus. Twelve DNA markers (4 RAPD, 4 AFLP, and 3 SSR) and Ti locus were found to be genetically linked in population 1 consisted with 94 F2 individual plants. Three SSR markers (Satt409, Satt228, and Satt429) were linked with Ti locus within 10 cM. Satt228 marker was tightly linked with Ti locus. Satt228 marker was tightly linked within 0–3.7 cM of the Ti locus and may be useful in a marker assisted selection program.  相似文献   

4.
G. Y. Lu    G. S. Yang  T. D. Fu 《Plant Breeding》2004,123(3):262-265
Rs1046AB is a genic male sterile two‐type line in rapeseed that has great potential for hybrid seed production. The sterility of this line is conditioned by the interaction of two genes, i.e. the dominant genic male sterility gene (Ms) and the suppressor gene (Rf). The present study was undertaken to identify DNA markers for the Ms locus in a BC1 population developed from a cross between a male‐sterile plant in Rs1046AB and the fertile canola‐type cultivar ‘Samourai’. Bulked segregant analysis was performed using the amplified fragment length polymorphism (AFLP) methodology. From the survey of 480 AFLP primer combinations, five AFLP markers (P10M13350, P13M8400, P6M6410, E7M1230 and E3M15100) tightly linked to the target gene were identified. Two of them, E3M15100 and P6M6410, located the closest, at either side of Ms at a distance of 3.7 and 5.9 cM, respectively. The Ms locus was subsequently mapped on linkage group LG10 in the map developed in this laboratory, adding two additional markers weakly linked to it. This suite of markers will be valuable in designing a marker‐assisted genic male sterility three‐line breeding programme.  相似文献   

5.
Amplified fragment length polymorphism (AFLP) and microsatellite (simple sequence repeat, SSR) techniques were used to map the _RGSpeking gene, which is resistant to most isolates of Cercospora sojina in the soya bean cultivar ‘Peking’. The mapping was conducted using a defined F2 population derived from the cross of ‘Peking’(resistant) בLee’(susceptible). Of 64 EcoRI and MseI primer combinations, 30 produced polymorphisms between the two parents. The F2 population, consisting of 116 individuals, was screened with the 30 AFLP primer pairs and three mapped SSR markers to detect markers possibly linked to RcsPeking. One AFLP marker amplified by primer pair E‐AAC/M‐CTA and one SSR marker Satt244 were identified to be linked to ResPeking. The gene was located within a 2.1‐cM interval between markers AACCTA178 and Satt244, 1.1 cM from Satt244 and 1.0 cM from AACCTA178. Since the SSR markers Satt244 and Satt431 have been mapped to molecular linkage group (LG) J of soya bean, the ResPeking resistance gene was putatively located on the LG J. This will provide soya bean breeders an opportunity to use these markers for marker‐assisted selection for frogeye leaf spot resistance in soya bean.  相似文献   

6.
Y. Z. Xie    D. F. Hong    Z. H. Xu    P. W. Liu    G. S. Yang 《Plant Breeding》2008,127(2):145-149
A recessive epistatic genic male sterility (REGMS) two‐type line, 9012AB, has been used for rapeseed hybrid seed production in China. The male sterility of 9012AB is controlled by two recessive duplicate sterile genes (ms1 and ms2) interacting with one recessive epistatic suppressor gene (esp). Homozygosity at the esp locus (espesp) suppresses the expression of the recessive male sterility trait in homozygous ms1ms1ms2 ms2 plants. In this study, we used a combination of bulked segregant analyses and amplified fragment length polymorphism (AFLP) to identify markers linked to the suppressor gene in a BC1 population. From the survey of 1024 AFLP primer combinations, eight markers tightly linked to the target gene were identified. The two closest markers flanking both sides of Esp, P9M5370 and S16M14780, had a genetic distance of 1.4 cM and 2.1 cM, respectively. The AFLP fragment from P4M8190, which co‐segregated with the target gene was converted into a sequence characterized amplified region marker. The availability of linked molecular markers will facilitate the utilization of REGMS in hybrid breeding in Brassica napus.  相似文献   

7.
甘蔗SSR和AFLP分子遗传连锁图谱构建   总被引:3,自引:0,他引:3  
刘新龙  毛钧  陆鑫  马丽  蔡青  范源洪 《作物学报》2010,36(1):177-183
采用甘蔗商业品种Co419与野生种割手密Y75/1/2杂交,获得269个单株,组成F1群体,用F102/356与商业品种ROC25回交获得266个单株,组成BC1群体。利用筛选的多态性条带丰富的36对SSR引物和12对AFLP引物,对两个群体进行PCR扩增和分子遗传连锁分析,构建甘蔗分子遗传连锁图谱。用F1群体获得630个分离标记,经χ2检测,298个标记为单双剂量标记,占总标记数的47%;用BC1群体获得571个分离标记,有264个标记为单双剂量标记,占总标记数的46%;4个亲本获得单双剂量标记的数量依次为Co41902/356Y75/1/2ROC25。在LOD≥5.0,相邻标记遗传距离≤40cM的条件下,F1群体有134个单双剂量标记被纳入55个连锁群,其中39个连锁群归属8个同源组,16个未列入,总遗传距离为1458.3cM,标记间平均图距为10.9cM;BC1群体有133个单双剂量标记被纳入47个连锁群,其中34个连锁群归属于8个同源组,13个连锁群未列入,总遗传距离为1059.6cM,标记间平均图距为8.0cM。从4个亲本单双剂量标记进入的连锁群数来看,Co419最多,归入34个连锁群,其次为Y75/1/2,归入20个连锁群,第3为02/356和ROC25,归入19个连锁群。研究结果表明,从单双剂量标记比例、形成连锁群数量、总遗传距离来看,F1群体构图质量要优于BC1群体。  相似文献   

8.
The present study was carried out with the objective to validate the molecular markers, which have been previously reported to be linked to fertility restorer (Rf) gene(s) for WA-CMS lines of rice. Two mapping populations involving fertility restorer lines for WA-cytoplasm, viz., (i) an F2 population derived from the cross IR58025A/KMR3R consisting of 347 plants and (ii) a BC1F1 population derived from the cross IR62829A/IR10198R//IR62829A consisting of 130 plants were analyzed. Nine SSR and three CAPS markers reported to be linked to Rf genes along with two previously unreported SSR markers were analyzed in the mapping populations. In both the populations studied, the trait of fertility restoration was observed to be under digenic control. Eight SSR markers (RM6100, RM228, RM171, RM216, RM474, RM311, MRG4456 and pRf1&2) showed polymorphism between the parents of the F2 population, while the SSR markers RM6100 and RM474 showed polymorphism between the parents of both the F2 and BC1F1 populations. Only one CAPS marker, RG146FL/RL was polymorphic between the parents of the BC1F1 population. RM6100 was observed to be closely segregating with fertility restoration in both the mapping populations and was located at a distance of ~1.2 cM. The largest phenotypic variation was accounted for the region located between RM311 and RM6100. Using the marker-trait segregation data derived from analysis of both the mapping populations, a local linkage map of the genomic region around Rf-4, a major fertility restoration locus on Chromosome 10 was constructed, and RM6100 was observed to be very close to the gene at a distance of 1.2 cM. The accuracy of the marker RM6100 in predicting fertility restoration was validated in 21 restorers and 18 maintainers. RM6100 amplified the Rf-4 linked allele in a majority of the restorers with a selection accuracy of 94.87%. Through the present study, we have established the usefulness of the marker RM6100 in marker-assisted selection for fertility restoration in segregating populations and identification of restorers while screening rice germplasm for their fertility restoration ability.  相似文献   

9.
S. Taketa    T. Awayama    S. Amano    Y. Sakurai    M. Ichii 《Plant Breeding》2006,125(4):337-342
The hulled or naked caryopsis character of barley is an important agronomic trait because of the direct link to its use. A single recessive gene, nud, located on the long arm of chromosome 7H, controls the naked caryopsis character. Previously, linked amplified fragment length polymorphism (AFLP) bands from bulked segregant analysis were screened, and the nud gene was mapped in a population of 151 F2 plants. In the present study, the aim was to construct a high‐resolution map of the nud gene towards its positional cloning. Two AFLP bands were converted into sequence‐characterized amplified region (SCAR) markers (sKT5 and sKT9), and a previously reported SCAR marker sKT3 was improved for more reliable detection of polymorphism. A total of 2380 segregants derived from five cross‐combinations were analysed, and the nud gene was flanked by sKT3 and sKT9, at the 0.6‐cM proximal and the 0.06‐cM distal side, respectively. The SCAR markers developed in this study should be useful for marker‐assisted selection in naked barley breeding employing crosses between naked and hulled accessions.  相似文献   

10.
青海大黄油菜粒色性状分子标记的开发和图谱整合   总被引:2,自引:1,他引:1  
利用青海大黄油菜和褐籽白菜型油菜09A-126构建BC4和F2分离群体, 结合AFLP与群体分离分析法(bulked segregant analysis, BSA)筛选引物, 获得5个与黄籽基因Brsc1紧密连锁的分子标记Y11~Y15。5个AFLP特异片段的序列, 均与白菜型油菜的A9染色体部分序列表现同源。将5个AFLP标记成功转化为5个SCAR标记(SC11~SC15)。利用目标基因所在染色体区段序列筛选到7个与目标基因紧密连锁的SSR标记(BrID10607、KS10760、B089L03-3和A1~A4)。利用SCAR和SSR标记扫描F2群体中部分单株, 发现SC14和A1为共显性标记。用BC4群体将Brsc1定位在标记Y06和A4之间1.7 Mb的区间内, 遗传距离分别为0.115 cM和0.98 cM。标记Y05和Y12与Brsc1共分离。本研究为黄籽油菜分子标记辅助选择育种体系的建立及目标基因的进一步精细定位和图位克隆奠定了基础。  相似文献   

11.
Black rot is the most devastating disease of cauliflower worldwide causing severe damage to crop. The identification of markers linked to loci that control resistance can facilitate selection of plants for breeding programmes. In the present investigation, F2 population derived from a cross between ‘Pusa Himjyoti’, a susceptible genotype, and ‘BR‐161’, a resistant genotype, was phenotyped by artificial inoculation using Xcc race 1. Segregation analysis of F2 progeny indicated that a single dominant locus governed resistance to Xcc race 1 in ‘BR‐161’. Bulk segregant analysis in resistant and susceptible bulks of F2 progeny revealed seven differentiating polymorphic markers (three RAPD, two ISSR and two SSR) of 102 markers screened. Subsequently, these markers were used to genotype the entire F2 population, and a genetic linkage map covering 74.7 cM distance was developed. The major locus Xca1bo was mapped in 1.6‐cM interval flanked by the markers RAPD 04833 and ISSR 11635. The Xca1bo locus was located on chromosome 3. The linked markers will be useful for marker‐assisted resistance breeding in cauliflower.  相似文献   

12.
Fusarium wilt is one of the most widespread diseases of pea. Resistance to Fusarium wilt race 1 was reported as a single gene, Fw, located on linkage group III. The previously reported AFLP and RAPD markers linked to Fw have limited usage in marker‐assisted selection due to their map distance and linkage phase. Using 80 F8 recombinant inbred lines (RILs) derived from the cross of Green Arrow × PI 179449, we amplified 72 polymorphic markers between resistant and susceptible lines with the target region amplified polymorphism (TRAP) technique. Marker–trait association analysis revealed a significant association. Five candidate markers were identified and three were converted into user‐friendly dominant SCAR markers. Forty‐eight pea cultivars with known resistant or susceptible phenotypes to Fusarium wilt race 1 verified the marker–trait association. These three markers, Fw_Trap_480, Fw_Trap_340 and Fw_Trap_220, are tightly linked to and only 1.2 cM away from the Fw locus and are therefore ideal for marker‐assisted selection. These newly identified markers are useful to assist in the isolation of the Fusarium wilt race 1 resistance gene in pea.  相似文献   

13.
Caused by Aphanomyces cochlioides Drechsler, Aphanomyces root rot is a serious disease of sugar beet (Beta vulgaris L.), for which sources of resistance are scarce. To identify the segregation pattern of the rare resistance trait found in Japanese sugar beet line ‘NK-310mm-O’, F1 and BC1F2 seedings, drawn from a cross between ‘NK-310mm-O’ and susceptible line ‘NK-184mm-O’, were inoculated with zoospores and their survival evaluated in the greenhouse. Resistance segregation followed was that of a single dominant gene, which was designated Acr1 (Aphanomyces cochlioides resistance 1). Molecular markers tightly linked to Acr1 were identified by bulked segregant analysis of two BC1F2 populations. Fourteen AFLP markers linked to Acr1 were identified, the closest located within ±3.3 cM. Three F5 lines and two BC2F1 lines, selected on the basis of their Acr1-AFLP markers, were tested for their resistance to Aphanomyces root rot in a highly infested field. Results indicated that Acr1 conferred significant resistance to Aphanomyces root rot at the field level. Based on its linkage with CAPS marker tk, a representative marker for chromosome III, Acr1 was located on this chromosome. The clear linkage between tk and Rhizomania resistance trait Rz1, suggests the clustering of major disease resistance genes on chromosome III.  相似文献   

14.
In this study, AFLP and SSR techniques were combined with the bulk segregant analysis (BSA) method to map the restorer gene BrRfp using an F2‐segregating population comprising 258 individuals developed by crossing the polima (pol)‐like cytoplasmic male sterility (CMS) line 06J45 and the restorer line 01S325 of heading Chinese cabbage. A survey of 2048 AFLP primer pairs identified 21 polymorphic fragments, approximately half of which exhibited high similarity with the A09 chromosome sequence of Brassica rapa in the Brassica database (BRAD). Based on the genome sequence, three specific AFLP fragments linked with BrRfp were successfully converted into sequence‐characterized amplified region (SCAR) markers, named SC1233, SC2673 and SC2141. Subsequently, 178 pairs of SSR primers were redesigned for further screening, with five producing polymorphic amplification patterns. Linkage analysis showed that these markers were distributed along both sides of the BrRfp gene, with two markers, SSR03 and SSR2528, co‐segregating with the BrRfp locus in the F2 population. These results may be valuable for marker‐assisted selection and map‐based cloning in heading Chinese cabbage.  相似文献   

15.
Linkage maps of perennial ryegrass were constructed from F2 and BC1‐type populations using, predominantly, restriction fragment length polymorphism data based on heterologous probes used in mapping other grass species. The maps identified seven linkage groups, which covered a total of 515 cM (F2) and 565 cM (BC1). They were aligned using 38 loci identified in both populations (common loci) and a possible marker order for all mapped loci in either population was identified in an integrated map. The estimated recombination frequencies and map distances between adjacent common loci were compared between the two data sets and regions of heterogeneity identified. Overall, the common markers identified a map distance of 446 cM in the F2 population and 327 cM in the BC1 population, reflecting a higher recombination frequency in the former, although the difference was not evenly spread over the seven linkage groups.  相似文献   

16.
Aegilops variabilis no. 1 is the only known source of resistance to the root‐knot nematode Meloidogyne naasi in wheat. Previous studies showed that a dominant gene, Rkn‐mn1, was transferred to a wheat translocation line from the donor Ae. variabilis. Random amplified polymorphic DNA (RAPD) analysis was performed on the wheat cultivar ‘Lutin’, on Ae. variabilis, on a resistant disomic addition line and on a resistant translocation line. For genetic and molecular studies, 114‐117 BC3F2 plants and F3‐derived families were tested. Five DNA and one isozyme marker were linked to Rkn‐mn1. Three RAPD markers flanking the Rkn‐mn1 locus were mapped at 0 cM (OpY16‐1065), 0.8 cM (OpB12‐1320) and 1.7 cM (OpN20‐1235), respectively. Since the Rkn‐mn1 gene remained effective, its introduction into different wheat cultivars by marker‐assisted selection is suggested.  相似文献   

17.
Using the advanced backcross quantitative trait loci (AB‐QTL) strategy, we successfully transferred and mapped valuable allelic variants from the high β‐glucan (BG) accession IAH611 (PI 502955), into the genome of cultivar ‘Iltis’. By backcrossing one BC1F1 plant to ‘Iltis’, we developed two BC2F2‐6 populations A and B, comprising 98 and 72 F2‐individuals, respectively. Genotyping of BC2F2 individuals with predominantly AFLP markers resulted in 12 linkage groups with a map size of 455.4 cM for Population A and 11 linkage groups with a map size of 313.5 cM for Population B. Both populations were grown at three sites in Germany over a three‐year period. Individuals were then phenotyped for 13 traits including grain yield (YD) and β‐glucan content (BG). QTL analysis via stepwise regression detected a total of 33 QTLs, most of which were clustered in three linkage groups. Two dense linkage groups A1 and B13 were found to be putatively homologous to groups KO_6 and KO_11 of the ‘Kanota’/‘Ogle’ map, respectively.  相似文献   

18.
Resistance to root-knot nematode (Meloidogyne incognita) is determined by a single major gene rkn1 in Gossypium hirsutum Acala NemX cotton. Bulked segregant analysis (BSA) combined with amplified fragment length polymorphism (AFLP) was used to identify molecular markers linked to rkn1. DNA pools from homozygous susceptible (S) and resistant (R) bulks of an F2:3 originating from the intraspecific cross NemX × SJ-2 were screened with 128 EcoR1/Mse1 primer combinations. Putative AFLP markers were then screened with 60 F2:7 RIL plants and four AFLP markers were found linked to rkn1. The linkage of AFLP markers to rkn1 was also confirmed in a F2 population. The closest AFLP marker was converted to a cleaved amplified polymorphic sequence (CAPS) marker (designated GHACC1) by aligning the sequences from both susceptible and resistant parents. GHACC1 linkage to rkn1 was confirmed in the F2 (1R:3S), F2:7 RIL (1R:1S) and the backcross population SJ-2 × F1 (NemX × SJ-2) (1 heterozygous: 1 homozygous). The four AFLP markers, GHACC1 plus two SSR markers (CIR316 and BNL1231) linked to rkn1 from previous work were mapped to intervals of 2.6–14.2 cM from the rkn1 locus, and the genomic region around rkn1 was spanned to about 28.2 cM in the F2:7 population. The PCR-based GHACC1 and CIR316 markers were tested on 21 nematode resistant and susceptible cotton breeding lines and cultivars. GHACC1 was suitable for nematode resistance screening within G.␣hirsutum, but not G. barbadense, whereas CIR316 was useful in both species, indicating their␣potential for utilization in marker-assisted selection.  相似文献   

19.
The pol cytoplasmic male-sterility system has been widely used as a component for utilization of heterosis in Brassica napus and offers an attractive system for study on nuclear–mitochondrial interactions in plants. Genetic analyses have indicated that one dominant gene, Rfp, was required to achieve complete fertility restoration. As a first step toward cloning of this restorer gene, we attempted molecular mapping of the Rfp locus using the amplified fragment length polymorphism (AFLP) technique combined with bulked segregant analysis (BSA) method. A BC1 population segregating for Rfp gene was used for tagging. From the survey of 1,024 AFLP primer combinations, 13 linked AFLP markers were obtained and five of them were successfully converted into sequence characterized amplified region (SCAR) markers. A population of 193 plants was screened using these markers and the closest AFLP markers flanking Rfp were at the distances of 2.0 and 5.3 cM away, respectively. Further the AFLP or SCAR markers linked to the Rfp gene were integrated to one doubled-haploid (DH) population derived from the cross Quantum × No.2127-17 available in our laboratory, and Rfp gene was mapped on N18, which was the same as the previous report. These molecular markers will facilitate the marker-assisted selection (MAS) of pol CMS restorer lines.  相似文献   

20.
Cytoplasmic genetic male-sterility is used to produce hybrid onion (Allium cepa L.) seeds worldwide. In this paper, we present the results of research aimed toward identifying PCR-based markers linked to the Ms locus through amplified fragment length polymorphism (AFLP). After screening 512 AFLP primer combinations, only one AFLP fragment was identified as being flanking linked to the dominant Ms allele. Subsequently, the AFLP marker was converted into a sequence-characterized amplified region (SCAR) marker, designated as DNF-566, co-segregated with the dominant Ms allele in first backcross (BC1) segregated populations. Furthermore, we designed another molecular marker (RNS-357) co-segregated with the ms allele to identify different genotypes (i.e., MsMs, Msms, or msms). Both markers could be used for evaluating onion lines with different genetic backgrounds (including male-sterile lines, maintainer lines, male-fertile lines, and commercial based F1 hybrid cultivars). The results of this study indicate that maintainer plants could be directly selected by using these 2 SCAR markers in the onion breeding process, and this may contribute significantly toward breeding onion F1 hybrid cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号