首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The matrix of altered habitats that surrounds remnants in human dominated landscapes has been considered homogeneous and inhospitable. Recent studies, however, have shown the crucial role of the matrix in maintaining diversity in fragmented landscapes, acting as a mosaic of units with varying permeability to different species. Inclusion of matrix quality parameters is especially urgent in managing fragmented landscapes in the tropics where agriculture frontiers are still expanding. Using standardized surveys in 23 sites in an Atlantic forest landscape, we evaluated matrix use by small mammals, the most diverse ecological group of mammals in the Neotropics, and tested the hypothesis that endemic species are the most affected by the conversion of original forest into anthropogenic habitats. By comparing species distribution among forest remnants and the predominant adjacent habitats (native vegetation in initial stages of regeneration, eucalyptus plantations, areas of agriculture and rural areas with buildings), we found a strong dissimilarity in small mammal assemblages between native vegetation (including initial stages) and anthropogenic habitats, with only two species being able to use all habitats. Endemic small mammals tended to occupy native vegetation, whereas invading species from other countries or open biomes tended to occupy areas of non-native vegetation. Our results highlight that future destruction of native vegetation will favor invading or generalist species which could dominate highly disturbed landscapes, and that some matrix habitats, such as regenerating native vegetation, should be managed to increase connectivity among populations of endemic species.  相似文献   

2.
Corridors are predicted to benefit populations in patchy habitats bypromoting movement, which should increase population densities, gene flow, andrecolonization of extinct patch populations. However, few investigators haveconsidered use of the total landscape, particularly the possibility ofinterpatch movement through matrix habitat, by small mammals. This studycompares home range sizes of 3 species of small mammals, the cotton mouse(Peromyscus gossypinus), old-field mouse (P.polionotus) and cotton rat (Sigmodon hispidus)between patches with and without corridors. The study site was in S. Carolina,USA. Corridor presence did not have astatistically significant influence on average home range size. Habitatspecialization and sex influenced the probability of an individual movingbetween 2 patches without corridors. The results of this study suggest thatsmall mammals may be more capable of interpatch movement without corridors thanis frequently assumed.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

3.
Animal behavior, cost-based corridor models, and real corridors   总被引:2,自引:1,他引:1  
Corridors are popular conservation tools because they are thought to allow animals to safely move between habitat fragments, thereby maintaining landscape connectivity. Nonetheless, few studies show that mammals actually use corridors as predicted. Further, the assumptions underlying corridor models are rarely validated with field data. We categorized corridor use as a behavior, to identify animal-defined corridors, using movement data from fishers (Martes pennanti) tracked near Albany, New York, USA. We then used least-cost path analysis and circuit theory to predict fisher corridors and validated the performance of all three corridor models with data from camera traps. Six of eight fishers tracked used corridors to connect the forest patches that constitute their home ranges, however the locations of these corridors were not well predicted by the two cost-based models, which together identified only 5 of the 23 used corridors. Further, camera trap data suggest the cost-based corridor models performed poorly, often detecting fewer fishers and mammals than nearby habitat cores, whereas camera traps within animal-defined corridors recorded more passes made by fishers, carnivores, and all other non-target mammal groups. Our results suggest that (1) fishers use corridors to connect disjunct habitat fragments, (2) animal movement data can be used to identify corridors at local scales, (3) camera traps are useful tools for testing corridor model predictions, and (4) that corridor models can be improved by incorporating animal behavior data. Given the conservation importance and monetary costs of corridors, improving and validating corridor model predictions is vital.  相似文献   

4.
Acknowledgment that the matrix matters in conserving wildlife in human-modified landscapes is increasing. However, the complex interactions of habitat loss, habitat fragmentation, habitat condition and land use have confounded attempts to disentangle the relative importance of properties of the landscape mosaic, including the matrix. To this end, we controlled for the amount of remnant forest habitat and the level of fragmentation to examine mammal species richness in human-modified landscapes of varying levels of matrix development intensity and patch attributes. We postulated seven alternative models of various patch habitat, landscape and matrix influences on mammal species richness and then tested these models using generalized linear mixed-effects models within an information theoretic framework. Matrix attributes were the most important determinants of terrestrial mammal species richness; matrix development intensity had a strong negative effect and vegetation structural complexity of the matrix had a strong positive effect. Distance to the nearest remnant forest habitat was relatively unimportant. Matrix habitat attributes are potentially a more important indicator of isolation of remnant forest patches than measures of distance to the nearest patch. We conclude that a structurally complex matrix within a human-modified landscape can provide supplementary habitat resources and increase the probability of movement across the landscape, thereby increasing mammal species richness in modified landscapes.  相似文献   

5.
For many species, one important key to persistence is maintaining connectivity among local populations that allow for dispersal and gene flow. This is probably true for carabid species (Coleoptera:Carabidae) living in the fragmented forests of the Bereg Plain (NE Hungary and W Ukraine). Based on field data, we have drafted a landscape graph of the area representing the habitat network of these species. Graph nodes and links represented two kinds of landscape elements: habitat (forest) patches and corridors, respectively. The quality of habitat patches and corridors were ranked (from low (1) to high (4)), reflecting local population sizes in the case of patches and estimated permeability in the case of corridors. We analysed (1) the positional importance of landscape elements in maintaining the connectivity of the intact network, (2) the effect of inserting hypothetical corridors into the network, (3) the effects of improving the quality of the existing corridors, and (4) how to connect every patch in a cost-effective way. Our results set quantitative priorities for conservation practice by identifying important corridors: what to protect, what to build and what to improve. Several network analytical techniques were used to account for the directed (source-sink) and highly fragmented nature of the landscape graph. We provide conservation priority ranks for the landscape elements and discuss the conditions for the use of particular network indices. Our study could be of extreme relevance, since a new highway is being planned through the area.  相似文献   

6.
A large-scale experimental landscape study was conducted to examine the use of corridors and the forest matrix habitat by the hispid cotton rat (Sigmodon hispidus). The role of micro- habitat selection by S. hispidus in influencing routes of movement was also investigated. The experimental landscape consisted of ten 1.64-ha patches (each 128×128 m) established in a loblolly (Pinus teada) forest. Four of the patches were isolated while the other six were connected in pairs by a 32-m wide corridor. Cotton rats (N=96) were simultaneously released into both an isolated and connected patch, and monitored by radiotelemetry for 10 days. We found that the forest matrix was not a barrier to movements of cotton rats. Fifty percent of the cotton rats moved through the matrix. Corridors had no significant effect on the number of animals leaving connected patches (60%) compared to isolated patches (50%). However, corridors were the preferred route to leave a connected patch. Colonization success for cotton rats leaving connected and isolated patches did not significantly differ. Cotton rats exhibited micro-habitat preferences and these preferences differed within patch/corridor and matrix habitats. In patch/corridor habitats, cotton rats selected sites with tall (>1 m) shrubs and high percent cover. In the forest matrix, cotton rats selected sites with abundant cover by vines and low tree canopy cover. Movement patterns of Sigmodon hispidus are not strongly influenced by large-scale landscape spatial structures. Micro-habitat selection, however, does influence movement patterns. These findings have important implications regarding habitat connectivity for small mammals.  相似文献   

7.
This study investigated the efficacy of linear landscape elements in fragmented landscapes as corridors for perennial grassland species with short-range seed dispersal. Corridors are assumed to be essential for the persistence of metapopulations in fragmented landscapes, but it is unclear to what extent linear landscape elements such as ditch banks and road verges can function as corridors for those species. The principal factors that determine the rate of migration through corridors include the width and habitat quality of patches within a corridor (expressed as the population growth rate λ) and the dispersal capacity of plants (expressed as the slope α of the relationship between seed number and log-distance). A cellular automation model was used to simulate the effects of the principal factors on the rate of migration. Simulations with different levels of the principal factors showed highly significant and positive main effects of dispersal capacity, habitat quality and width of corridors on the migration rate. Significant interactions existed between dispersal capacity × width and dispersal capacity × habitat quality (p<0.0001), indicating that the effects of width and habitat quality depended on the dispersal capacity. In narrow corridors most of the dispersed seeds were deposited outside the corridor, which significantly reduced migration rates, especially for species with long-range dispersal (α=−0.4). In wide corridors (up to 20 m), seed losses were much smaller and migration rates approximated those of continuous habitats. The contribution of the few long-range seeds to the rate of migration was significant when habitat quality was high (population growth rates up to 2.5). However, in all simulations migration rates were very low,i.e.<5 m/yr. It is concluded that linear landscape elements are not effective corridors in fragmented landscapes for plants with short-range seed dispersal, because migration rates are low (<5 m/yr), landscape elements vary in the percentage of high quality patches, and refugia and suitable habitat patches are frequently several kilometres apart, making a cohesive infrastructure of corridors for plants elusive. It is argued that the best way to conserve endangered plant species that encounter dispersal barriers is to harvest seeds from nearby source populations and introduce them as suitable habitats.  相似文献   

8.
Bu  Hongliang  McShea  William J.  Wang  Dajun  Wang  Fang  Chen  Youping  Gu  Xiaodong  Yu  Lin  Jiang  Shiwei  Zhang  Fahui  Li  Sheng 《Landscape Ecology》2021,36(9):2549-2564
Context

The downlisting of giant panda (Ailuropoda melanoleuca) from Endangered to Vulnerable in IUCN Red List confirms the effectiveness of current conservation practices. However, future survival of giant panda is still in jeopardy due to habitat fragmentation and climate change. Maintaining movement corridors between habitat patches in the newly established Giant Panda National Park (GPNP) is the key for the long-term sustainability of the species.

Objectives

We evaluated the impacts of conversion from natural forest to plantation on giant panda habitat connectivity, which is permitted within collective forests and encouraged by the policies for the economic benefits of local communities. We modeled distribution of giant panda habitat in Minshan Mountains which harbors its largest population, and delineated movement corridors between core habitat patches under management scenarios of different forest conversion proportions.

Methods

We applied an integrated species distribution model based on inhomogeneous Poisson point process to combine presence-only data and site occupancy data, and least-cost models to identify potential movement corridors between core habitat patches.

Results

We found that current distribution of plantation has not damaged connectivity between core habitat patches of giant panda. However, it could be severely degraded if mass conversion occurred. Since the GPNP incorporates all the core habitats identified from our model, controlling natural forest conversion inside GPNP would maintain the movement corridors for giant panda.

Conclusions

We recommend no expansion of plantations inside the GPNP, and improving collective forest management for expansion of ecological forest in adjoining habitat patches.

  相似文献   

9.
We surveyed birds in patches of native eucalypt forest and in surrounding exotic matrix (Radiata pine forests) in south-eastern Australia. Our objectives were: (1) to examine the influence of the width of native forest patches and the age of surrounding pine forests on bird occurrence in patches of native forest; and (2) to verify the relationship between the use of the surrounding pine matrix and bird species response to variation in width of patches of native forests. A total of 32 study sites (boundaries between eucalypt and pine forests) were surveyed. Birds were counted by the area search method within 0.5-ha quadrats. Data were analysed using generalised linear models. Wide patches of eucalypt forest supported higher species richness and greater numbers of birds, such as foliage searchers and nectarivores, than narrow patches. Matrix age also influenced the occurrence of some species in native patches. The abundance of species in wide and narrow patches of native forest was related to their use of the matrix. This was true for native forests surrounded by old but not by young pine forests. We suggest that management in wood production landscapes take into account both characteristics of native patches and the surrounding matrix. Negative impacts of fragmentation in managed landscapes might be reduced by promoting matrix types that are suitable for bird species.  相似文献   

10.
Vegetation corridors, such as street trees in urban areas, which connect patchy woodland and mitigate habitat isolation, are expected to enhance the persistence of birds in urban landscapes. However, the effectiveness of urban corridors on birds remains equivocal because vegetation corridor is often managed for human use with little consideration of wildlife. Here we compared the effects of three major corridors of varying vegetation structures (trees with a dense understory, trees with a sparse understory, and grassy areas with sparse trees) on the species richness and abundance of birds in 21 wooded patches in the center of Tokyo, Japan, during wintering and breeding seasons. Using generalized linear models and Akaike’s information criterion, we found that the effectiveness of corridors depended on the tolerance of birds to urbanization. Urban avoider species, having low tolerance to urbanization, demonstrated lower species richness and abundance in patches close to the corridor with a sparsely vegetated understory as compared with patches close to the understory-richer corridors during winter, although such an effect disappeared during the breeding season. The corridors did not have a significant effect on suburban adapter species with a high tolerance to urbanization. Our results suggest that corridors with scarce understory vegetation may limit the persistence of birds avoiding urban areas.  相似文献   

11.
The rapid expansion of the world’s urban population is a major driver of contemporary landscape change and ecosystem modification. Urbanisation destroys, degrades and fragments native ecosystems, replacing them with a heterogeneous matrix of urban development, parks, roads, and isolated remnant fragments of varying size and quality. This presents a major challenge for biodiversity conservation within urban areas. To make spatially explicit decisions about urban biodiversity conservation actions, urban planners and managers need to be able to separate the relative influence of landscape composition and configuration from patch and local (site)-scale variables for a range of fauna species. We address this problem using a hierarchical landscape approach for native, terrestrial reptiles and small mammals living in a fragmented semi-urban landscape of Brisbane, Australia. Generalised linear modelling and hierarchical partitioning analysis were applied to quantify the relative influence of landscape composition and configuration, patch size and shape, and local habitat composition and structure on the species’ richness of mammal and reptile assemblages. Landscape structure (composition and configuration) and local-scale habitat structure variables were found to be most important for influencing reptile and mammal assemblages, although the relative importance of specific variables differed between reptile and mammal assemblages. These findings highlight the importance of considering landscape composition and configuration in addition to local habitat elements when planning and/or managing for the conservation of native, terrestrial fauna diversity in urban landscapes.  相似文献   

12.
13.
A computer simulation model was used to derive estimates of the probability of extinction of populations of the endangered species, Leadbeater's Possum (Gymnobelideus leadbeateri), inhabiting ensembles of habitat patches within two wood production forest blocks in central Victoria, south-eastern Australia. Data on the habitat patches were extracted from forest inventory information that had been captured in the database of a Geographic Information System (GIS). Our analyses focussed on a range of issues associated with the size, number and spatial configuration of patches of potentially suitable habitat that occur within the Ada and Steavenson Forest Blocks. The sensitivity of extinction risks in these two areas to variations in the movement capability ofG. leadbeateri was also examined.Our analyses highlighted major differences in the likelihood of persistence of populations ofG. leadbeateri between the Ada and Steavenson Forest Blocks. These were attributed to differences in the spatial distribution and size of remnant old growth habitat patches as well as the impacts of wildfires. In addition, simulation modelling revealed a different relative contribution of various individual patches, and ensembles of patches, to metapopulation persistence in the two study areas. In those scenarios for the Ada Forest Block in which the impacts of wild-fires were not modelled, our analyses indicated that a few relatively large, linked patches were crucial for the persistence of the species and their loss elevated estimates of the probability of extinction to almost 100%. A different outcome was recorded from simulations of the Steavenson Forest Block which, in comparison with the Ada Forest Block, is characterized by larger and more numerous areas of well connected patches of old growth forest and where we included the impacts of wildfires in the analysis. In this case, metapopulation persistence was not reliant on any single patch, or small set of patches, of old growth forest. We found that in some circumstances the probability that a patch is occupied whilst the metapopulation is extant may be a good measure of its value for metapopulation viability. Another important outcome from our analyses was that estimates of extinction probability were influenced both by the size and the spatial arrangement of habitat patches. This result emphasizes the importance for modelling metapopulation dynamics of accurate spatial information on habitat patchiness, such as the data used in this study which were derived from a GIS.The values for the predicted probability of extinction were significantly influenced by a range of complex inter-acting factors including: (1) the occurrence and extent of wildfires, (2) the addition of logging exclusion areas such as forest on steep and rocky terrain to create a larger and more complex patch structure, (3) estimates of the quality of the habitat within the logging exclusion areas, and (4) the movement capability ofG. leadbeateri. Very high values for the probability of extinction of populations ofG. leadbeateri were recorded from many of the simulations of the Ada and Steavenson Forest Blocks. This finding is the result of the limited areas of suitable old growth forest habitat for the species in the two areas that were targeted for analysis. Hence, there appears to be insufficient old growth forest in either of the two forest blocks to be confident that they will support populations ofG. leadbeateri in the long-term, particularly if a wildfire were to occur in the next 150 years.The results of sensitivity analyses indicated that estimates of the probability of extinction ofG. leadbeateri varied considerably in response to differences in the values for movement capability modelled. This highlighted the need for data on the dispersal behaviour of the species.  相似文献   

14.

Context

Land use changes have modified the extent and structure of native vegetation, resulting in fragmentation of native species habitat. Connectivity is increasingly seen as a requirement for effective conservation in these landscapes, but the question remains: ‘connectivity for which species?’.

Objective

The aim of this study was to develop and then apply a rapid, expert-based, dispersal guild approach where species are grouped on similar fine-scale dispersal behaviour (such as between scattered trees) and habitat characteristics.

Methods

Dispersal guilds were identified using clustering techniques to compare dispersal and habitat parameters elicited from experts. We modelled least-cost paths and corridors between patches and individual movement probabilities within these corridors for each of the dispersal guilds using Circuitscape. We demonstrate our approach with a case study in the Tasmanian Northern Midlands, Australia.

Results

The dispersal guild approach grouped the 12 species into five dispersal guilds. The connectivity modelling of those five guilds found that broadly dispersing species in this landscape, such as medium-sized carnivorous mammals, were unaffected by fragmentation while from the perspective of the three dispersal guilds made up of smaller mammals, the landscape appeared highly fragmented.

Conclusions

Our approach yields biologically defensible outputs that are broadly applicable, particularly for conservation planning where data and resources are limited. It is a useful first step in multi-species conservation planning which aims to identify those species most in need of conservation efforts.
  相似文献   

15.
Assemblages of plants were studied at 14 sites in northern Patagonia corresponding to localities at which we (Monjeau et al. 1997) earlier studied the relationship between small mammal assemblages and landscape classifications. This allowed us to test predictions that both plants and small mammals correspond to the more inclusive hierarchical landscape divisions but that plants track better than small mammals the less inclusive divisions. Species presence or absence of plants at each locality was used in a series of multivariate analyses and compared by correlation analysis with those generated from small mammal species data. Assemblages of both plants and small mammals corresponded to the upper divisions, which are based on climatic and geomorphological features, but small mammal assemblages did not correspond to the lower divisions of the landscape classifications. Three factors are considered as explanations for the observed differences between plants and small mammals: a) small mammal habitat is determined more by plant growth form than by plant species; b) trophic level differences between the two groups; and c) species pool size affects the resolution of microhabitat correspondence. Our data indicate that both plant assemblages and small mammal assemblages respond to climatic and geomorphological features, which is in contrast to the paradigm that mammal assemblages simply follow plant assemblages. We also attempted to reconcile classification systems in Patagonia by proposing a nomenclatural system based on a hierarchical classification. In the system proposed, ecoregion is the lowest division small mammal assemblages can recognize in Patagonia. Finally, we conclude that the hierarchical nature of landscapes based on a holistic view of environments reflects real entities that are not just the perceptions of landscape ecologists.  相似文献   

16.
Human land-use practices have dramatically altered the composition and configuration of native habitats throughout many ecosystems. Within heterogeneous landscapes generalist predators often thrive, causing cascading effects on local biological communities, yet there are few data to suggest how attributes of fragmentation influence local population dynamics of these species. We monitored 25 raccoon (Procyon lotor) populations from 2004 to 2009 in a fragmented agricultural landscape to evaluate the influence of local and landscape habitat attributes on spatial and temporal variation in demography. Our results indicate that agricultural ecosystems support increased densities of raccoons relative to many other rural landscapes, but that spatial and temporal variation in demography exists that is driven by non-agricultural habitat attributes rather than the availability of crops. At the landscape scale, both density and population stability were positively associated with the size and contiguity of forest patches, while at the local scale density was positively correlated with plant diversity and the density of tree cavities. In addition, populations occupying forest patches with greater levels of plant diversity and stable water resources exhibited less temporal variability than populations with limited plant species complexity or water availability. The proportion of populations comprised of females was most strongly influenced by the availability of tree cavities and soft mast. Despite the abundance of mesopredators in heterogeneous landscapes, our results indicate that all patches do not contribute equally to the regional abundance and persistence of these species. Thus, a clear understanding of how landscape attributes contribute to variation in demography is critical to the optimization of management strategies.  相似文献   

17.
The purpose of our study was to compare the number, proportion, and species composition of introduced plant species in forest patches situated within predominantly forested, agricultural, and urban landscapes. A previous study suggested that agricultural landscape context does not have a large effect on the proportion of introduced species in forest patches. Therefore, our main goal was to test the hypothesis that forest patches in an urban landscape context contain larger numbers and proportions of non-native plant species. We surveyed the vegetation in 44 small remnant forest fragments (3–7.5 ha) in the Ottawa region; 15 were situated within forested landscapes, 18 within agricultural landscapes, and 11 within urban landscapes. Forest fragments in urban landscapes had about 40% more introduced plant species and a 50% greater proportion of introduced plant species than fragments found in the other two types of landscape. There was no significant difference in the number or proportion of introduced species in forest fragments within forested vs. agricultural landscapes. However, the species composition of introduced species differed among the forest patches in the three landscape types. Our results support the hypothesis that urban and suburban areas are important foci for spread of introduced plant species.  相似文献   

18.
Although it is recognized that anthropogenic forest fragmentation affects habitat use by organisms across multiple spatial scales, there is uncertainty about these effects. We used a hierarchical sampling design spanning three spatial scales of habitat variability (landscape > patch > within-patch) and generalized mixed-effect models to assess the scale-dependent responses of bird species to fragmentation in temperate forests of southern Chile. The abundances of nine of 20 bird species were affected by interactions across spatial scales. These interactions resulted in a limited effect of within-patch habitat structure on the abundance of birds in landscapes with low forest cover, suggesting that suitable local habitats, such as sites with dense understory cover or large trees, are underutilized or remain unused in highly fragmented landscapes. Habitat specialists and cavity-nesters, such as tree-trunk foragers and tapaculos, were most likely to exhibit interactions across spatial scales. Because providing additional sites with dense understory vegetation or large habitat trees does not compensate the negative effect of the loss of forest area on bird species, conservation strategies should ensure the retention of native forest patches in the mixed-use landscapes.  相似文献   

19.
Dispersal is a key element of the invasion process for introduced species, and is influenced by landscape connectivity. The red-bellied squirrel (Callosciurus erythraeus) was introduced to Argentina in 1970. Suitable forest habitat for this arboreal species is highly fragmented in a rural–urban matrix, but despite this, the squirrel population has spread. Squirrels disperse into new habitat patches using connective features such as forest corridors. They may also cross gaps but up to what extent is not known. Gap crossing success is influenced by perceptual range, which is the distance from which animals can perceive suitable habitat. Perceptual range has been previously estimated for vulnerable species, but not for introduced species. We used a model relating perceptual range to body mass to predict the perceptual range of the red-bellied tree squirrel in Argentina. We then tested our prediction of 202–221 m by releasing squirrels in an unfamiliar arable field at different distances (300, 200, 100 and 20 m) from woodland habitat. We assumed that if woodland could be perceived, squirrels would orientate toward it. We estimated perceptual range to be between 20 and 100 m, considerably lower than predicted. Our results indicate that squirrels can potentially cross small habitat gaps, but dispersal over greater distances lacking connectivity is less likely. Incorporating this information when modelling the spread of exotic squirrels in the Pampas Region can yield more accurate prediction of the invasion process and guide management practices to minimise their expansion.  相似文献   

20.
Small mammals in heterogeneous environments have been found to disperse along corridors connecting habitat patches. Corridors may have different survivability values depending on their size and the degree of cover they provide. This deterministic model tests the effects of varying corridor quality on the demographics of a metapopulation of Peromyscus leucopus. Two types of corridors are defined based on the probability of survival during a dispersal event. Results indicate that mortality during movement through corridors influences metapopulation demographics. We found that:
  1. Any connection between two isolated patches is better than no connection at all in terms of persistence and population size at equilibrium.
  2. Metapopulations with exclusively high quality corridors between patches have a larger population size at equilibrium than do those with one or more low quality corridors.
  3. Increasing the number of high quality corridors between patches has a positive effect on the size of the metapopulation while increasing the number of low quality corridors has a negative effect.
  4. The addition to a metapopulation of a patch connected by low quality corridors has a negative effect on the metapopulation size. This suggest the need for caution in planning corridors in a managed landscape.
  5. There is no relationship between the number of corridors and the metapopulation size at equilibrium when the number of connected patches is held constant.
  6. Geometrically isolated patches connected by low quality corridors are most vulnerable to local extinctions.
We conclude that corridor quality is an important element of connectivity. It contributes substantially to the effects of fragmentation and should be carefully considered by landscape planners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号