首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fe-rich concretions commonly occur in Greek soils with alternating drying and waterlogging periods. This study was conducted to characterize the iron oxides in Fe-rich concretions from the upper solum of an Alfisol with seasonal perched water table by the combination of selective dissolution and X-ray diffraction (XRD) techniques. The results showed that more than 75% of the total iron (Fet) was associated with the crystalline and the amorphous Fe oxides, indicating a strong accumulation of free iron oxides (Fed) in concretions. Amorphous iron compounds (Feo) was present at high concentrations and fluctuated with profile depth. The active Fe ratio (Feo/Fed) values that ranged from 0.35 to 0.41 reflected an association of poorly crystalline goethite with some ferrihydrite. The XRD data showed that the Fe-rich concretions consisted of quartz, feldspars, illite and gypsum. The mineralogy of iron oxides in concretions was determined by comparison of XRD patterns for dithionite-citrate-bicarbonate (DCB) treated (deferrated) and untreated (non-deferrated) samples. Poorly crystalline goethite as demonstrated by broad lines in the diffraction patterns and ferrihydrite were the iron oxides detected in the concretions. This mineral assemblage appears to be related to the pedoenvironmental conditions in which the concretions were formed and indicates that the mechanisms governing the formation of crystalline Fe oxides from ferrihydrite are retarded by the presence of crystallization inhibitors.  相似文献   

2.
铁氧化物与土壤表面电荷性质的关系   总被引:4,自引:0,他引:4  
Shao  Z. C.  Wang  W. J. 《土壤圈》1991,1(1):29-39
The relationship between iron oxides and surface charge characteristics in variable charge soils (latosol and red earth) was studied in following three ways.(1)Remove free iron oxides (Fed) and amorphous iron oxides (Feo) from the soils with sodium dithionite and acid ammonium oxalate solution respectively.(2) Add 2% glucose (on the basis of air-dry soil weight) to soils and incubate under submerged condition to activate iron oxides,and then the mixtures are dehydrated and air-dried to age iron oxides.(3) Precipitate various crystalline forms of iron oxides onto kaolinite.The results showed that free iron oxides (Fed) were the chief carrier of variable positive charges.Of which crystalline iron oxides (Fed-Feo) presented mainly as discrete particles in the soils and could only play a role of the carrier of positive charges,and did little influence on negative charges.Whereas the amorphous iron oxides (Feo),which presented mainly fas a coating with a large specific surface area,not only had positive charges,but also blocked the negative charge sites in soils.Submerged incubation activated iron oxides in the soils,and increased the amount of amorphous iron oxides and the degree of activation of iron oxide,which resulted in the increase of positive and negative charges of soils.Dehydration and air-dry aged iron oxides in soils and decreased the amount of amorphous iron oxides and the degree of activation of iron oxide,and also led to the decrease of positive and negative charges.Both the submerged incubation and the dehydration and air-dry had no significant influence on net charges.Precipitation of iron oxides onto kaolinite markedly increased positive charges and decreased negative charges.Amorphous iron oxide having a larger surface area contributed more positive charge sites and blocked more negative charge sites in kaolinite than crystalline goethite.  相似文献   

3.
Iron oxides from 39 soils derived from various parent materials in south-western Australia have been studied using a variety of techniques. Goethite and hematite were the only two Fe oxides present. The goethite/(goethite+hematite) ratio ranged from 0.18 to 1.0, and was highest in soils on acidic igneous rocks, decreasing for soils on alluvial and mafic parent materials. In a few soils derived from acid rocks only goethite was present. The redness rating of soils increased linearly with increasing amount of hematite. Al substitution in goethite ranged from 13 to 35 mol%, with higher values for soils on acid igneous rocks (median value = 26 mol%) than for soils on mafic (19 mol%) and alluvial (17 mol%) parent materials. Substitution of A1 in hematite ranged from 4 to 23 mol%, and was greatest in soils on mafic parent materials (median value = 12 mol% A1). A1 substitution in hematite was about half of that in associated goethite. The dehydroxylation temperature for goethite increased linearly with increasing A1 substitution. Goethite and hematite had similar crystal sizes (c. 20 nm), and both were in the form of irregular plates. Dissolution with 1 M HCl of iron oxides concentrated from the soils by 5 M NaOH digestion could be described both by the Cube Root Law and by Kabai's equation. Only one straight line was obtained for the dissolution data using Kabai's equation for samples containing both goethite and hematite, in contrast to the results of other workers. Major proportions of the Co, Cr, Cu, Mn, Ni and Zn in the soils were concentrated with the iron oxides, and the dissolution kinetics of these elements indicate that some may be present in the structure of the iron oxides.  相似文献   

4.
三种铁氧化物的磷吸附解吸特性以及与磷吸附饱和度的关系   总被引:17,自引:0,他引:17  
采用三种人工合成铁氧化物(针铁矿、赤铁矿和水铁矿)比较了结晶态和无定形铁氧化物对磷的吸附—解吸特性以及与磷吸附饱和度的关系。结果表明,三种铁氧化物的磷吸附特性均可用Langumir方程来描述,相关系数均大于0.9,达到极显著水平。从磷最大吸附量(Qm)、吸附反应常数(K)和最大缓冲容量(MBC)三项吸附参数综合考虑,水铁矿(无定形)对磷的吸附无论在容量还是强度方面均比结晶态铁氧化物针铁矿和赤铁矿大得多。水铁矿吸附的磷比针铁矿和赤铁矿所吸附的磷更难解吸;水铁矿的大量活性表面并没有表现出增加磷释放的作用。磷吸附饱和度有望作为评价土壤或铁氧化物磷吸附—解吸的强度和容量因子的一个综合指标。  相似文献   

5.
Quantitative relationships between aggregation of soil particles and the content of haematite and goethite were studied by removing iron oxides, with dithionitetrate-bicarbonate (DCB) and oxalate reagents, from various sizes of soil separates which were stable to sodium hexametaphosphate, and then determining the particle-size distribution. Significant quantitative relationships were found between DCB-extractable oxides and particles obtained from the separates up to 20 pm, whereas oxalate-extractable oxides were correlated only with < 0.2-μm particles. Oxalate-extractable oxides were observed to aggregate a greater quantity of fine clay and a larger surface area of particles per gram of oxide than DCB-extractable oxides, A more efficient mechanism of aggregation was postulated for the oxalate-extractable oxides than for the DCB-extractable oxides. There were fewer aggregated particles in soils containing haematite and goethite than in soils containing only goethite. This was attributed to differences in pedoenvironment, rather than to a difference in the behaviour of the oxides. Although various clay minerals were identified in the soils studied, no preferential aggregation of any mineral was observed.  相似文献   

6.
干湿交替过程中水稻土铁形态和磷吸附解吸的变化   总被引:19,自引:2,他引:19  
采用室内培养试验 ,经过连续 3次淹水 落干处理 ,研究了干湿交替过程中土壤中氧化铁形态的变化以及对土壤磷吸附和解吸的影响。结果表明 ,淹水使土壤中结晶态氧化铁含量明显减少 ,无定形氧化铁和土壤对磷的吸附量急剧增加 ,磷解吸下降 ;落干则使之发生相反的变化。土壤中的无定形氧化铁含量与土壤对磷的吸附之间存在着密切的相关关系。因此 ,淹水 落干过程中无定形氧化铁的变化是影响水稻田磷有效性的一个主导因子。  相似文献   

7.
The phosphate adsorption capacity (Pmax) of samples from various horizons of five Danish podzolized soils were investigated before and after organic matter removal. Removal of organic matter had no direct influence on Pmax suggesting that organic matter did not compete with phosphate for adsorption sites. In the soils investigated aluminium and iron oxides were the main phosphate adsorbents. Thus, more than 96% of the variation in Pmax could be accounted for by poorly crystalline aluminium and iron oxides (extractable by oxalate) and by well-crystallized iron oxides (taken as the difference between dithionite-citrate-bicarbonate-extractable iron and oxalate-extractable iron). Organic matter affected phosphate adsorption indirectly by inhibiting aluminium oxide crystallization. The resulting poorly crystalline oxides had high Pmax. In contrast, the influence of organic matter on the crystallinity of the iron oxides, and therefore on their capacity to adsorb phosphate, seemed limited.  相似文献   

8.
Lateritic soils developed from dolerite contained larger amounts of goethite and haematite than those developed from granite. The goethite/(goethite + haematite) ratio in granitic soils ranged from 0.55 to 1 and from 0.29 to 0.83 in doleritic soils. Maghemite ranged in abundance from 0 to 10% and it only occurred in duricrust. Mole % Al substitution ranged from 16 to 33% in goethite and from 2.5 to 10% in haematite and was similar for both granitic and doleritic soils. Al substitution in maghemite was <5%. A significant, positive correlation (P<0.01) occurred between Al substitution in goethite and the amount of gibbsite in the soil. The dehydroxylation temperature of goethite ranged from 292 to 334°C and was positively correlated with the mole % Al substitution. Goethite crystals varied in size from 16 to 26 nm and haematite crystals from 18 to 59 nm. Goethite and haematite crystals occurred as aggregates of subrounded platy crystals.
Iron oxides obtained by NaOH treatment contained much of the minor element contents of the soils; mean concentrations (μg g−1) were: Zn 19.9, Cu 31, Mn 68, Ni 140, Co 32, Cr 394 and V 696. These minor elements were most abundant in iron oxides derived from dolerite, but were not preferentially associated with goethite or haematite.  相似文献   

9.
Ferrihydrite, prepared in the presence of 0 to 20 mole % Cd in the solution, was used to study the transformation of ferrihydrite into crystalline products. The result showed that the presence of Cd strongly retards the transformation of ferrihydrite into crystalline products, suppressing the formation of goethite and leading to a product which eventually consists entirely of hematite at pH 8 and at 70 °C. The fraction of hematite in the transformation products increased with increasing level of Cd in the system. When 9 mole % Cd was present, the transformation product consisted entirely of hematite. The chemical analysis and XRD data showed that Cd was incorporated into the lattice of iron oxides, Cd-hematite and Cd-goethite being formed. The mole % Cd which replaced iron in the iron oxides increased with increasing level of Cd in the system below 9 mole % Cd. Above this value, but below 20 mole % the mole % of Cd incorporated in the lattice of iron oxides was constant at about 2.9 mole %. The volume of the unit cell of Cd-goethite increased with increasing level of Cd in the system until the goethite production was entirely suppressed. The volume of the unit cell of Cd-hematite also increased with increasing level of Cd, below 9 mole % of Cd in the system. Above this value, it was constant. Scanning electron microscopic examination showed that the presence of Cd affected the morphology of hematite more than that of goethite. The goethite grew from ferrihydrite as acicular crystals independent of the amount of Cd in the system. The shape of hematite particles varied from irregular platelets with lower Cd level, to ellipsoids, with higher Cd level in the system, and it also suggested that Cd prevented the formation of goethite by hindering the dissolution of ferrihydrite rather than by interfering with nucleation and growth of goethite from solution. The rate of transformation was studied at pH 8, 50 °C and 70 °C. The transformations were first order reactions at both temperatures.  相似文献   

10.
The changes of clay mineral association after high-gradient magnetic separation(HGMS) treatment,and the effects of chemical and physical technologies on concentrating Fe oxides for mian soils in central and southern China were investigated by means of X-ray diffraction (XRD) and chemical analysis methods.Results indicated that the concentrating times of Fe oxides by HGMS treatment were the largest for 0.2-2μm size fraction in the examined soils .For the soils in which 2:1 phyllosilicates were dominant,concentrating times of iron oxides by HGMS treatment were larger than by 5 mol L^-1 NaOH treatment .Phyllosili-cates were decreased after HGMS treatment ;however,the decrease was less than that of kaolinite,The goethite/(goethite hematite) values in Fe oxides of the soils kept virtually constant after HGMS treatment.  相似文献   

11.
Soils from Denmark and Tanzania were extracted with ammonium acetate (controls), EDTA to dissolve amorphous iron oxides, and dithionite-EDTA (DE) to dissolve crystalline iron oxides. The amounts of chloride adsorbed by the extracted soils from 1 m NaCl at pH 5 and pH 7 were determined. The differences (ΔCl) between chloride adsorption at pH 5 and pH 7, attributed to variably charged groups, decreased when iron oxides were removed by EDTA and DE extraction. Close correlations (P>0.001), with negligible intercepts, were found (i)between EDTA-extractable iron (amorphous iron oxides) and the decrease in ΔCl following EDTA extraction, and (ii) between the difference between DE-extracted iron and EDTA-extractable iron (crystalline iron oxides) and the further decrease in ΔCL following DE extraction. The difference between ΔCl for acetate-extracted and DE-extracted samples was calculated from the contents and specific surfaces of amorphous and crystalline iron oxides, together with ΔCl per m2 for synthetic iron oxides. Calculated and measured values were in very good agreement, indicating that soil iron oxides, in relation to chloride adsorption, may be treated as if they consist of only two fractions.  相似文献   

12.
The influence of iron oxides on the surface area of soil   总被引:2,自引:0,他引:2  
Soils from Denmark and Tanzania have been extracted with ammonium acetate (controls), EDTA to dissolve amorphous iron oxides, and dithionite-EDTA (DE) to dissolve crystalline iron oxides. The surface areas of the extracted soils have been determined by applying the BET equation to nitrogen adsorption and by water adsorption at 19 percent relative humidity. High correlations (P < 0.001) were found (i) between EDTA-extractable iron (amorphous iron oxides) and the decrease in the surface area following EDTA extraction, and (ii) between the difference between DE-extractable iron and EDTA-extractable iron (crystalline iron oxides) and the further decrease in the surface area following DE extraction. The calculated specific surfaces of both the amorphous and the crystalline iron oxides varied from soil to soil but without any definite trend. The means of all the soils investigated may therefore serve as reasonable estimates of the specific surfaces of amorphous and crystalline iron oxides in soil.  相似文献   

13.
Phosphate sorption and desorption in soils are markedly influenced by iron oxides, although little is known on how the common iron oxides differ in their behaviour towards added phosphate. In this study, we investigated phosphate sorption and desorption in the clay fractions of 12 Terre Rosse that ranged widely in Fe oxide content, had very low contents of oxalate-extractable Fe oxides and different hematite/goethite ratios. Phosphate sorption at an equilibrium concentration of 1 mg P 1?1 was correlated with the goethite but not with the hematite content of the clay fractions. When phosphate was desorbed by electro-ultrafiltration, the difference in desorption half-time between untreated and deferrified clays was positively correlated with the goethite but not with the hematite content. These results suggest that goethite is more active than hematite in phosphate sorption and retention by soils.  相似文献   

14.
The influence of iron oxides on phosphate adsorption by soil   总被引:3,自引:0,他引:3  
Soils from Denmark and Tanzania were extracted with ammonium acetate (controls), EDTA to dissolve amorphous iron oxides, and dithionite-EDTA (DE) to dissolve crystalline iron oxides. The phosphate adsorption capacities of the extracted soils were taken as the maximum quantity of phosphate adsorbed computed from the Langmuir equation. The decreases in the phosphate adsorption capacity following EDTA extraction and DE extraction were attributed to the removal of iron oxides. Close correlations (P<0.001) were found (i) between EDTA-extractable iron (amorphous iron oxides) and the decrease in phosphate adsorption capacity following EDTA extraction, and (ii) between the difference between DE-extractable iron and EDTA-extractable iron (crystalline iron oxides) and the further decrease in phosphate adsorption capacity following DE extraction. The phosphate adsorption capacity, estimated to be approximately 2.5 μmol P m?2, was in good agreement with the capacity of various synthetic iron oxides. The calculated phosphate adsorption capacity of soil iron oxides, obtained from the contents and specific surfaces of amorphous and crystalline iron oxides together with the phosphate adsorption capacity per m2 for synthetic iron oxides, compared favourably with the measured phosphate adsorption capacity.  相似文献   

15.
浙江省三种红、紫色砂页岩发育土壤的矿物学研究   总被引:6,自引:1,他引:5  
本文用X射线衍射分析,红外光谱分析、透射电镜及X射线荧光分析对浙江省三种红、紫色砂页岩发育的红砂土、紫砂土和红紫砂土的矿物进行了分析。  相似文献   

16.
LIUFAN  XUFENG-LIN 《土壤圈》1994,4(1):35-46
The types,contents and morphologies of crystalline Fe oxides and their relations to phosphate adsorption on the clay fractions in soils with varable charge in southern China were investigated by means of XRD,TEM,EMA and chemical analysis methods.Results indicated that the types and contents of crystalline Fe oxides varied with the soils examined.The dominant crystaline Fe oxide was hematite in the latosols and goethites in the red soils.In yellow-brown soils,the only crystalline Fe oxide was goethite.The difference between Ald and Alo came mainly from the Al Substituting for Fe in the Fe oxides.The crystal morphology of goethite appeared mainly as subrounded flat or iso-dimensional rather than acicular particles,Hematities occurred in plates of various thickness,Their MCDa/MCDc ratios in the latosols and red soils were generally above 1.5 and below 1.5,respectively.The MCD values of goethites and hematites were 15-25nm and 20-35nm,and their specific surface areas were 80-120m^2/g and 35-75m^2/g,respectively.The goethite crystals were generally smaller,Variations of the total amounts of crystalline Fe oxides in clay fractions were not related to plhophats adsorption.The types,contents and morphologies of crystalline Fe oxides in the soils remarkably affected phosphate adsorption characteristics of the soils.The phosphate adsorption of goethite was much greater than that of hematite,The higher th MCDa/MCDc ratio of hematite,the lower the phosphate adsorption.  相似文献   

17.
台湾红壤及森林土壤中之氧化铁   总被引:3,自引:0,他引:3       下载免费PDF全文
本文综合汇整近年来在台湾,应用高梯度磁场分离技术,配合一般化学分析,X-射线衍射法,磁测分析,电子显微镜观察与电子衍射鉴定,以及铁-57穆期堡尔谱学分析等方法,研究红壤与森林土壤中,氧化铁的分布及其结构性质之成果回顾;关于氧化铁之分布情形,其研究结果显示:台湾红壤中普遍存在有赤铁矿与针铁矿等氧化铁矿物,而在化育自大屯山更新世纪安山岩母质与澎湖列岛更新世纪玄武岩母质的红壤中,以及兰屿绿岛海边之银白色  相似文献   

18.
Experiments were conducted with two typical paddy soils from China and a vermiculite to study the influence of iron oxides on the fixation and release of ammonium. Removing iron oxides, especially amorphous iron oxides, from the soils favoured the release of non-exchangeable NH4-N and stimulated the fixation of NH4-N in the presence of added (NH4)2SO4. Addition of artificial goethite and hematite to the original soils or to the soils free of iron oxides reduced the fixation of NH4+-ions. This effect was also observed with vermiculite. We conclude that the coating of clay minerals with iron oxides has an impact on the diffusion of NH4+-ions into and out of the interlayers of the clay minerals. The reduction and dissolution of iron oxides induced by low redox potential (Eh) after flooding of paddy soils is assumed to be an important mechanism controlling NH4+-fixation in paddy fields.  相似文献   

19.
A study on the distribution of free iron and manganese oxides was conducted in soils developed on calcareous alluvial deposits under subhumid climatic conditions, in Western Greece. Soil samples from two well drained soils and from two poorly drained soils, classified as Alfisols, were collected and used in this study. After certification of soil homogeneity the acid ammonium oxalate and dithionite-citrate-bicaxbonate methods were used to extract free iron and manganese oxides from the samples. Iron oxides extracted by the dithionite-citrate-bicarbonate method (Fed) were significantly higher than the iron oxides extracted by the ammonium oxalate method (Feo), indicating that a considerable fraction is present in crystalline forms, independent of drainage status. A confirmation of free iron oxides and fine clay was detected. The ratios Feo/Fed and (Fed-Feo)/total Fe (Fet) could not be used to distinguish the well drained soils from the poorly drained soils. Manganese movement in a soluble form is independent of the fine clay.  相似文献   

20.
Natural and technogenic compounds of heavy metals in soils   总被引:1,自引:0,他引:1  
The existing geological classification of heavy metals (HMs) is not suitable for their characterization in soils. The carriers of HMs in soils differ from those in the lithosphere. These are clay minerals; iron oxides, whose composition varies between the background and urban soils; various manganese oxides; and different groups of organic substances. The mineral composition of HM carriers can vary significantly. The main iron oxides are ferrihydrite, goethite, feroxyhyte, and lepidocrocite in the background soils and technogenic magnetite in the urban soils. The different structures of manganese oxides determine their affinity for specific HMs. Metallic iron and green rust are very efficient in artificial geochemical barriers, although they act as strong reducers there. HM compounds strongly vary in soils because of the unstable conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号