首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Differentiating between virulent and avirulent avian Escherichia coli isolates continues to be a problem for poultry diagnostic laboratories and the study of colibacillosis in poultry. The ability of a laboratory to conduct one simple test that correlates with virulence would simplify studies in these areas; however, previous studies have not enabled researchers to establish such a test. In this study, the occurrence of certain phenotypic and genotypic traits purported to contribute to avian E. coli virulence in 20 avian E. coli isolates was correlated with the results of embryo challenge studies. This analysis was undertaken in an effort to determine which trait(s) best identified each avian E. coli isolate as virulent or avirulent. Traits selected were complement resistance, production of colicin V (ColV), motility, type F1 pili expression, presence of the temperature-sensitive hemagglutinin gene (tsh), and presence of the increased serum survival genetic locus (iss). ColV production, complement resistance, and presence of the iss genetic element were the three traits most highly correlated with high embryo lethality. A logistic regression model was used to predict the embryo lethality results on the basis of the most frequent isolate characteristics. Results indicate that ColV, complement resistance, and if are significant predictor variables for the percentage of embryo lethality resulting from challenge with a specific avian E. coli isolate. However, no single trait has the ability to predict virulent isolates 100% of the time. Such results suggest the possibility that the embryo lethality assay may prove to be the one test needed to determine if an avian E. coli isolate is virulent.  相似文献   

2.
Avian colibacillosis is a costly disease for the poultry industry. The mechanisms of virulence employed by the etiologic agent of this disease remain ill defined. However, accumulated evidence suggests that complement resistance and the presence of the increased serum survival gene (iss) in an avian Escherichia coli isolate may be indicative of its ability to cause disease. This association of iss with the E. coli implicated in avian disease may mean that iss and/or, perhaps, the genes associated with it are important contributors to avian E. coli virulence. For this reason, we have begun a search for iss's location in the bacterial genome. Thus far, iss in an avian E coli isolate has been localized to a conjugative R plasmid and estimated to be about 100 kilobase (kb) in size, encoding resistance to tetracycline and ampicillin. Hybridization studies have revealed that this plasmid contains sequences with homology to tsh, a gene associated with virulence of avian E coli; intI 1, a gene encoding the integrase of Class 1 integrons; and certain genes of the aerobactin- and CoIV-encoding operons. Sequences homologous to merA, a gene of the mercury resistance operon, were not identified on this R plasmid. This plasmid, when transferred into an avirulent, recipient strain by conjugation, enhanced the transconjugant's resistance to complement but not its virulence, in spite of the plasmid's possession of several putative virulence genes and traits. Such results may reflect the multifactorial nature of virulence, the degree of the recipient's impairment for virulence, or an inability of the embryo assay used here to detect this plasmid's contribution to virulence. Additionally, this plasmid contains genes encoding antimicrobial resistances, which may provide a selective advantage to virulent E. coli in the production environment. Further study will be needed to determine whether this plasmid is widespread among virulent E. coli and to ascertain the implications that this link between virulence and antimicrobial resistance genes may have for poultry management.  相似文献   

3.
iss基因与鸡大肠杆菌毒力相关性的分析   总被引:1,自引:0,他引:1  
对20株鸡源大肠杆菌的致病性进行测定。并对不同致病性鸡大肠杆菌的iss基因进行了扩增。结果表明:鸡E.coli O1、O2、北京1、北京3、贵州1、新大、田大、E10、E11、E27对1日龄雏鸡具有较强的毒力;O78、E5、E21的致病性较弱;而E.coli E1、E4、E7、E8、E9、E14、E18接种雏鸡均无死亡。iss基因在致病性鸡E.coli O1、O2、O78、北京1、北京3、贵州1、新大、田大、E5、E21、E10、E11、E27中的扩增频率为92.31%;在毒力较强的致病性鸡Ecoli O1、O2、北京1、北京3、贵州1、新大、田大、E10、E11、E27中的扩增频率为100%;在无致病性(或低毒力)的鸡Ecoli E1、E4、E7、E8、E9、E14、E18中的扩增频率为14.29%。结果表明:iss基因在致病力强的菌株中的扩增频率明显高于其它菌株,iss基因的存在与鸡大肠杆菌的毒力问有一定的相关性。  相似文献   

4.
Previous work in our labs has shown that avian Escherichia coli virulence is correlated with resistance to complement. Also, our studies have revealed that the presence of the increased serum survival gene (iss), known to contribute to the complement resistance and virulence of mammalian E. coli, may predict the virulent nature of an avian E. coli isolate. This relationship warrants further research, but further clarification of the relationship among virulence, complement resistance, and iss sequences requires use of complement susceptibility assays. Such assays, unfortunately, are labor-intensive, expensive, and difficult to perform. In the present study, the results of two complement susceptibility assays for 20 E. coli isolates, 10 incriminated in avian colibacillosis and 10 from the intestinal tracts of apparently healthy birds, were compared in an attempt to determine if flow cytometric analysis was a reasonable alternative to a viable count assay. In addition, the virulence of these isolates for chick embryos was determined, and each isolate was examined for the presence of iss using amplification techniques. The flow cytometric method was found to be repeatable for most isolates, and its results showed moderate agreement with those obtained through viable counts. All intestinal isolates of healthy birds proved avirulent using the embryo lethality assay; however, not all isolates from sick birds were demonstrated to be virulent. Possible explanations of these results include that the methods originally used to isolate these organisms failed to detect the illness-inciting strains or that the virulence of these strains had declined following initial isolation. Additionally, we must consider the possibility that the embryo lethality assay of virulence used here might not be sensitive enough to detect differences between these two groups of isolates. Also, it should be noted that virulence assays, such as the one used here, fail to account for predisposing host or environmental conditions, enabling a less virulent isolate to cause disease under natural conditions. Interestingly, the complement resistance of a strain was significantly associated with its lethality in embryos, and iss-containing isolates were significantly more likely than those lacking iss to be classified as complement-resistant and virulent. Such results, at least for this group of avian E. coli, suggest that there is a compelling but imperfect relationship among complement resistance, virulence, and the presence of iss. These results also suggest that the flow cytometric assay may be a reasonable alternative to the viable count method of determining complement resistance.  相似文献   

5.
To study the transfer mode of rmtB and armA in chicken intestinal E.coli,plasmid conjugation experiment was carried out to study the horizontal transfer mode of rmtB and armA genes, and conjugative transfer frequencies were calculated. Broth microdilution method was applied to test susceptibility of 16S rRNA emthylase-positive isolates and their transconjugants to antimicrobial agents. As a result, all the rmtB genes located in five rmtB-positive isolates were easily transferred to recipients of E.coli C600. Conjugative transfer frequencies varied from 4.30×10-10 to 5.5×10-6 per recipient cell, and the armA gene located in one armA-positive isolate was not easily transferred to the recipient of E.coli C600. The results suggested that horizontal transfer was responsible for the dissemination of rmtB gene in chicken intestinal E.coli, but not for armA.  相似文献   

6.
In this study, we assessed the pathogenic potential of Escherichia coli associated with a commercial competitive exclusion (CE) product by examining the phenotypic characteristics associated with E. coli virulent for humans and domestic animals. Most E. coli isolates were capable of proliferating in iron-deplete chicken sera. Interestingly, none of the E. coli isolates from the commercial CE product contained the bacterial adhesin Tsh characteristic of avian pathogenic E. coli associated with airsacculitis and colisepticemia. In terms of virulence potential for humans, most E. coli isolates (78%) were sensitive to killing by 12.5% human sera. Because of their sensitivity to human sera, the E. coli in the CE product are not likely to cause a serious systemic infection in humans and, therefore, do not present a risk of causing septicemia in humans. Because these isolates also lack the gene tsh, they are also less likely to cause systemic disease or airsacculitis in poultry than pathogenic strains commonly isolated from diseased birds.  相似文献   

7.
采用1日龄雏鸡对1株O1血清型鸡源大肠埃希菌(E.coli)的致病性进行测定,并扩增iss基因.结果表明,鸡E.coli O1对1日龄雏鸡具有较强的毒力.iss基因在致病性鸡E.coli O1中的序列与已知禽大肠埃希菌iss基因序列同源性为100%,与人源大肠埃希菌iss基因核苷酸,序列同源性为90.9%,显示了此基因具有保守性.  相似文献   

8.
Control of colibacillosis is important to the poultry industry. We have found that the presence of a gene for increased serum survival, iss, is strongly correlated with Escherichia coli isolated from birds with colibacillosis. Therefore, the iss gene and its protein product, Iss, are potential targets for detection and control of avian colibacillosis. The iss gene was amplified from a virulent avian E. coli isolate and sequenced. The sequences of the gene and the predicted protein product were compared with those of iss from a human E. coli isolate and lambda bor. The iss gene from the avian E. coli isolate has 96.8% identity with the iss gene from the human E. coli isolate and 89.4% identity with lambda bor. The Iss protein from the avian isolate has 87% identity with Iss from the human isolate and 90% identity with Bor. The low identity between the two Iss proteins is because of a frame-shift in their respective coding sequences. In sum, iss from this avian E. coli isolate is very similar to iss from a human E. coli isolate, but because of a frameshift mutation in the coding sequence of iss from the human E. coli isolate, Iss proteins from avian and human E. coli isolates have only 87% identity. The strong association of iss with E. coli isolated from birds with colibacillosis, suggests that this sequence be studied for its value as a marker or target to be used in colibacillosis control.  相似文献   

9.
In previous studies, the embryo lethality assay (ELA) discriminated between virulent and avirulent avian Escherichia coli isolates, and also proved to be highly correlated with mortality and morbidity results of the intravenous (IV) challenge model. In the current study, the same 20 avian E. coli isolates were used in subcutaneous (subQ) and intratracheal (IT) chicken challenge models in order to determine whether the results from the prior ELA challenges and/or the IV challenge model correlate with these models. The correlation observed between the two previous ELA trials and the combined mortality/morbidity percentages of the subQ challenge model were r = 0.792, P > 0.0001 for the first ELA trial and r = 0.738, P = 0.0002 for the second ELA trial. The IV challenge results were more highly correlated with the subQ challenge results (mortality/morbidity comparison, r = 0.894, P < 0.0001). The IV challenge mortality results were slightly correlated (r = 0.4810, P=0.0319) with the IT challenge results. Several of the isolates differed in their ability to produce mortality and/or morbidity with the different challenge models. The mortality/morbidity results of the IV and subQ challenges and the mortality results of the ELA were all positively correlated with the ability of an E. coli isolate to produce Colicin V (ColV) (r = 0.7131, P = 0.0004). The IT mortality results were slightly correlated with the production of ColV (r = 0.455, P = 0.049). The IT challenge results were only slightly correlated with resulting IV mortality and ColV production. Previous results indicate that the ELA correlates extremely well with the IV challenge model. The current study demonstrates that ELA also correlates well with the subQ challenge model. Overall, the conclusion of this study is that the ELA, IV, and subQ challenge models similarly demonstrate the ability to discriminate between virulent and avirulent avian E. coli isolates.  相似文献   

10.
Escherichia coli infections are a major problem for the poultry industry in the United States. Yet, the virulence mechanisms operative in avian E. coli are poorly understood. In the present studies, monoclonal antibodies (MAbs) have been generated that may facilitate study of the pathogenesis of avian colibacillosis. These MAbs are directed against the Iss protein because results from our laboratory have shown that the possession of iss DNA sequences is strongly correlated with the E. coli implicated in avian colibacillosis. As part of an overall effort to explore the role of iss/Iss in colibacillosis pathogenesis, Iss protein has been purified, MAbs to Iss have been generated, and the MAbs are being evaluated. B cells from mice immunized with an Iss fusion to glutathione-S-transferase produced antibodies specifically against Iss, and these cells were used to generate the MAbs. These anti-Iss MAbs, when used in western blotting assays, can be used to distinguish iss-positive and -negative E. coli isolates, suggesting that they may be useful as reagents in the detection and study of virulent avian E. coli.  相似文献   

11.
Forty-four western Canadian isolates of Escherichia coli associated with colibacillosis of turkeys and chickens were examined for serotype, antibiotic resistance, and production of aerobactin. The isolates belonged to fourteen O serogroups, with 39% of the strains being non-typeable. A high frequency of resistance to tetracycline, kanamycin, neomycin, cephalothin, streptomycin and erythromycin was observed. Most isolates produced aerobactin. Ten E. coli belonging to serogroups O1, O2 and O78 were also examined for pili production, hemagglutination, serum sensitivity, production of iron-regulated outer membrane proteins (IROMPS), and virulence. All isolates examined produced pili, exhibited mannose-sensitive hemagglutination of avian red blood cells and produced IROMPS under iron-restricted growth conditions. The five isolates of serogroup O1 and O2 were resistant to killing by turkey serum and were highly virulent. Only two of the five isolates of serogroup O78 were serum resistant. No correlation between serum resistance and virulence was observed in serogroup O78.  相似文献   

12.
Colibacillosis caused by Escherichia coli infections account for significant morbidity and mortality in the poultry industry. Yet, despite the importance of colibacillosis, much about the virulence mechanisms employed by avian E. coli remains unknown. In recent years several genes have been linked to avian E. coli virulence, many of which reside on a large transmissible plasmid. In the present study, a multiplex polymerase chain reaction (PCR) protocol to detect the presence of four of these genes is described. Such a protocol may supplement current diagnostic schemes and provide a rapid means of characterizing the E. coli causing disease in poultry. The targets of this procedure included iss, the increased serum survival gene; tsh, the temperature sensitive hemagglutinin gene; cvi, the ColV immunity gene; and iucC, a gene of the aerobactin operon. Organisms, known for their possession or lack of these genes, were used as a source of the template DNA to develop the multiplex PCR protocol. Identity of the amplicons was confirmed by size, DNA:DNA hybridization with specific gene probes, and DNA sequencing. When the multiplex PCR protocol was used to characterize 10 E. coli isolates incriminated in avian colibacillosis and 10 from the feces of apparently healthy birds, nine of the isolates from apparently healthy birds contained no more than one gene, while the 10th contained all four. Also, eight of the isolates incriminated in colibacillosis contained three or more genes, while the remaining two contained two of the target genes. Interestingly, the isolates of sick birds containing only two of the targeted genes killed the least number of embryos,and the isolate of healthy birds that contained all the genes killed the most embryos amongthis group. These genes were not found among the non-E. coli isolates tested, demonstrating the procedure's specificity for E. coli. Overall, these results suggest that this protocol might be useful in characterization and study of avian E. coli.  相似文献   

13.
Resistance to Serum Complement,iss, and Virulence of Avian Escherichia coli   总被引:2,自引:0,他引:2  
Control of avian colibacillosis is hampered by lack of easily identifiable markers for virulent Escherichia coli. Resistance to serum complement appears to be a widespread trait of virulent avian E. coli, suggesting that bacterial factors promoting survival in serum may be useful in discriminating between virulent and avirulent isolates. Such distinguishing factors may prove useful in diagnostic protocols or as targets in future colibacillosis control protocols. Interestingly, the factors responsible for resistance to complement differ in the E. coli isolated from mammalian and avian hosts, which may reflect differences in the nature of avian and mammalian colibacillosis. In some cases, genetic determinants for serum complement resistance in avian E. coli are found on aerobactin- or Colicin V-encoding plasmids. One such gene, iss, first described for its role in the serum resistance associated with a ColV plasmid from a human E. coli isolate, occurs much more frequently in isolates from birds with colibacillosis than in faecal isolates from healthy birds. Efforts to identify the genomic location of iss in a single, virulent avian E. coli isolate have revealed that it occurs in association with several purported virulence genes, all linked to a large conjugative R plasmid. At this time, it is not known whether iss merely marks the presence of a larger pathogenicity unit or is itself a contributor to virulence. Nevertheless, the presence of the complement-resistance determinant, iss, may be a marker of virulent avian E. coli exploitable in controlling avian colibacillosis.  相似文献   

14.
A study was undertaken to determine the effect of 2 years of intermittent administration of tetracycline in drinking water on antibiotic resistance in the aerobic gram-negative enterobacteria of rats in a closed colony. The bacterial isolates examined were resistant to tetracycline and streptomycin. Minimal inhibitory concentrations of tetracycline and streptomycin for intestinal organisms were similar in all of the animals, regardless of whether the animals were sampled while they were given drinking water with added tetracycline or at intervals of 3, 8, and 9 months after the antibiotic was no longer added to the drinking water. Biochemical examination of the isolates from each principal showed that Escherichia coli was the predominant enteric organism. In conjugation experiments, all E coli and Klebsiella pneumoniae isolated transferred tetracycline and streptomycin resistance to an E coli K-12 recipient. Four different strains of rats that had not been treated with tetracycline (controls) were examined for tetracycline resistance. Tetracycline-resistant Proteus mirabilis was isolated from the intestines of these animals. Plasmid-mediated resistance could not be demonstrated. The E coli and P vulgaris isolates from these control animals were susceptible to tetracycline.  相似文献   

15.
Iss from a virulent avian Escherichia coli   总被引:2,自引:0,他引:2  
No single characteristic of virulent avian Escherichia coli has been identified that can be exploited in colibacillosis detection protocols. Research in our lab suggests a strong association between the presence of an iss DNA sequence with an isolate's disease-causing ability. The study presented here focuses on the techniques used in the expression, purification, and characterization of avian E. coli Iss protein. In brief, iss was cloned into an expression vector, the construct was transformed into a protease-deficient E. coli, and expression was induced. The protein was expressed as a glutathione-S-transferase (GST) fusion and purified by affinity chromatography. The GST portion was cleaved from Iss, Iss was harvested by affinity chromatography, and the identity of Iss was confirmed by N-terminal sequencing. Currently, purified Iss is being used to prepare hybridomas for production of monoclonal antibodies with the goal of evaluating anti-Iss as a reagent for the detection of virulent avian E. coli.  相似文献   

16.
The prevalence of antibiotic resistant Escherichia coli in the rectal flora of 168 healthy dogs and 93 cats in the Brisbane area was investigated. Rectal swabs were plated on MacConkey agar with and without antibiotics, and 690 isolates confirmed as faecal E. coli were tested for resistance to tetracycline, streptomycin, chloramphenicol, ampicillin, neomycin, furazolidone and sulphanilamide. Resistant isolates were obtained from 101 (60%) of the dogs and 24 (26%) of the cats sampled. A high percentage of the isolates was resistant to tetracycline, streptomycin, ampicillin and sulphanilamide. Multiple resistance to 3 or more of the drugs was exhibited by the majority of isolates and a total of 31 different multiple resistance patterns was demonstrated. Of the 50 strains tested for transfer of resistance, 30 (60%) transferred some or all of their resistance determinants to an E. coli K12F - recipient.  相似文献   

17.
Mycoplasma synoviae (MS) is an important pathogen of domestic poultry and is prevalent in commercial layers. During the last decade Escherichia coli peritonitis became a major cause of layer mortality. The possible role of MS in the E. coli peritonitis syndrome of laying hens was studied. Four groups of 64 mycoplasma-free commercial layers at the onset of lay (about 80% daily production) were challenged with a virulent MS strain or a virulent avian E. coli strain or both. The four experimental groups were identified as follows: negative control, E. coli, MS, and MS plus E. coli. A typical E. coli peritonitis mortality was reproduced and included one, three, zero, and five birds in the negative control, E. coli, MS, and MS plus E. coli groups, respectively. Only the increased mortality in the MS plus E. coli group had statistical significance. Four weeks postchallenge 10 clinically normal birds from each of the four experimental groups were necropsied. All of the examined birds in the two MS-challenged groups demonstrated severe tracheal lesions. Body cavity lesions were detected in two and four birds in the MS and MS plus E. coli groups, respectively. The results demonstrate a possible pathogenesis mechanism of respiratory origin with regard to the layer E. coli peritonitis syndrome, show the MS pathological effect in layers, and indicate that a virulent MS strain can act as a complicating factor in the layer E. coli peritonitis syndrome.  相似文献   

18.
从山东省各地分离到107株鸡致病性大肠杆菌,选择了其中2株高致病性大肠杆菌,血清型分别为O78和OM,经增菌培养后提取菌毛制备为单价菌毛油乳苗,分别接种于1日龄和14日龄雏鸡,于4周龄攻毒。结果二者之间有一定的交叉保护作用。根据Genbank收录的人源大肠杆菌I型菌毛FimA基因和P型菌毛papA基因序列,分别设计了2对引物。通过PCR对上述2株大肠杆菌进行扩增,结果只有FimA的一对引物扩增出相应的条带,经测序证明为FimA基因。papA基因的引物未扩出任何条带,证明这2株大肠杆菌表达I型菌毛。通过对2株大肠杆菌结构基因FimA进行分析,发现二者具有高度的同源性。本研究的目的是探讨菌毛亚单位之间的交叉保护性与其菌毛的结构基因之间是否存在相关性。  相似文献   

19.
实验性鸡大肠杆菌病病理学动态变化   总被引:6,自引:2,他引:6  
用致病性大肠杆菌O18分离株和/或低致病性禽流感病毒(Mildly pathogenic avian influenza virus ,MPAIV)接种10-12日龄SPF鸡。在接种后1-96h进行临床症状与大体病理变化、组织学观察发现:大肠杆菌接种组、MPAIV接种组和健康接种组除扑杀鸡外未见鸡死亡,MPAIV与大肠杆菌混合接种组除扑杀鸡外死亡率为24%。混合接种组的病变比大肠杆菌接种组出现的时间早,恢复也慢,各脏器的病理变化更严重。MPAIV主要引起各实质器官的坏死,结果表明,大肠杆菌经气管内接种后试验鸡主要表现为呼吸道的炎症反应;MPAVI可使鸡大肠杆菌病严重化。  相似文献   

20.
Ninety-five avian pathogenic Escherichia coli (APEC) isolates recovered from diagnosed cases of avian colibacillosis from North Georgia between 1996 and 2000 were serotyped and examined for typical virulence-factors, susceptibility to antimicrobials of human and veterinary significance, and genetic relatedness. Twenty different serotypes were identified, with O78 being the most common (12%). The majority of the avian E. coli isolates (60%), however, were non-typeable with standard O antisera. Eighty-four percent of isolates were PCR positive for the temperature-sensitive hemagglutinin (tsh) gene and 86% positive for the increased serum survival (iss) gene. Multiple antimicrobial-resistant phenotypes (> or =3 antimicrobials) were observed in 92% of E. coli isolates, with the majority of isolates displaying resistance to sulfamethoxazole (93%), tetracycline (87%), streptomycin (86%), gentamicin (69%), and nalidixic acid (59%). Fifty-six E. coli isolates displaying resistance to nalidixic acid were co-resistant to difloxacin (57%), enrofloxacin (16%), gatifloxacin (2%), and levofloxacin (2%). DNA sequencing revealed point mutations in gyrA (Ser83-Leu, Asp87-Tyr, Asp87-Gly, Asp87-Ala), gyrB (Glu466-Asp, Asp426-Thr), and parC (Ser80-Ile, Ser80-Arg). No mutations were observed in parE. Twelve of the quinolone-resistant E. coli isolates were tolerant to cyclohexane, a marker for upregulation of the acrAB multi-drug resistance efflux pump. Quinolone-resistant isolates were further genetically characterized via ribotyping. Twenty-two distinct ribogroups were identified, with 61% of isolates clustering into four major ribogroups, indicating that quinolone resistance has emerged among multiple avian pathogenic E. coli serogroups and chromosomal backgrounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号