共查询到19条相似文献,搜索用时 62 毫秒
1.
为提高高分辨率田间葡萄图像中小目标葡萄检测的速度和精度,该研究提出了一种基于轻量级网络的酿酒葡萄检测模型(Wine Grape Detection Model,WGDM)。首先,采用轻量级网络MobileNetV2取代YOLOv3算法的骨干网络DarkNet53完成特征提取,加快目标检测的速度;其次,在多尺度检测模块中引入M-Res2Net模块,提高检测精度;最后,采用平衡损失函数和交并比损失函数作为改进的定位损失函数,增大目标定位的准确性。试验结果表明,提出的WGDM模型在公开的酿酒葡萄图像数据集的测试集上平均精度为81.2%,网络结构大小为44 MB,平均每幅图像的检测时间为6.29 ms;与单发检测器(Single Shot Detector,SSD)、YOLOv3、YOLOv4和快速区域卷积神经网络(Faster Regions with Convolutional Neural Network,Faster R-CNN)4种主流检测模型相比,平均精度分别提高8.15%、1.10%、3.33%和6.52%,网络结构分别减小了50、191、191和83 MB,平均检测时间分别减少了4.91、7.75、14.84和158.20 ms。因此,该研究提出的WGDM模型对田间葡萄果实具有更快速、更准确的识别与定位,为实现葡萄采摘机器人的高效视觉检测提供了可行方法。 相似文献
2.
为提高自然成像条件下的酿酒葡萄图像中病害识别的可靠性,对时序叶片图像作连续病害检测并监测病斑变化情况。首先,在每一天利用Faster R-CNN算法对摄像机视场中葡萄叶片进行检测,对检测到的叶片采用改进卡尔曼滤波法进行跟踪,以获得叶片正面图像。为了实现多叶片跟踪和解决由遮挡而造成的跟踪失败问题,该文在卡尔曼滤波和匈牙利算法基础上,结合运动测度和深度外观信息对跟踪目标进行匹配,运动匹配时采用马氏距离,外观匹配方面采用最小余弦距离。其次,将不同日期的叶片正面图像做SIFT(scale-invariant feature transform)匹配,找到同一叶片按日期排列的一组序列图像,并在序列图像中通过深度学习技术进行病害识别。最后,通过监测叶片序列图像上病斑相对面积变化或病斑数量是否增加来确认病害的存在。该文对提出的跟踪算法、叶片匹配算法和序列图像上病害识别的精度进行了测试,试验表明:跟踪算法平均多目标跟踪准确度为73.6%,多目标跟踪精度为74.6%,基于判别模型颜色特征的传统跟踪算法两指标分别为14.3%和61.3%;基于SIFT特征的叶片匹配在识别同一叶片时的精度达到了90.9%;病害监测方面,虚警综合排除率(马修斯相关系数)达到了84.3%。该文的方法可以排除一些虚假病害,病害监测的可靠性有所提高,可适用于自然条件下葡萄病害的连续在线监测。 相似文献
3.
为解决钵苗移栽时叶片朝向一致的问题,研究单目视觉钵苗叶片的调向方法。首先,均隔8°提取钵苗旋转1圈视频中的45帧图像作为目标对象,对每帧图像依次采用灰度变换、阈值分割和细化等算法进行图像处理后,将8邻域中只有一个与其灰度值相同的中心像素判定为叶片末梢尖点(兴趣点)。然后,通过平滑相似度函数将兴趣点路径跟踪问题简化为对前一帧兴趣点的临近位置均值移位搜索的最大相似度;根据跟踪对象运动矢量方向和速度的连贯性,通过最小化函数从临近位置内存在的多个兴趣点中筛选出目标兴趣点;采用最小化接近一致性代价幻影点函数产生一个帧间幻影点代替因叶片相互遮挡可能丢失的兴趣点。依次根据各帧图像的多个叶片兴趣点获得其相应跟踪路径和对应方位。最后,将叶片兴趣点中存在最大横坐标值的一对对称兴趣点作为目标,当其中一个兴趣点处在最大横坐标位置时,根据另一个兴趣点的当前位置确定钵苗顶杆的调整转角θ/2,将叶片朝向调整到与横轴平行后完成调向。试验结果显示,50株钵苗的最小、最大调向偏差值分别为1.51°和25.31°,94%的调向偏差值小于15°。钵苗叶片调向方法可以满足钵苗移栽机的叶片调向要求。 相似文献
4.
橘小实蝇发生期虫口数量是威胁果树生长状况的重要参数,是实施精准变量喷雾的基础。为实现果园大尺度、现场、实时和快速检测橘小实蝇虫害发生情况,该文提出了一种基于机器视觉技术在虫口区域跟踪橘小实蝇运动轨迹和数量检测的方法。试验采用橘小实蝇视觉检测平台,选取华南农业大学资源与环境学院橘小实蝇饲养室采集的视频图像作为评价样本,通过人工与机器视觉方式比较视频前50?000帧的检测效果,试验结果表明人工和机器视觉检测的橘小实蝇数量分别为85、78头;机器视觉漏检率为9.4%,达到虫害数量统计要求。 相似文献
5.
改进圆形Hough变换的田间红提葡萄果穗成熟度判别 总被引:1,自引:5,他引:1
针对田间环境下红提葡萄果穗成熟度人眼判断效率低且易误判的问题,该研究采用K近邻(K-nearest neighbor,KNN)算法和最大类间方差(Otsu)法分别对葡萄果穗图像背景分割以找到最佳分割效果,采用圆形Hough变换识别葡萄果粒,并开发了可判别葡萄果穗成熟度的算法。研究结果表明,不论顺光、逆光或者与田间背景相似的绿色果穗,KNN法可实现良好的背景分割,然后圆形Hough变换法在边缘阈值和灵敏度分别取0.15和0.942时,识别葡萄果粒的准确率可达96.56%。在此研究基础上,采用该研究开发的葡萄果穗成熟度判断算法,可根据颜色将果粒划分不同成熟度等级,并实现对果穗成熟度判别,判别准确率为91.14%。该研究结果可为果农适宜期收获葡萄及自动化采摘提供重要指导。 相似文献
6.
针对深度学习方法在视觉车辆检测过程中对小目标车辆漏检率高和难以实现嵌入式实时检测的问题,该文基于Tiny YOLOV3算法提出了增强Tiny YOLOV3模型,并通过匈牙利匹配和卡尔曼滤波算法实现目标车辆的跟踪。在车载Jetson TX2嵌入式平台上,分别在白天和夜间驾驶环境下进行了对比试验。试验结果表明:与Tiny YOLOV3模型相比,增强Tiny YOLOV3模型的车辆检测平均准确率提高4.6%,平均误检率减少0.5%,平均漏检率降低7.4%,算法平均耗时增加43.8 ms/帧;加入跟踪算法后,本文算法模型的车辆检测平均准确率提高10.6%,平均误检率减少1.2%,平均漏检率降低23.6%,平均运算速度提高5倍左右,可达30帧/s。结果表明,所提出的算法能够实时准确检测出目标车辆,为卷积神经网络模型的嵌入式工程应用提供了参考。 相似文献
7.
春见柑橘个体小、单株果树柑橘密集、柑橘之间的形态与颜色相似度高且易被树叶严重遮挡,这些特点给春见柑橘检测与计数带来了较大困难。该研究以实际春见果园环境中的春见柑橘作为检测与计数对象,提出了一种以春见柑橘为检测目标的基于特征递归融合YOLOv4网络模型(YOLOv4 network model based on recursive fusion of features,FR-YOLOv4)。针对春见柑橘尺寸小的特点,FR-YOLOv4网络模型的主干特征提取网络采用了感受野更小的CSPResNest50网络,降低了小尺寸目标的特征图传不到目标检测器中的可能性;针对春见柑橘被遮挡和密集分布的情况,采用了递归特征金字塔(Recursive Feature Pyramid,RFP)网络来进行特征递归融合,提高了对果园环境下春见柑橘的检测精度。试验结果表明:FR-YOLOv4网络模型对于果园环境中春见柑橘的平均检测精度为94.6%,视频检测帧率为51帧/s。FR-YOLOv4网络模型相比于YOLOv4、单次多框检测器(Single Shot Multi-Box Detector,SSD)、CenterNet和更快速卷积神经网络(Faster- Region-Convolutional Neural Networks,Faster R-CNN)的平均检测精度分别提高了8.9、29.3、14.1和16.2个百分点,视频检测帧率分别比SSD、Faster R-CNN提高了17和33帧/s。FR-YOLOv4网络模型对于实际果园环境中春见柑橘的检测精度高,具备检测实时性,适用于春见果园中春见柑橘检测与计数。 相似文献
8.
针对穴盘苗叶片之间相互覆盖难以利用俯视图像判断种苗品质的问题,该研究以白掌苗为研究对象,提出一种叶片下观测苗茎局部区域的方法,通过提取穴盘苗叶片下苗茎参数,结合种苗级别判断标准,实现叶片相互覆盖穴盘苗的自动化品质检测。该方法首先确定白掌苗苗茎品质分级临界值,并构建由微型相机和导光纤维组成的苗茎图像采集单元,在检测室暗室环境中捕获白掌苗叶片下光纤光斑区域苗茎图像,利用视觉算法提取苗茎图像和苗茎投影面积,通过提取的待测白掌苗苗茎投影面积与白掌苗苗茎品质分级临界值对比分析,确定不合格苗,并返回不合格苗穴孔位置信息。试验结果表明,穴盘苗品质检测准确度主要受种苗在穴中位置和输送速度影响,当苗偏离穴中心10 mm以上时,种苗品质检测准确度最低降至85%以下。当种苗品质接近分级临界值时,种苗品质检测准确度略微下降,但不显著(P>0.05)。针对72孔待售白掌穴盘苗进行品质检测试验,试验结果表明,当输送带速度为0.045 m/s,苗茎偏离距离在10 mm内,系统的识别准确率可达97.92%,对应生产率为150盘/h(10 800株/h)。该研究可为存在相邻叶片覆盖时穴盘苗分级、品质检测的自动化评估提供理论指导和参考。 相似文献
9.
黄瓜叶片病虫害的检测与识别是科学防治病害的有效手段。为了提高对黄瓜叶片病斑细小特征的精准定位能力以及提高对早疫病叶片的检测性能,提出一种DCNSE-YOLOv7的深度学习算法。首先,将主干特征提取网络中对最后一个特征层的卷积2D convolution(Conv2D)改为可变形卷积2D Deformable convolution(DCNv2),提高模型对病斑细小特征的提取能力;其次,对主干特征提取网络输出的3个特征层结果添加Squeeze-and-Excitation networks(SENet)注意力机制模块构建网络模型,加强模型对发病早期相似病害特征的有效提取能力;同时,通过K-means++聚类算法对锚框重新聚类,避免算法在训练过程中盲目学习目标的尺寸和位置;最后,将原始YOLOv7的CIOU损失函数,更替为Focal-EIOU损失函数。试验结果表明,DCNSE-YOLOv7算法能够有效对黄瓜叶片病虫害进行检测,其平均精度均值为94.25%,比YOLOv5l、YOLOv7、Faster-RCNN、SSD和YOLOv7-tiny模型分别提高了2.72、2.87、0.28、12.... 相似文献
10.
发酵是红茶加工过程中关键的一道工序,对红茶的品质形成有着重要影响。该研究以大叶种英德红茶中的英红九号为研究对象,试验收集了204份不同发酵时间的红茶样品并使用便携式近红外光谱仪和工业相机获取红茶发酵中的信息,基于近红外光谱数据、图像数据和数据融合策略分别建立了红茶发酵程度判别模型。通过分析茶多酚和儿茶素类含量的变化,将红茶的发酵划分为3个阶段,即发酵不足、发酵适度和发酵过度。采用Savitzky-Golay光滑对原始光谱进行预处理,利用竞争自适应重加权采样(Competitive Adaptive Reweighted Sampling, CARS)、连续投影算法(Successive Projections Algorithm, SPA)和主成分分析(Principal Components Analysis, PCA)对近红外光谱变量进行降维处理;相应地,图像进行去阴影后提取了9个颜色特征变量,采用皮尔森(Pearson)相关分析和主成分分析进行特征变量提取。最后采用线性判别分析(Linear Discriminant Analysis, LDA)和支持向量机(Support Vector Machine, SVM)分别建立了基于近红外、图像和两者数据融合的分类模型。结果表明,在建模数据相同的条件下,非线性的支持向量机模型性能优于线性判别分析模型。单一传感器数据建模效果不佳,近红外光谱和图像判别模型的预测集最大准确率仅为83.82%和73.53%。低层次数据融合建模效果较单一传感器数据建模无明显提升,而中层次的数据融合建模效果比单一数据建模均有显著提高,其中SPA提取光谱变量结合Pearson提取图像变量建立的判别模型效果较佳,校正集和预测集准确率分别达到了97.06%和95.59%。研究表明,近红外光谱和视觉结合的中层次融合策略可以作为一种快速判别红茶发酵程度的方法,研究结果为红茶发酵程度构建等级模型与判别奠定了一定的理论基础,为红茶发酵的自动化检测提供了重要依据。 相似文献
11.
为实现群养生猪在不同场景下(白天与黑夜,猪只稀疏与稠密)的猪只个体准确检测与实时跟踪,该研究提出一种联合检测与跟踪(Joint Detection and Embedding,JDE)模型。首先利用特征提取模块对输入视频序列提取不同尺度的图像特征,产生3个预测头,预测头通过多任务协同学习输出3个分支,分别为分类信息、边界框回归信息和外观信息。3种信息在数据关联模块进行处理,其中分类信息和边界框回归信息输出检测框的位置,结合外观信息,通过包含卡尔曼滤波和匈牙利算法的数据关联算法输出视频序列。试验结果表明,本文JDE模型在公开数据集和自建数据集的总体检测平均精度均值(mean Average Precision,mAP)为92.9%,多目标跟踪精度(Multiple Object Tracking Accuracy,MOTA)为83.9%,IDF1得分为79.6%,每秒传输帧数(Frames Per Second,FPS)为73.9帧/s。在公开数据集中,对比目标检测和跟踪模块分离(Separate Detection and Embedding,SDE)模型,本文JDE模型在MOTA提升0.5个百分点的基础上,FPS提升340%,解决了采用SDE模型多目标跟踪实时性不足问题。对比TransTrack模型,本文JDE模型的MOTA和IDF1分别提升10.4个百分点和6.6个百分点,FPS提升324%。实现养殖环境下的群养生猪多目标实时跟踪,可为大规模生猪养殖的精准管理提供技术支持。 相似文献
12.
针对自然生境环境下高原鼠兔跟踪中,鼠兔毛色呈保护色与背景颜色相近以及运动随机的问题,构造了一种局部纹理差异性算子LTDC(local ternary difference count),来表征目标和背景之间的细微差异性,弥补了采用单一LTC(local ternary count)算子的不足。通过运动信息来判断鼠兔的运动模式,不同的模式采用不同的采样跟踪策略。把所构造的LTDC算子与R(red)G(green)B(blue)颜色信息相结合来表示目标,并把该目标表示模型引入到运动信息引导的高原鼠兔跟踪方法中。通过对采集的秋冬季节高原鼠兔视频图像进行测试,分析跟踪的成功率和误差,得到的LTDC纹理颜色模型的目标表示方法在鼠兔发生突变运动时,由于采用了运动信息引导的采样跟踪方式,能够有效地捕获突变目标,跟踪成功率达到97.93%。在鼠兔发生平滑运动时,尽管目标与背景颜色相近,依然能够稳定地跟踪目标,跟踪误差较小,误差波动范围也较小,误差均值为19.56,误差方差为74.24。试验结果表明:所提出的跟踪方法具有较强的目标与背景区分能力,在目标和背景颜色相近、运动复杂的场景中,能够较为准确地实现高原鼠兔目标的定位。 相似文献
13.
针对人工分拣柑橘过程中,检测表面缺陷费时费力的问题,该文提出了一种基于改进SSD深度学习模型的柑橘实时分类检测方法。在经改装的自制打蜡机试验台架下采集单幅图像含有多类多个柑橘的样本2 500张,随机选取其中2 000张为训练集,500张为测试集,在数据集中共有正常柑橘19 507个,表皮病变柑橘9 097个,机械损伤柑橘4 327个。该方法通过单阶段检测模型SSD-ResNet18对图片进行计算和预测,并返回图中柑橘的位置与类别,以此实现柑橘的分类检测。以平均精度AP(average precision)的均值m AP(mean average precision)作为精度指标,平均检测时间作为速度指标,在使用不同特征图、不同分辨率和ResNet18、MobileNetV3、ESPNetV2、VoVNet39等4种不同特征提取网络时,进行模型分类检测效果对比试验研究。研究表明,该模型使用C4、C5特征图,768×768像素的分辨率较为合适,特征提取网络ResNet18在检测速度上存在明显优势,最终该模型的m AP达到87.89%,比原SSD的87.55%高出0.34个百分点,平均检测时间为20.27 ms,相较于原SSD的108.83 ms,检测耗时降低了436.90%。该模型可以同时对多类多个柑橘进行实时分类检测,可为自动化生产线上分拣表面缺陷柑橘的识别方面提供技术借鉴。 相似文献
14.
针对加载预训练模型的传统SSD(Single Shot MultiBox Detector)模型不能更改网络结构,设备内存资源有限时便无法使用的问题,该研究提出一种不使用预训练模型也能达到较高检测精度的灵武长枣图像轻量化目标检测方法。首先,建立灵武长枣目标检测数据集。其次,以提出的改进DenseNet网络为主干网络,并将Inception模块替换SSD模型中的前3个额外层,同时结合多级融合结构,得到改进SSD模型。然后,通过对比试验证明改进DenseNet网络和改进SSD模型的有效性。在灵武长枣数据集上的试验结果表明,不加载预训练模型的情况下,改进SSD模型的平均准确率(mAP,mean Average Precision)为96.60%,检测速度为28.05帧/s,参数量为1.99×106,比SSD模型和SSD模型(预训练)的mAP分别高出2.02个百分点和0.05个百分点,网络结构参数量比SSD模型少11.14×106,满足轻量化网络的要求。即使在不加载预训练模型的情况下,改进SSD模型也能够很好地完成灵武长枣图像的目标检测任务,研究结果也可为其他无法加载预训练模型的目标检测任务提供新方法和新思路。 相似文献
15.
为了解决水稻群体动态生长模拟过程中叶片间碰撞检测效率较低的技术问题,该文利用水稻叶片抛物线的形态结构特性以及CPU/GPU硬件加速特性,提出了水稻叶片混合层次包围盒树(mixed level tree,MLT)快速构造方法以及基于CPU/GPU的群体叶片快速相交检测方法。提出了新的OBB包围盒方向轴计算方式,降低了OBB包围盒构建的复杂度,在此基础上,利用单株叶片之间、群体叶片之间碰撞检测计算关系的依赖性,设计了CPU/GPU加速方案,并使用CUDA在Tesla 40加速卡上实现。对分蘖期大规模水稻群体叶片进行了效率对比试验,结果表明,水稻群体规模从2 000株增长到10 000株的过程中,本文提出的基于MLT的碰撞检测方法耗时是传统的AABB方法耗时的50%,是OBB方法耗时的30%,有效地提升了叶片之间的碰撞检测速度;同时,基于CPU的碰撞检测方法耗时呈线性增长,而利用CPU/GPU并行加速耗时相较于在CPU上的运行时间节省了98%,大幅度提升碰撞检测效率。该研究可为虚拟作物可视化仿真提供参考。 相似文献
16.
针对目前无法同时对随机多列排布干制哈密大枣进行快速缺陷检测和统计计数问题,该研究设计了一款干制哈密大枣在线检测与计数系统。以干制哈密大枣为研究对象,利用工业相机拍摄传送带上随机排列的多类别缺陷干制哈密大枣视频为数据源,采用改进的YOLOv7模型进行干制哈密大枣多类别缺陷检测并将检测结果作为后续多目标跟踪算法的输入;考虑到传送带上干制哈密大枣的外观相似性高以及排列密集等特点,该研究结合ByteTrack多目标跟踪算法的思想,设计了一种多类别干制哈密大枣的画线计数方法,实现了随机排布多类别干制哈密大枣的缺陷检测、准确定位及计数。试验结果表明:1)改进的YOLOv7模型浮点计算量为64.6 G,在干制哈密大枣目标检测数据的测试集上的平均检测精度、召回率、
17.
基于改进判别区域特征融合算法的近色背景绿色桃子识别 总被引:2,自引:4,他引:2
针对机器视觉识别中自然光照条件下未成熟绿色果实的识别存在颜色与背景相似、光照不均、果叶遮挡等问题,该文提出在判别区域特征集成(discriminative regional feature integration,DRFI)算法框架的基础上,结合颜色、纹理、形状特征,对未成熟绿色桃子进行识别。首先通过基于图的图像分割(graph-based image segmentation)算法,取不同的参数将图像分割为多层,再计算各层图像的显著图,并用线性组合器将其融合,得到DRFI显著图。再用OTSU算法得到的阈值自适应调整之后对DRFI显著图进行分割,减少了显著图中识别为低概率果实的误分割。对于分割后仍存在的果实相互粘连的情况,通过控制标记符和距离变换相结合的分水岭分割算法将其分开。试验结果表明:该方法在训练集中的准确识别率为91.7%,在验证集中的准确识别率为88.3%,与相关文献报道的结果以及原始DRFI算法在验证集中的检测结果相比,该文方法的准确识别率提高了3.7~10.7个百分点,较有效地解决了颜色相近和果叶遮挡问题,可为果树早期估产和绿色果实采摘自动化、智能化提供参考。 相似文献
18.
为提高金银花采摘机器人的工作效率和采摘精度,实现将模型方便快速部署到移动端,该研究提出一种基于改进YOLOv5s的轻量化金银花识别方法。用EfficientNet的主干网络替换YOLOv5s的Backbone层,并在改进之后的Backbone层加入原YOLOv5s的SPPF特征融合模块,减少了模型的参数量和计算量,同时降低模型权重的大小,便于之后移动端的部署;其次,为提高模型对于金银花的识别效果,该研究在Neck层中用CARAFE上采样模块替换原始模型中的上采样模块,在略微提高参数量的前提下提高了模型识别金银花的精确度和平均精度,提高了采摘效率。试验结果显示,改进后的轻量化模型参数量仅为3.89 × 106 M,为原始YOLOv5s模型的55.5%;计算量仅为7.8 GFLOPs,为原始模型的49.4%;权重仅为7.8 MB,为原始模型的57.4%,并且精确度和平均精度达到了90.7%和91.8%,相比原始YOLOv5s模型分别提高1.9和0.6个百分点。改进后的轻量化模型与当前主流的Faster-RCNN、SSD、YOLO系列目标检测模型相比,不但提高了检测精度,还大幅减少了模型的参数量、计算量和权重大小,研究结果为后续金银花采摘机器人的识别和移动端的部署提供了参考和依据。 相似文献
19.
采用改进YOLOv4-Tiny模型的柑橘木虱识别 总被引:1,自引:2,他引:1
黄龙病是一种以柑橘木虱为传播媒介的毁灭性病害,其关键预防措施是在果园现场环境对柑橘木虱识别监测,辅助果农进行早期防治。该研究基于YOLOv4-Tiny模型提出一种适用于嵌入式系统的柑橘木虱识别模型。通过改进YOLOv4-Tiny模型的颈部网络,利用浅层网络的细节信息以提高模型识别柑橘木虱的平均精度;采用交叉小批量归一化(Cross mini-Batch Normalization,CmBN)方法代替批归一化(Batch Normalization,BN)方法,通过累计卷积层的输出,提升统计信息的准确度;针对柑橘木虱易被遮挡的问题,模型训练时使用Mosaic数据增强,提升模型对遮挡目标的识别能力。通过自行建立的柑橘木虱图像数据集完成模型的试验验证。结果表明,该模型的柑橘木虱平均识别精度为96.16%,在图形处理器(Graphics Processing Unit, GPU)上的推理速度为3.63 ms/帧,模型大小为24.5 MB,实现了果园环境下快速准确地识别柑橘木虱,可为黄龙病防治技术的进一步发展提供参考。 相似文献