首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
基于组态软件和模糊控制的分娩母猪舍环境监控系统   总被引:10,自引:6,他引:4  
为解决北方寒冷地区分娩母猪对猪舍环境的要求,该文研究了一种舍内环境监测和控制系统。该系统综合考虑舍内温度、湿度、氨气浓度及其相互影响,利用组态软件、模糊控制技术和解耦控制技术,通过机械通风系统和热水采暖系统实现了舍内环境的智能控制。试验结果表明该系统可行且实用,在保证舍内所需温度基本恒定的条件下(舍内温度控制的最大相对误差为5.5%),也能使舍内相对湿度和氨气浓度保持在适宜范围内。  相似文献   

2.
冬季采暖保育猪舍送排风管道组合换气系统设计与评价   总被引:3,自引:2,他引:1  
为实现保育猪舍内局部环境通风调控,该研究设计一种垂直送排风管道组合换气系统。采用CFD(Computational Fluid Dynamics)技术对垂直管道通风模式下舍内的空气流场进行模拟,并以相对湿度和CO2浓度作为输入变量建立通风模糊控制系统。模拟结果显示保育猪所在水泥地板区域风速保持在0.1~0.2 m/s。参照模拟结果,以猪栏为通风单元对保育猪舍通风系统进行改造,舍内气流不均匀性系数在0.1以下,表明采用该换气系统的保育猪舍通风均匀性较好;猪舍温度在21~25 ℃,相对湿度小于70%,NH3浓度小于5 mg/m3,CO2浓度小于1 200 mg/m3,舍内各项环境参数适宜保育猪健康生长。系统运行功耗为270~1 150 W。现场测试与分析结果表明,该垂直送排风管道组合换气系统,可以精确控制猪舍环境,兼顾冬季猪舍通风与保温问题。  相似文献   

3.
基于能质平衡的密闭猪舍内小气候环境模拟与验证   总被引:2,自引:1,他引:1  
良好的猪舍内小气候可以显著提高猪的生长性能和健康水平,然而由于猪舍内小气候受地域、季节、饲养数量等因素影响,难以实现可靠的预测及控制。该文基于能量及质量平衡方程,建立热量、湿度交换模型,以实际监测数据为基础,利用多元非线性回归方法(multiple nonlinear regression method)确定模型中的部分参数,建立适用于北方夏季密闭式猪舍环境模拟模型。对夏季北向背阴面和南向朝阳面的2个猪舍内温度及湿度进行模拟及验证,结果表明,南北2个朝向的猪舍内温度、湿度模拟与实测值变化趋势一致,温度最大误差为2.4℃,最大相对误差为9.2%,决定系数分别为0.836 9和0.786 9;舍内相对湿度最大误差为13.34%,最大相对误差为49.66%,决定系数分别为0.912和0.899 7。研究结果可为密闭式猪舍内环境调控及能量需求提供参考。  相似文献   

4.
太阳能猪舍地道通风方式对舍内热环境的影响   总被引:3,自引:3,他引:0  
为了调控猪舍地面的温度及降低舍内相对湿度,该文的太阳能猪舍采用了地道通风方式。猪只一天之中70%以上的时间以躺卧休息为主,躺卧区的温度环境,尤其是地面的温度调控极为重要。该文以长春地区的猪舍为研究对象,利用附加阳光间吸收太阳辐射为猪床和猪舍提供热量。在通风道内正压通风、负压通风和无风机的不同工况下,对采用地道通风方式的太阳能猪舍进行试验研究。结果表明:在寒冷季节室外温度大约是?13℃,试验猪舍比对照猪舍的温度平均高3.0℃,相对湿度RH(relative humidity)平均降4%;在试验猪舍中,距离地道进风口2 m的地面,白天通风道正压通风比通风道无风机温度平均高0.7℃,比通风道负压通风的温度平均高1.5℃,晚上正压通风比无风机温度平均高1.1℃,比负压通风的温度平均高2.9℃;距离进风口1 m的地面,白天正压通风比无风机温度平均高3.6℃,比负压通风的温度平均高3.8℃;晚上正压通风比无风机温度平均高6.4℃,比负压通风的温度平均高6.9℃。因此,在太阳能猪舍采用地道通风方式对提高猪舍的地面温度,降低舍内相对湿度具有重要意义。  相似文献   

5.
蛋鸡舍冬季CO2浓度控制标准与最小通风量确定   总被引:3,自引:2,他引:1  
中国现行的蛋鸡舍内CO_2浓度控制的农业行业标准为1 500 mg/m~3,主要适用于传统的刮板式清粪鸡舍。目前新建、改建鸡舍都采用传送带清粪方式,鸡舍内的相对湿度和氨气等有害气体浓度均明显减少,其冬季最小通风量和舍内CO_2浓度参数标准均有待重新研究。该文通过总结分析国内外相关学者对不同清粪方式蛋鸡舍内NH_3、CO_2浓度的测试数据,提出传送带清粪蛋鸡舍内CO_2浓度取值建议,并根据CO_2浓度平衡原理,提出该类蛋鸡舍冬季最小通风量的取值建议。结果表明:传送带清粪蛋鸡舍内CO_2浓度参数控制标准建议可取5 000 mg/m~3;蛋鸡舍冬季连续通风最小通风量为0.40~0.50 m~3/(h·kg)。该研究为中国新建、改建传送带清粪模式蛋鸡舍CO_2浓度参数标准的取值以及调控蛋鸡舍冬季通风与保温矛盾等问题提供了参考依据。  相似文献   

6.
多环境参数控制的猪养殖箱设计及箱内气流场分析   总被引:6,自引:6,他引:0  
在规模化养殖中猪舍环境日益重要的背景下,为了便于研究猪舍内不同环境对猪健康的影响,该文设计了基于多环境参数控制的猪养殖箱。养殖箱采用气流自循环的通风模式,通过ANSYS对该养殖试验箱的气流场走向、模式以及风速适宜性进行模拟仿真。该养殖箱利用环境因子检测模块中的传感器集成节点和激光NH_3传感器实时获取养殖箱内的温度、相对湿度、NH_3浓度、CO_2浓度、风速等环境数据,并通过通信中转节点STM32发送至主控制器可编程逻辑控制器(programmable logical controller,PLC),PLC对环境数据进行处理,并根据已处理的环境数据进行环境调控,实现箱内环境的自动控制。与此同时,PLC将环境数据上发至上位机PC,通过WinCC监控软件实现了环境数据动态显示,通过VB脚本实现了历史数据自动定时导出至Excel文件功能。养殖箱气流烟雾试验、空箱试验以及保育猪养殖试验结果表明:养殖箱内气流走向形成大循环,且通风无死角,养殖箱环境控制系统的温度控制精度为±1℃,相对湿度可以控制在50%~80%的适宜范围内,NH_3浓度控制精度小于±3í10-6,CO_2浓度可以控制在1540í10-6以下,养殖箱能够在较长时间稳定运行的同时,实现了箱内温度、相对湿度、NH_3浓度、CO_2浓度等环境因子精确控制,为不同环境的养殖试验提供试验平台。  相似文献   

7.
种鹅舍环境智能监控系统的研制和试验   总被引:1,自引:1,他引:0  
针对种鹅反季节繁殖生产中硬件设备功能低下、难以实施舍内环境操作的适时精细调控、难以获取记录舍内环境数据进行问题溯源等问题,提出一种专门应用于种鹅反季节繁殖生产舍的环境智能监控系统。该系统通过BP神经网络建立温湿度智能调控模型,取代人工手动操作以满足舍内环境要求。通过GPRS模块无线传输舍内环境参数,并利用其GSM功能通过移动终端远程控制风机、照明、水泵等设备。以EXT、Hibernate和Spring为基本框架技术,构建了轻量级、强壮的多级缓存的J2EE企业级Web应用程序,实现鹅舍环境参数的远程监控,并与现有商用人工控制器进行了现场试验和性能对比。试验结果表明:该智能监控系统长期运行稳定、可靠,能够满足鹅反季节繁殖对光照和温湿度的环境调控要求。与人工粗略控制、上海梵龙的畜禽控制器相比,控制精度分别提高5.49%和2.83%。在夏季风机湿帘负压通风降温时测定的舍内温度相对于设定值的均方根误差分别为0.202、0.494、0.372℃,相对湿度相对于设定值的均方根误差分别为1.745%、3.166%、2.621%,控制效果显著优于人工粗略控制和现有控制器(P0.05)。在精准的光照调控下,种鹅均能按预期的时间开产,并在高峰期长期维持产蛋率35%~45%,表现出稳定、良好的产蛋性能。  相似文献   

8.
不同类型猪舍建筑的环境评价   总被引:1,自引:0,他引:1  
该文对山东省主要类型猪舍在春、夏、冬季节环境下的使用效果进行了研究,测定了舍内外温度、湿度、气流速度、光照度、舍内空气中氨气浓度及大气落菌数等指标,以便为合理的猪舍设计和环境控制提供科学依据。结果表明半开放式猪舍冬季在运动场部分用塑料薄膜覆盖,可以显著提高舍内温度(P<0.01)(2.1℃),但其温度状况仍较封闭式猪舍差(P<0.01),且湿度偏高;在夏季半开放式猪舍内气流速度较低,舍内温度仍显著高于舍外(P<0.01)。对于封闭式有窗猪舍,有吊顶及密封效果较好的猪舍冬季的保温效果较好。夏季猪舍内气温高于  相似文献   

9.
环境控制方法是实现温室蔬菜高效生产的关键。随着现代控制技术的快速发展,温室环境控制方法逐步从手动、定时控制方法,转变为设定值控制和智能控制等方式。该文概述了以设定值为目标实现环境控制的方法,归纳了模糊控制、解耦控制、人工智能控制和表型控制等智能控制方法的特点,总结了现有温室环境调控领域控光、控温、控气、通风、灌溉和“云-边-端”协同控制系统的优劣。针对现存问题,指出该领域的发展趋势为构建考虑扰动因素影响的温室环境控制方法,研制基于作物生长和表型评价体系的环境调控模型,以及建立多模型融合的“云-边-端”协同温室环境调控系统。相关技术的发展将为温室的智能化与信息化发展提供重要的决策依据和借鉴意义。  相似文献   

10.
武汉地区猪舍冬季环境评价   总被引:1,自引:1,他引:0  
对武汉地区有窗猪舍内的冬季环境状况进行了观测。结果表明:分娩舍内温湿度分别为8.1~10.0℃,70%~80%;保育舍内温湿度分别为5.2~7.3℃,83.4%~86.0%,两舍内温度均偏低,湿度均偏高,不利仔猪的生长发育。通风时舍内风速较为合适,舍内氨气浓度在允许范围之内。  相似文献   

11.
猪舍环境适宜性模糊综合评价   总被引:6,自引:3,他引:3  
猪舍环境是影响猪健康水平、生长和繁殖的重要因素,对养猪生产起着决定性作用,受到广泛的关注。然而,猪舍环境是由多个环境因子相互耦合而形成的复杂的非线性时变系统。对各环境因素适宜性的描述并不是一个确定的数值,而是在一定范围内的模糊概念。目前,针对猪舍环境优劣评价大多仅限于单一环境因素,缺少基于多个环境因素的猪舍环境适宜性综合评价研究。因此,该文构建了评价指标体系和权重,根据猪舍养殖环境标准建立各环境因子的隶属度函数,提出了基于模糊集理论的猪舍多环境因子适宜性综合评价方法。以美国普渡大学 SERB 猪舍环境监测的24组数据为例对该文提出的方法进行了验证,结果表明,该文建立的猪舍环境适宜性模糊综合评价方法比单一环境因素的评价更加全面,能科学合理地反映出猪舍环境质量状况,可以很好地为猪舍环境调控提供数据参考。  相似文献   

12.
环境是影响蛋鸡健康与生产性能的关键因素,为对蛋鸡舍环境进行综合性的舒适度评价,该研究将除湿热环境之外的空气环境质量也纳入评价指标体系中,采用模糊数学方法,研究了重要环境参数在规模化蛋鸡舍环境舒适度综合评价中的权重,对舍内温度、湿度、CO2浓度、氨气(NH3)浓度、风速等关键环境参数进行归一化处理,建立了基于多元环境参数的鸡舍综合环境舒适度评价指数(Comprehensive Environmental Index, CEI),并基于LabVIEW软件开发了一套评价系统,可将上述环境参数在雷达图中进行可视化展示,以及对单因素环境参数和环境舒适度进行预警。通过实际使用中鸡舍环境监测数据的分析验证,CEI能够体现舍内整体环境舒适度的变化,对各个时段环境因素间的相互作用做出应答,尤其是温度降低导致空气环境质量影响上升的时段。该研究对于综合评价蛋鸡舍环境条件并进行精准控制,提高环境舒适度,提供了方法支撑。  相似文献   

13.
基于无线传感网络与模糊控制的精细灌溉系统设计   总被引:17,自引:9,他引:8  
为准确判断作物需水量并确立合适的灌溉控制策略,实现作物的自动、定位、实时与适量灌溉,设计了基于ZigBee无线传感网络与模糊控制方法的精细灌溉系统。该系统通过ZigBee无线传感器网络采集土壤水势与微气象信息(包括环境温度、湿度、太阳辐射与风速等),并传输灌溉控制指令;结合FAO56 Penman-Monteith公式计算农田蒸散量,并将农田蒸散量和土壤水势作为模糊控制器的输入量,建立了多因素控制规则库,实现了作物灌溉需水量的模糊控制。试验结果表明该系统经济实用、通信可靠、控制准确性高,特别适用于中小型灌溉区域的精细灌溉。  相似文献   

14.
规模化猪场妊娠母猪舍改进湿帘降温系统的环境特性   总被引:3,自引:1,他引:2  
为研究湿帘与地道结合的改进湿帘降温系统对妊娠母猪舍的环境特性,该研究采取现场测试的方法,选取河南地区某规模化母猪场妊娠舍为试验猪舍,对该猪舍夏季和冬季舍内热环境和空气质量环境进行测试和分析,结果表明:1)改进湿帘降温系统夏季对新风的平均降温功率增加了?84.4 kW,提高了25%的降温效果;冬季对新风的平均加热功率增加了121.6 kW且舍内无需供暖,87%以上的节能效果发生在地下风道前半程。2)试验猪舍舍内温湿度、风速分布均匀,且舍内温度波动低于3.7 ℃;综合猪舍母猪体感有效温度和呼吸频率等应激程度指标,母猪冬季处于舒适状态,夏季有轻度热应激状态现象。3)夏季和冬季舍内氨气(NH3)、二氧化碳(CO2)、和粉尘(PM2.5和PM10)的质量浓度分布均匀,且均小于国家标准规定的妊娠舍空气污染物浓度极限水平。综上所述,改进湿帘降温系统不仅降低妊娠母猪舍热环境调控的能耗并维持舍内空气质量环境良好,对建立环境友好型规模化母猪场具有积极意义。  相似文献   

15.
混合通风方式下大型肉鸡舍过渡期通风效果测试   总被引:1,自引:0,他引:1  
随着肉鸡周年饲养环境控制精细化程度的提高,在横向通风和纵向通风系统应用的基础上,借助于横向进风口和纵向排风机进行春秋过渡期通风换气的混合通风方式,近年来在大型养鸡场内开始应用。该研究通过现场试验,研究测试了这种通风方式下肉鸡舍内的换气量、气流速度、温度以及氨气浓度,结果显示这种通风方式可以保证充足的换气量,提供适宜且分布均匀的气流速度和温度分布,有效地抑制舍内氨气浓度,从而可为鸡只的健康生长创造良好的环境条件。  相似文献   

16.
密闭式蛋鸡舍外围护结构冬季保温性能分析与试验   总被引:5,自引:4,他引:1  
蛋鸡舍围护结构的保温隔热性能是影响鸡舍温度的稳定性,进而影响蛋鸡健康和生产性能的关键因素。由于蛋鸡舍一般不采暖,依靠蛋鸡的自身显热产热量来维持冬季蛋鸡舍内温度,因此如果蛋鸡舍冬季饲养密度较低、通风过度或围护结构保温性能不足,都难以满足蛋鸡舍温度环境的要求。如何确定不同气候区鸡舍围护结构必要的保温性能和饲养密度要求是解决蛋鸡舍冬季通风和保温矛盾问题的关键。该文通过建立蛋鸡舍动态热平衡理论模型,系统分析了不同气候区鸡舍围护结构的最低热阻需求,得出不同气候区鸡舍围护结构的保温性能要求与蛋鸡饲养方式(密度)的关系。结果表明:冬季舍外计算温度分别为-25℃(东北、内蒙古)、-15℃(华北、西北)、0℃(长江以南)的地区,蛋鸡舍墙体、屋面的最小热阻应分别不小于0.778、0.972;0.573、0.716;0.266、0.333(m~2·℃)/W;对应3层全阶梯笼养、4层半阶梯笼养和4层叠层、6层叠层、8层叠层笼养等饲养模式最大饲养密度下,所能够适应的围护结构冬季室外计算温度应分别不低于-14、-17、-19、-22、-23℃。研究结果为不同气候地区选择适宜饲养模式以及密闭式蛋鸡舍围护结构保温系统的设计提供了理论依据。  相似文献   

17.
大型连栋温室环境参数的线性时不变系统建模   总被引:2,自引:1,他引:1  
华北地区大型连栋温室夏季强制通风降温的水、能消耗很大,为了使环境调控既能适宜作物生长又能降低调控消耗,迫切需要精确有效的环境温度和湿度动态模型。该文采用线性时不变系统的ARX模型及系统辨识方法,对华北地区连栋温室夏季强制通风降温动态过程进行室内温度和湿度建模。试验在2003年夏季6-7月进行,以1 min的时间间隔连续采集室内温度、湿度、室外温度、湿度、光照强度、风速、风机运行状态和数据采集时刻8个参数,将采集的数据分成辨识集和证实集两组,用辨识集数据采用最小二乘法进行模型系数回归,用证实集数据进行模型验证,验证指标为最大绝对误差(MAE)、最大相对误差(MRE)、均方误差(RMSE)和可解释方差(vaf)。证实结果显示,温度模型的最大预测误差(MAE)为3.57 ℃,均方误差(RMSE)小于0.198 ℃;湿度模型的最大预测误差(MAE)为7.3%,均方误差(RMSE)小于0.624%;温度和湿度模型的vaf均大于98.9%。说明尽管模型在个别点的预测误差稍大,但总体的预测精度较高,能够满足一般情况下作物栽培对环境预测的要求。  相似文献   

18.
Between autumn 1997 and autumn 1999, we measured ventilation rates (using a CO2 balance method), air temperatures, and relative humidity (using self-contained dataloggers with built-in sensors) in 160 pig housing facilities in Queensland, South Australia, Victoria, and Western Australia, in each case over a 60 h period. In some buildings, the internal air velocities above the animals were also recorded. While the monitoring instruments were being set up, a detailed questionnaire was used to collect data on major housing features and management factors. This information was statistically analyzed to quantify the effects of housing and management factors on the resulting environment conditions using a multifactorial analysis. The overall mean air temperature, relative humidity, internal air velocity, and ventilation rate were 20.3 degrees C, 58.9%, 0.12 m s(-1), and 663.9 m3 h(-1) 500 kg(-1) live weight, respectively, across all buildings. Internal building temperature and humidity were affected statistically by the type of insulation material used, the classification of buildings, and external climatic conditions. Ventilation rates were primarily affected by the type of ventilation system used, height (size) of ventilation openings, stocking density (kg m(-3)), and length, width, and height of buildings. These findings should aid the development of strategies for the industry to improve environmental control in piggery buildings.  相似文献   

19.
为研究应用于中国西北地区的纵墙湿帘山墙排风系统对蛋鸡舍内热环境的改善状况,该试验选取了西北地区纵墙湿帘山墙排风与传统纵向通风2种通风系统的蛋鸡舍,通过对舍内热环境的连续监测,探究了2种通风系统下蛋鸡舍内的热环境及热应激状况,并比较了2种通风系统的经济投入成本。结果表明:纵墙湿帘山墙排风与传统纵向通风系统蛋鸡舍内温度最大波动幅度分别为2.7、10.3 ℃,纵墙湿帘山墙排风系统舍内水平与垂直方向温度差异不显著(P>0.05),传统纵向通风蛋鸡舍内水平与垂直方向温湿度差异显著(P<0.05);传统纵向通风蛋鸡舍内无热应激状态比试验舍低9.9%,轻度、中度、高度热应激状态分别比纵墙湿帘山墙排风系统舍内高2.7%、7.2%、0.1%;但相同饲养条件下蛋鸡舍采用纵墙湿帘山墙排风降温系统的经济投入成本是传统纵向通风降温系统成本的1.6倍。综合2栋蛋鸡舍内热环境空间分布、温湿指数等认为,纵墙湿帘山墙排风系统应用于中国西北炎热干旱地区蛋鸡舍可降低舍内温差及热应激程度,为更好的缓解舍内局部热应激并将该降温系统在西北地区蛋鸡养殖中推广,建议在风机相对侧山墙上也安装湿帘小窗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号