首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From the earliest days and nights of telescopic astronomy, atmospheric turbulence has been a serious detriment to optical performance. The new technology of adaptive optics can overcome this problem by compensating for the wavefront distortion that results from turbulence. The result will be large gains in resolving power and limiting magnitude, closely approaching the theoretical limit. In other words, telescopic images will be very significantly sharpened. Rapid and accelerating progress is being made today by several groups. Adaptive optics, together with the closely related technology of active optics, seems certain to be utilized in large astronomical telescopes of the future. This may entail significant changes in telescope design.  相似文献   

2.
We have used laser guide star adaptive optics and a near-infrared dual-channel imaging polarimeter to observe light scattered in the circumstellar environment of Herbig Ae/Be stars on scales of 100 to 300 astronomical units. We revealed a strongly polarized, biconical nebula 10 arc seconds (6000 astronomical units) in diameter around the star LkHalpha 198 and also observed a polarized jet-like feature associated with the deeply embedded source LkHalpha 198-IR. The star LkHalpha 233 presents a narrow, unpolarized dark lane consistent with an optically thick circumstellar disk blocking our direct view of the star. These data show that the lower-mass T Tauri and intermediate mass Herbig Ae/Be stars share a common evolutionary sequence.  相似文献   

3.
The 250,000 sources in the recently issued Infrared Astronomy Satellite (IRAS) all-sky infrared catalog are a challenge to astronomy. Many of these sources will be studied with existing and planned ground-based and airborne telescopes, but many others can no longer even be detected now that IRAS has ceased to operate. As anticipated by advisory panels of the National Academy of Sciences for a decade, study of the IRAS sources will require the Space Infrared Telescope Facility (SIRTF), a cooled, pointed telescope in space. This instrument may be the key to our understanding of cosmic birth-the formation of planets, stars, galaxies, active galactic nuclei, and quasars. Compared with IRAS and existing telescopes, SIRTF's power derives from a thousandfold gain in sensitivity over five octaves of the spectrum.  相似文献   

4.
Several instances of multiple imaging of cosmologically distant sources by intervening galaxies and galaxy clusters have been discovered over the past decade. These "gravitational lenses" have distinctive optical properties. Pointlike sources such as quasars generally produce two or four images when lensed, whereas extended sources such as galaxies produce spectacular arcs and rings. The salient features of most of the observations can be reproduced with the use of simple elliptical lens models that approximate the lenses made by ellipsoidal mass distributions such as are common in the universe. In addition to illustrating simple optics in operation on a cosmological scale, multiple images and arcs provide useful probes of the lensing galaxies and clusters. Also, gravitational lenses can make magnified images of cosmologically distant sources and may eventually furnish important cosmographic data such as the Hubble constant.  相似文献   

5.
O'leary B 《Science (New York, N.Y.)》1972,175(4026):1108-1112
Calculations show that several occultations of stars by the large satellites of the outer planets, Pluto, and the large asteroids could be observed each decade with existing equipment at Earth-based telescopes. A systematic program of occultation predictions and observations is urged in order to improve our knowledge about the atmospheres, sizes, shapes, topography, and positions of these poorly understood bodies, in support of forthcoming spacecraft missions to the outer solar system.  相似文献   

6.
The near-field optical interaction between a sharp probe and a sample of interest can be exploited to image, spectroscopically probe, or modify surfaces at a resolution (down to approximately 12 nm) inaccessible by traditional far-field techniques. Many of the attractive features of conventional optics are retained, including noninvasiveness, reliability, and low cost. In addition, most optical contrast mechanisms can be extended to the near-field regime, resulting in a technique of considerable versatility. This versatility is demonstrated by several examples, such as the imaging of nanometric-scale features in mammalian tissue sections and the creation of ultrasmall, magneto-optic domains having implications for highdensity data storage. Although the technique may find uses in many diverse fields, two of the most exciting possibilities are localized optical spectroscopy of semiconductors and the fluorescence imaging of living cells.  相似文献   

7.
Vakil A  Engheta N 《Science (New York, N.Y.)》2011,332(6035):1291-1294
Metamaterials and transformation optics play substantial roles in various branches of optical science and engineering by providing schemes to tailor electromagnetic fields into desired spatial patterns. We report a theoretical study showing that by designing and manipulating spatially inhomogeneous, nonuniform conductivity patterns across a flake of graphene, one can have this material as a one-atom-thick platform for infrared metamaterials and transformation optical devices. Varying the graphene chemical potential by using static electric field yields a way to tune the graphene conductivity in the terahertz and infrared frequencies. Such degree of freedom provides the prospect of having different "patches" with different conductivities on a single flake of graphene. Numerous photonic functions and metamaterial concepts can be expected to follow from such a platform.  相似文献   

8.
Transformation optics and subwavelength control of light   总被引:1,自引:0,他引:1  
  相似文献   

9.
The earliest generation of stars, far from being a mere novelty, transformed the universe from darkness to light. The first atoms to form after the Big Bang filled the universe with atomic hydrogen and a few light elements. As gravity pulled gas clouds together, the first stars ignited and their radiation turned the surrounding atoms into ions. By looking at gas between us and distant galaxies, we know that this ionization eventually pervaded all space, so that few hydrogen atoms remain today between galaxies. Knowing exactly when and how it did so is a primary goal of cosmologists, because this would tell us when the early stars formed and in what kinds of galaxies. Although this ionization is beginning to be understood by using theoretical models and computer simulations, a new generation of telescopes is being built that will map atomic hydrogen throughout the universe.  相似文献   

10.
Service RF 《Science (New York, N.Y.)》1995,268(5218):1702-1703
BALTIMORE-Exploring the common ground between optics and electronics, more than 6800 physicists, spectroscopists, and engineers gathered here from 21 to 26 May at the joint meetings of the Conference on Lasers and Electro-Optics and the Quantum Electronics and Laser Science conference. Participants unveiled new technologies that have sprung up on this common ground, such as an imaging technique that can gauge the chemical composition of materials. They also described ways to broaden that ground, such as a novel approach for integrating lasers and silicon chips-a challenge that has slowed progress toward a new generation of high-speed computers and communications.  相似文献   

11.
Multilayer mirrors that maintain or increase their reflectivity with increasing incidence angle can be constructed using polymers that exhibit large birefringence in their indices of refraction. The most important feature of these multilayer interference stacks is the index difference in the thickness direction (z axis) relative to the in-plane directions of the film. This z-axis refractive index difference provides a variable that determines the existence and value of the Brewster's angle at layer interfaces, and it controls both the interfacial Fresnel reflection coefficient and the phase relations that determine the optics of multilayer stacks. These films can yield optical results that are difficult or impossible to achieve with conventional multilayer optical designs. The materials and processes necessary to fabricate such films are amenable to large-scale manufacturing.  相似文献   

12.
Evans NR 《Science (New York, N.Y.)》2000,289(5486):1888-1889
Recent results on Polaris and other Cepheids, variable stars used as a yardstick for astronomical distances, illustrate some of the new capabilities we have for studying this important class of stars. In her Perspective, Evans charts some of the recent work and highlights some of the surprises that have been revealed, even in objects thought to be basically understood.  相似文献   

13.
High-resolution images of the sun in the soft x-ray to extreme ultraviolet(EUV) regime have been obtained with normal-incidence Cassegrain multilayer telescopes operated from a sounding rocket in space. The inherent energy-selective property of multilayer-coated optics allowed distinct groups of emission lines to be isolated in the solar corona and the transition region. The Cassegrain telescopes provided images in bands centered at 173 and 256 angstroms. The bandpass centered at 173 angstroms is dominated by emission from the ions Fe IX Fe X. This emission is from coronal plasma in the temperature range 0.8 x 10(6) to 1.4 x 10(6)K. The images have angular resolution of about 1.0 to 1.5 arc seconds, and show no degradation because of x-ray scattering. Many features of coronal structure, including magnetically confined loops of hot plasma, coronal plumes, polar coronal holes, faint structures on the size scale of supergranulation and smaller, and features due to overlying cool prominences are visible in the images. The density structure of polar plumes, which are thought to contribute to the solar wind, has been derived from the observations out to 1.7 solar radii.  相似文献   

14.
Many users of small telescopes are disturbed by the trend of shutting down smaller instruments in order to help fund bigger and bolder ground-based telescopes. Small telescopes can thrive in the shadow of giant new observatories, they say--but only if they are adapted to specialized projects. Telescopes with apertures of 2 meters or less have unique abilities to monitor broad swaths of the sky and stare at the same objects night after night, sometimes for years; various teams are turning small telescopes into robots, creating networks that span the globe and devoting them to survey projects that big telescopes don't have a prayer of tackling.  相似文献   

15.
Light has provided both fundamental phenomenology and enabling technology for scientific discovery for many years, and today it continues to play a central role in fundamental explorations and innovative applications. The ability to manipulate light beams and pulses with the quantum degrees of freedom of optical radiation will add to those advances. The future of quantum optics, which encompasses both the generation and manipulation of nonclassical radiation, as well as its interaction with matter, lies in the rich variety of quantum states that is now becoming feasible to prepare, together with the numerous applications in sensing, imaging, metrology, communications, and information processing that such states enable.  相似文献   

16.
Nonlinear optics plays a central role in the advancement of optical science and laser-based technologies. We report on the confinement of the nonlinear interaction of light with matter to a single wave cycle and demonstrate its utility for time-resolved and strong-field science. The electric field of 3.3-femtosecond, 0.72-micron laser pulses with a controlled and measured waveform ionizes atoms near the crests of the central wave cycle, with ionization being virtually switched off outside this interval. Isolated sub-100-attosecond pulses of extreme ultraviolet light (photon energy approximately 80 electron volts), containing approximately 0.5 nanojoule of energy, emerge from the interaction with a conversion efficiency of approximately 10(-6). These tools enable the study of the precision control of electron motion with light fields and electron-electron interactions with a resolution approaching the atomic unit of time ( approximately 24 attoseconds).  相似文献   

17.
Lee LP  Szema R 《Science (New York, N.Y.)》2005,310(5751):1148-1150
Observing systems in nature has inspired humans to create technological tools that allow us to better understand and imitate biology. Biomimetics, in particular, owes much of its current development to advances in materials science and creative optical system designs. New investigational tools, such as those for microscopic imaging and chemical analyses, have added to our understanding of biological optics. Biologically inspired optical science has become the emerging topic among researchers and scientists. This is in part due to the availability of polymers with customizable optical properties and the ability to rapidly fabricate complex designs using soft lithography and three-dimensional microscale processing techniques.  相似文献   

18.
High-resolution microwave observations are providing new insights into the nature of active regions and eruptions on the sun and nearby stars. The strength, evolution, and structure of magnetic fields in coronal loops can be determined by multiple-wavelength observations with the Very Large Array. Flare models can be tested with Very Large Array snapshot maps, which have angular resolutions of better than 1 second of arc in time periods as short as 10 seconds. Magnetic changes that precede solar eruptions on time scales of tens of minutes involve primarily emerging coronal loops and the interactions of two or more loops. Magnetic reconnection at the interface of two closed loops may accelerate electrons and trigger the release of microwave energy in the coronal parts of the magnetic loops. Nearby main-sequence stars of late spectral type emit slowly varying microwave radiation and stellar microwave bursts that show striking similarities to those of the sun.  相似文献   

19.
The increase in temperature outward from the surface of a stellar photosphere can be understood by looking at the local energy balance. The relatively high-density stellar photosphere is cooled effectively by radiative energy loss penetrating the optically thin corona. For the low-density chromosphere and corona, if the energy input cannot be balanced by radiative energy losses, the temperature will rise steeply, possibly up to 1 million degrees or more. Coronal heating and emission appear to be strongly influenced by magnetic fields, leading to large differences in x-ray emission for otherwise similar stars. Comparatively small variations are seen in the overall chromospheric emission of stars. Chromospheres are probably mainly heated by shock-wave energy dissipation, modified by magnetic fields.  相似文献   

20.
For 10 months the Infrared Astronomical Satellite (IRAS) provided astronomers with what might be termed their first view of the infrared sky on a clear, dark night. Without IRAS, atmospheric absorption and the thermal emission from both the atmosphere and Earthbound telescopes make the task of the infrared astronomer comparable to what an optical astronomer would face if required to work only on cloudy afternoons. IRAS observations are serving astronomers in the same manner as the photographic plates of the Palomar Observatory Sky Survey; just as the optical survey has been used by all astronomers for over three decades, as a source of quantitative information about the sky and as a "roadmap" for future observations, the results of IRAS will be studied for years to come. IRAS has demonstrated the power of infrared astronomy from space. Already, from a brief look at a miniscule fraction of the data available, we have learned much about the solar system, about nearby stars, about the Galaxy as a whole and about distant extragalactic systems. Comets are much dustier than previously thought. Solid particles, presumably the remnants of the star-formation process, orbit around Vega and other stars and may provide the raw material for planetary systems. Emission from cool interstellar material has been traced throughout the Galaxy all the way to the galactic poles. Both the clumpiness and breadth of the distribution of this material were previously unsuspected. The far-infrared sky away from the galactic plane has been found to be dominated by spiral galaxies, some of which emit more than 50 percent and as much as 98 percent of their energy in the infrared-an exciting and surprising revelation. The IRAS mission is clearly the pathfinder for future missions that, to a large extent, will be devoted to the discoveries revealed by IRAS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号