首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Six horses were conditioned on a treadmill at a constant speed of 5.6 km/hr on a 12.5% grade for gradually increasing periods of time over 14 days in order to determine the effect of repeated submaximal exercise on the concentrations of plasma free amino acids, protein metabolism, and plasma volume. Following 14-days of training, plasma volume increased (29%, P<0.05), as did total circulating content of plasma protein, albumin and urea. Urinary urea nitrogen excretion decreased (P<0.05) with exercise training. After the first week of training, the concentration of glycine had decreased (P<0.05) and the concentrations glutamic acid, arginine and alanine were increased (P<0.05) when compared to their corresponding pre-training (control week) levels. Compared to pretraining levels, there were decreases (P<0.05) in aspartic acid, histidine, arginine, valine, phenylalanine, isoleucine, and lysine, following the second week of training. Following a week of recovery, all resting concentrations of plasma free amino acids; when compared to their pretraining control; had decreased, with the exception of three nonessential amino acids (glutamic acid,serine, and glycine). Based upon the results of the present study, it would appear that exercise training produced a significant change in the amino acid and protein metabolism of the horse.  相似文献   

2.
Three experiments were conducted to evaluate serum osteocalcin concentrations in normal weanling and yearling Quarter Horses. In Experiment 1, jugular blood samples were taken at 3 hr intervals for 24 hr to evaluate diurnal changes in serum osteocalcin concentration of foals (n=3) and yearlings (n=5). In Experiment 2, twelve Quarter Horse foals were weaned at 4 months of age to determine the influence of sex, weaning and method of weaning of serum osteocalcin concentration. The third experiment utilized fifteen yearling Quarter Horses (7 geldings, 8 fillies) in a two-phase trial to evaluate normal peripheral osteocalcin concentration in sedentary and exercising horses. In Experiment 1, there was no detectable variation (P>.05) in serum osteocalcin concentration during the 24 hr sample period in either age group. In Experiment 2, colts had greater (P<.05) osteocalcin concentrations than fillies at weaning. Method of weaning did not alter mean serum osteocalcin concentration (P>.1). Serum osteocalcin concentrations declined (P<.05) in all horses following weaning but returned to preweaning levels within one week. In Experiment 3, sedentary horses had similar (P>.1) osteocalcin concentrations on d 0, 45 and 90. Serum osteocalcin concentrations of sedentary horses were not affected by sex (P>.1). During exercise, fillies had greater (P<.05) osteocalcin concentrations than geldings. Serum osteocalcin concentrations of all horses declined linearly (P<.0001) during the 90 d exercise period. Osteocalcin may be useful as a tool to assess bone metabolism during growth and physical conditioning in horses. However, variability in serum osteocalcin concentrations due to age, sex and level of activity suggest that these factors must also be considered.  相似文献   

3.
Two groups of previously unconditioned young adult horses participated in 6 weeks of gradually increasing exercise on an inclined plane treadmill while receiving a cornoats-hay diet with or without a commercially available dietary yeast culture preparation. Forced treadmill exercise at a workload of 11.98 j/kg/m, equivalent to a workrate of 18.34 j/sec/kg and an estimated ground speed of 5.36 m/sec, began at 5 minutes per day (2.75 Mjoules/500 kg body-weight) and was increased by 5 minutes per week to a maximum of 35 minutes per day (19.25 Mjoules/500 kg) after 6 weeks. Treadmill exercise increased venous plasma lactate concentrations in direct proportion to the duration of an exercise bout, but the increases tended to be smaller after a given amount of work as the horses became conditioned. At the end of 35 minutes of exercise, plasma lactate concentrations averaged 30.08 mg/dl in the supplemented horses and 41.29 mg/dl in the unsupplemented horses (p<.01). Plasma glucose concentrations decreased significantly and triglyceride concentrations increased significantly in both groups as exercise duration exceed 10 minutes. Changes in plasma glucose concentrations were not significantly affected by yeast culture supplementation, while the supplemented horses exhibited somewhat slower rates of increased plasma triglyceride concentrations. During the 35-minute exercise bouts, significantly lower heart rates were recorded in the supplemented horses during the first 5 and the final 10 minutes of the workouts (p<.01), suggesting an enhanced state of athletic fitness. The digestible energy required for work (Mcal/500 kg bodyweight) was calculated to be 0.454 (Mcal/Mjoule) (Mjoules of work/500 kg bodyweight) + 0.024 Mcal/500 kg bodyweight (r2=0.95), with an efficiency of converting dietary DE to work of 53% for both groups of horses. Although the exercise challenges to these horses were not severe, these results suggest that dietary yeast culture supplementation of horses entering into conditioning programs may well enhance athletic training.  相似文献   

4.
Six mature Quarter Horse-type geldings were used in a replicated 3 × 3 Latin square experiment to determine the effects of adding 5 or 10% feed-grade rendered animal fat to the concentrate diet fed to performance horses. The experiment was conducted over a 14-day pre-trial period to acquaint horses to the experimental apparatus, a 28-day conditioning period and 3 diet treatment periods of 21 days, each conducted in a Latin square arrangement. The horses were exercised on a dirt track and diet effects were evaluated during and following a submaximal exercise test (SET) on an equine treadmill. Physiological responses to the SET were determined following each experimental period. Relative to the control, the horses required 21% and 25% less of the concentrate feed (P<.05), containing 5% and 10% added fat, respectively. There was an increase (P<.05) in muscle glycogen concentration as fat was added to the diet. There were no differences due to feeding fat in nutrient digestibility or in oxygen consumption, ventilatory capacity, respiratory quotient, heart rate blood lactate or blood pH during the SET. However, there was an overall decrease (P<.05) in blood glucose and total lipid concentration, when 10% fat was added to the concentrate diet  相似文献   

5.
The effects of exercise and relative inactivity on cortical bone were compared in young horses. Two groups were used; one was given a 14-week programme of exercise (n = 6) and the other kept as unexercised controls (n = 6). The first nine weeks of exercise involved trotting and cantering (2 to 4 km d-1 at speeds up to 12 m s-1) on a treadmill set at an incline of 3 degrees. Over the next five weeks the horses were trained at near maximal speeds (that is, up to 14.5 m s-1) with no incline of the treadmill. At the end of the programme marked differences in cortical porosity and distribution of subperiosteal osteogenesis at the mid-shaft of the third metacarpal bone were found between the groups. Histomorphometrical examination of the dorsal cortex showed minimal bone remodelling in the exercised horses, but extensive modelling as evidenced by the large amount of subperiosteal bone formation. In contrast, the unexercised horses had significantly more bone remodelling and less formation of subperiosteal bone. The histomorphometric and microradiographic findings provided an explanation for changes in the non-invasive bone measurements that occurred during training. Bone mineral content of the mid-metacarpus was found to increase more in the exercised than the unexercised horses despite a lower overall growth in bodyweight. In those horses that completed the full training programme, ultrasound speed increased significantly by the end of the training programme. It remained unchanged in the horse that did not complete the full exercise programme and decreased slightly in the unexercised horses. The difference in ultrasound speed between the groups was considered to reflect differences in intracortical bone porosity, endosteal bone formation and alterations in skin thickness. The stiffness of cortical bone increased significantly in the exercised horses but remained unaltered in the unexercised horses.  相似文献   

6.
Four standardbred horses with subcutaneously relocated carotid arteries were given a seven week training programme of treadmill exercise at a gradient of 19 per cent in order to assess if there were any effects of exercise and training on haematology, arterial blood gas and acid base measurements, plasma biochemistry and heart rate. The exercise consisted of one minute walking at 110 metres/minute followed by five minutes trotting at 200 metres/minute, twice daily in the first week. The period of trotting exercise was increased by one minute per week so that by the seventh week the horses were being given 12 minutes trotting twice daily. Before training commenced venous blood samples, for complete blood counts and plasma biochemistry, and arterial samples, for blood gas, acid base and lactate measurements, were taken at rest, after five minutes and 15 minutes of treadmill exercise (200 metres/minute) and 30 minutes and 60 minutes after completing the exercise. Heart rate was measured by telemetric electrocardiogram at similar intervals. This exercise test and blood collection were repeated after one, three, five and seven weeks of training. The only significant changes were a decrease in exercise lactate with training, increases in exercise and recovery total protein. The haematological response to treadmill exercise included an increase in certain red cell parametes and a leucocytosis which was caused by both a neutrophilia and a lymphocytosis. These effects had largely disappeared by 30 minutes after exercise and all values had returned to resting values by one hour after exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
This study examined the effects of exogenous equinesomatotropin (eST — Equigen) administration on mineral absorption and retention in two-year-old horses in race training. Sixteen Quarter Horse geldings were paired by age (ave.age=794 d), and one horse from each pair was assigned at random to either the eST treatment group or the control. The experiment was conducted over 112 days during which the horses were gentled to ride and trained on a dirt track in a regimen typical for race horses in training. At 28-day intervals, collections of total fecal and urinary output were made to determine effects on Ca, inorganic P, Mg, Cu and Zn mineral balance.Due to marginal and slightly deficient amounts (P<01)of Ca, P, Mg and Zn intake by days 84 and 112, a result of reduced feed intake to maintain a constant body condition in the presence of a decreased workload, mineral balance for the aforementioned minerals was only examined through day 56. In contrast to the previous minerals, Cu intake appeared adequate. Ca, P, Mg, Cu and Zn intake did not differ (P>.05) by treatment. The eST-treated horses increased (P<.05) Ca retention as a percent of Ca absorbed, had greater (P<.05) overall apparent efficiency of P absorption and greater (P<.05) apparent retention of P on day 56 than the control horses. The eST-treated horses had greater (P<.05) apparent Cu absorption on day 56, greater (P<.05) apparent Cu absorption efficiency on days 56 and 84, and there was a trend (P<.1) for the eST-treated horses to retain more Cu on day 56 than the control horses. Finally, the eST-treated horses retained a greater percent (P<.1) of absorbed Zn on day 56.  相似文献   

8.
Reliable physiological markers for performance evaluation in sport horses are missing. To determine the diagnostic value of plasma ACTH and cortisol measurements in the warmblood horse, 10 initially 3-yr-old geldings of the Hannovarian breed were either exposed to a training schedule or served as controls. During experimental Phase 1, horses were group-housed, and half of the horses were trained for 20 wk on a high-speed treadmill. During Phase 2, groups were switched and one group was trained for 10 wk as during Phase 1, whereas the control group was confined to boxes. During Phase 3 horses were initially schooled for riding. Thereafter, all horses were regularly schooled for dressage and jumping, and half of the horses received an additional endurance training for 24 wk. During all phases horses were exposed at regular intervals to various standardized treadmill exercise tests. During and after the tests frequent blood samples were taken from an indwelling jugular catheter for determination of ACTH and cortisol. Treadmill exercise increased both hormones. Maximum ACTH concentrations were recorded at the end of exercise, and maximum cortisol levels were recorded 20 to 30 min later. Except for one test there were no differences in ACTH levels between trained horses and controls. There was no significant effect of training on the cortisol response (net increase) to treadmill exercise in any of the tests during Phase 1. During Phase 2 higher cortisol responses were recorded in controls than in trained horses (P < .05) after 10 wk of training (controls confined to boxes). During Phase 3 plasma cortisol responses were also higher in controls than in trained horses (P < .05 after 6, 18, and 24, P < or = .07 after 12 wk of training) when the inclination of the treadmill was 5%, but not at 3%. There was no overlap in net cortisol responses at 30 min between trained and untrained horses. An ACTH application after 24 wk of training resulted in higher cortisol responses in controls than in trained horses (P < or = .05), without any overlap between the groups at 30 min after ACTH. Plasma cortisol responses to either treadmill exercise or ACTH injection may be a reliable physiological marker for performance evaluation. Prerequisites are sufficient differences in training status and sufficient intensity of exercise test conditions.  相似文献   

9.
Previous work (Marc et al., 2000) suggested that plasma cortisol responses to treadmill exercise or ACTH injection are a reliable marker for performance evaluation in warmblood horses. For practical purposes blood sample collections and treadmill exercise tests are somewhat troublesome and time consuming. The goal of this study was thus to evaluate the use of saliva for cortisol determination (by direct EIA) as a marker for performance and to investigate the reliability and repeatability of plasma cortisol responses to a single i.v. injection of ACTH (50 micrograms or 250 micrograms). Furthermore, the effect of training horses for 8 weeks 3 times per week covering the same distance (increasing from 3.5 km during the first week to 8 km during the last week) either by trotting (approximately 240 m/min) or by cantering (375 m/min) was investigated. For this purpose initially ten four-year-old Hannovarian geldings, all reared in the same State stud, were used. Mean overall correlation between salivary cortisol and plasma cortisol concentrations was 0.64 when samples of various points of time were used. However, in spite of attempts to standardize saliva sample collection, correlation between salivary cortisol levels and plasma cortisol levels at distinct points of time in different tests were low and significant (r = 0.85, p < 0.02) only in one test. Thus, salivary cortisol measurements for diagnostic purposes are not reliable or useful. The repeatability of plasma cortisol responses to ACTH for untrained and trained horses were r = 0.86 and r = 0.8 respectively (p < or = 0.01 and p < or = 0.05 respectively). Training horses either by trotting or cantering did not affect the cortisol response either to treadmill exercise or to stimulation by ACTH. It is concluded that the relationship between salivary cortisol levels and plasma cortisol levels is not close enough to allow the use of salivary cortisol determination as marker of the training status/fitness of horses. The repeatability of the cortisol response to ACTH is similar to the cortisol response to treadmill exercise. Based on plasma cortisol responses to ACTH or treadmill exercise training horses by cantering at low speed is not superior to training by trotting for the fitness of horses.  相似文献   

10.
The effect of exercise and conditioning on 2,3-diphosphoglycerate levels was studied in nine mature horses. During a 12 minute exercise bout producing heart rates of 165 bpm, 2,3-DPG was significantly increased (p<.05). In addition, exercising levels of 2,3-DPG were increased (p<.05) approximately 8% after a six-week submaximal conditioning program. These increases could not be entirely attributed to changes in erythrocyte number. Mean corpuscular volume was also increased during exercise (p<.05) but was not altered by conditioning.  相似文献   

11.

Background

Training of young Thoroughbred horses must balance development of cardiopulmonary function and aerobic capacity with loading of the musculoskeletal system that can potentially cause structural damage and/or lameness. High-speed equine treadmills are sometimes used to supplement exercise on a track in the training of young Thoroughbreds because the horse can run at high speeds but without the added weight of a rider. We tested the hypothesis that intermittent high-intensity exercise on a treadmill of young Thoroughbred horses entering training can enhance development of aerobic capacity (Vo2max) and running performance more than conventional training under saddle, and do so without causing lameness.

Results

Twelve yearling Thoroughbreds trained for 8 months with conventional riding (C) only, conventional riding plus a short (2 month, S) interval of once-per-week high-intensity treadmill exercise, or a long (8 month, L) interval of once-per-week high-intensity treadmill exercise. Three treadmill exercise tests evaluated Vo2max, oxygen transport and running performance variables in June of the yearling year (only for L), October of the yearling year and April of the 2-year-old year. No horses experienced lameness during the study. Aerobic capacity increased in all groups after training. In both October and April, Vo2max in L was higher than in C, but did not differ between L and S or S and C. Running speeds eliciting Vo2max also increased in all groups after training, with S (809 ± 3 m/s) and L (804 ± 9 m/s) higher than C (764 ± 27 m/s). Maximum heart rate decreased for all groups after training. Hematocrit and hemoglobin concentration increased for L throughout training.

Conclusions

Young Thoroughbred horses can increase aerobic capacity and running performance more than by strictly using track training under saddle with the addition of intermittent high-intensity treadmill exercise, and they can do so without experiencing lameness. This finding suggests that young racehorses might be able to achieve higher aerobic fitness during training without subjecting their musculoskeletal systems to increased loading and risk of developing lameness. The findings of this preliminary study do not indicate a specific protocol to best achieve this goal.  相似文献   

12.
In a switchback experiment, six mature mares were fed a control and a fat-supplemented diet while being exercised in a galloping regimen. After three weeks adaptation to each diet, horses performed an exercise test (ET) consisting of four, 600-m gallops. Muscle biopsies were obtained before and after the ET, and blood samples were taken before, during and throughout recovery from the ET. Resting glycogen concentration in the biceps femoris muscle increased (P<.05) from 15.77 mg/g wet tissue when the horses were fed the control diet to 22.89 mg/g when they were fed the fats-supplemented diet. During the ET, the amount of glycogen mobilized by the muscle increased (P<.05) from 6.99 mg/g when the horses were fed the control diet to 13.09 mg/g when they were fed the fat-supplemented diet. When the horses were fed the fat-supplemented diet, they galloped faster (P<.09), at a constant heart rate, during the last two gallops of the ET. Thus, adapting exercising horses to a fat-supplemented diet increased muscle glycogen concentrations, which appeared to enhance their performance past the anaerobic threshold.  相似文献   

13.
This study investigated the effect of prolonged BCAA supplementation on metabolic response to a 1600m run on treadmill in Standardbred trotters. Four trained Standardbreds were divided into two groups and assigned in a 2×2 Latin square design. Both groups were fed and exercised similarly: one group received an oral amino acids supplement (12 g leucine, 9 g isoleucine and 9 g valine) 30 minutes prior to exercise and immediately after, the other group received a placebo. The horses received the supplement 3 days per week for 5 weeks. In the last week horses performed an anaerobic exercise test on an inclined (3.5%) high-speed treadmill. The exercise consisted of a 15 minute warm-up phase immediately followed by a 1600 m run at maximal speed (heart rate > 200 beats/min). Blood samples were collected pre-exercise, after exercise and during recovery (10 min, 30 min, and 24 h), and analyzed for lactate, ammonia, total protein, urea, uric acid, creatinine, free fatty acids (FFA), creatine kinase (CK), lactate dehydrogenase (LDH), aspartate amino transferase (AST). Heart rate was continuously recorded during exercise and recovery. No statistical differences between the groups were observed for all the considered parameters. Nevertheless, BCAA supplementation resulted in a higher plasma ammonia and urea concentrations as reported in previous studies in humans and rats. These data suggest that a BCAA supplementation are not effective in enhancing performance in healthy and well-fed horses.  相似文献   

14.
The effect of recovery from training has not been studied in horses. Therefore, the effect of recovery was examined with exercise of known effect within a conditioning period (CP). A standardized exercise test was performed at the beginning of CP to determine v4, v10, and v180 (horse’s speed, which produced a blood lactate concentration of 4 and 10 mmol/L and a heart rate of 180 beats/min). Six horses were conditioned for three periods of 2 weeks, 5 times per fortnight at their individual v10 for two bouts of 5 minutes on a treadmill. Every 2 weeks of conditioning was followed by 1 week with reduced workload. Standardized exercise test was repeated after each 2 weeks of conditioning and 2 weeks after finishing CP. Exercise speed was individually adapted to the new v10 for every 2 weeks of conditioning. In addition, peak oxygen consumption before, after 3 weeks of conditioning, and at the end of the CP was measured. The mean v4 increased steadily during CP. v180 did not change, whereas peak oxygen consumption increased between the beginning and after 3 weeks of conditioning and leveled off thereafter. In conclusion, reducing the workload for 1 week after 2 weeks of conditioning 5 times per fortnight at v10 for two bouts of 5 minutes allowed for a continuous increase of v4, but the extent of the increase was smaller than in another study with a similar conditioning program but for the recovery week. The effect of recovery from training needs further studies.  相似文献   

15.
Muscle biopsy samples were removed from the m gluteus medius of 47 retired running Quarter Horse (QH) mares. Horses were separated based on bloodline, past racing history and percentage Thoroughbred (TB). The bred to run and raced (BRRA) and bred to run and not raced (BRNR) groups possessed a lower percentage (P<.01) of fast-twitch low oxidative (FT) fibers (BRRA 38.6 and BRNR 36.2±2.54 respectively). These horses also possessed a higher percentage (P<.01) of fast-twitch high oxidative (FTH) fibers (BRRA 52.5 and BRNR 48.5±2.54, respectively) than not bred to run and not raced (NBNR) horses. Horses that were bred to run had higher (P<.05) FTH to FT fiber ratios (1.44) than horses that were not bred to run (.94). Successful racehorses possessed a lower percentage (P<.05) of slow-twitch (ST) fibers and a higher percentage (P<.05) of FT fibers than unsuccessful racehorses. Success or failure was determined by Speed Index. No differences (P>.05) were found in the percentage FTH fibers between successful and unsuccessful horses.  相似文献   

16.
Four mares and four geldings of Quarter Horse and Thoroughbred breeding were used in two simultaneous 4x4 Latin square experiments to study the effects of dietary cation-anion balance (DCAB), defined as meq ((Na+K)-C1)/kg dry matter, on urinary pH and mineral excretion in exercised horses. Diets consisted of a pelleted concentrate of corn, soybean meal and cottonseed hulls fed with bermudagrass hay. Treatments with DCAB of +5 (Low, L), +107 (Medium Low, ML), +201 (Medium High, MH) and +327 (High, H), meq ((Na+K)-Cl)/kg dry matter were formed by supplementing diet L with calcium chloride and ammonium chloride, diet ML with calcium chloride and diet H with sodium bicarbonate and potassium citrate (Table 1). Diet MH was not supplemented and served as the control treatment. Horses were conditioned aerobically for 6 weeks using long, slow, distance (LSD) workouts. During the experimental periods, horses were subjected to a combined exercise regimen alternating LSD with an interval-training protocol 6 days/week. There was a significant (P<.01) treatment effect on urine pH; least squares means for L, ML, MH and H were 6.73, 7.17, 7.38, and 7.92. Horses consuming diet L excreted more calcium in the urine (P<.05) than those consuming MH or H. Least squares means for daily urine calcium excretion tended to be linear across treatments and ranged from 19.66 g/day for diet L to 9.12 g/day for diet H. Urinary chloride excretion was higher (P<.05) for L than for MH or H. Horses fed diet H excreted more sodium (P<.05) in urine than horses fed the other diets. Lowering DCAB, increases urinary calcium loss; depending on the level of calcium intake, this could lead to negative calcium balance in exercising horses.  相似文献   

17.
An experiment was conducted to determine the effect of aerobic training after a sedentary period on bone remodeling and Ca and P balance and serum concentrations in varying ages of mature horses. Eighteen stock-type geldings were blocked into three age groups (6 to 10, 11 to 15, and 16 and older years of age), within two groups of nine, with horses randomly assigned to one of two exercise treatments, exercised for 112 days (control) or idle for 56 days followed by 56 days of exercise (treated). Blood samples were taken at the beginning of period I and at 14-day intervals thereafter to determine serum concentrations of osteocalcin (OST), Ca, and P. Dorsal-palmar and lateral-medial radiographs were taken of the left third metacarpal bone on days 0, 56, 84, and 112 to monitor changes in bone density. Total fecal and urine collections were taken for 72 hours on days 0, 56, and 112. Mean serum OST concentrations were affected by treatment (P<.02), time (P<.001); and the interactions of treatment and age (P<.003), time and treatment (P<.001), and time, treatment, and age (P<.001). Overall dorsal (DBRAE), palmar (PRBAE), and medial (MRBAE) RBAE means were affected by time (P<.001), as was overall lateral (LRBAE) RBAE mean (P<.005). Overall DBRAE and PRBAE means were lower (P<.04) at day 56, and higher at day 84 (P<.02) and 112 (P<.001) as compared to day 0. Mean serum Ca concentration was affected by treatment (P<.003) and time (P<.001). Mean serum P concentration was affected by the interaction of time and treatment (P<.001). Mean apparent daily Ca balance was affected bythe interaction of time, treatment, and age (P<.03). Mean apparent daily P balance was affected by treatment (P<.02) and time (P<.001). Biochemical and radiographic data from this experiment suggest that bone remodeling as well as Ca and P balance and serum concentrations are affected by age, inactivity, and exercise in mature horses.  相似文献   

18.
Fifty-three Quarter Horses were put into race-training at 18 mo of age. Changes in the third metacarpal were monitored by radiographic densitometry initially at 83 days prior to the commencement of training and at days 0, 62, 104 and 244 of training. A normal increase in density of the third metacarpal due to growth and mineralization was seen from the first set of radiographs until the horses began training at day 0 (P<.001). Bone density then decreased to day 62 (P<.001), remained low through day 104 before it began to increase to day 244 (P<.005). Differences in the most optically dense portion of each cortex of the third metacarpal were compared in horses completing the study without injury and those sustaining a bone-related injury. Horses experienced fewer injuries when they had greater cortical mass in the lateral (P<.05) and medial (P<.1) aspects of the third metacarpal, relative to the palmar aspect, at the commencement of training.  相似文献   

19.
In a replicated 4 × 4 Latin square experiment conducted in summer, eight mature Thoroughbred horses received two diets, control and fat-supplemented, and were exercised at two fitness levels designed to increase daily digestible energy (DE) requirements to approximately 150% (fitness level I) and 200% (fitness level II) of maintenance. In a second experiment during the winter, horses received the two diets in a switchback design and exercised at fitness level II. After 3 wk adaptation to treatments, feed and fecal samples were collected and horses galloped a standardized exercise test (SET) designed to increase the heart rate above 185 bpm for 1200 m. Vital signs were monitored and blood samples were obtained. Feed intake increased as fitness level increased (P < .05). Horses on the fat-supplemented diet required less feed (P < .05) to meet the energy requirements at a given fitness level. Daily DE intake was higher (P < .05) for the horses exercised at fitness level II to meet the increased metabolic demands. Heart rate, respiration rate and rectal temperature all increased (P < .05) with exercise. No treatment effects were found for heart rate (P >. 10) or rectal temperature (P > .30). Horses exercised in the winter had lower (P < .05) respiration rates, indicative of less problems dissipating excess body heat. Plasma aldosterone concentrations increased (P < .05) with exercise, corresponding to an increase in plasma K concentrations. Horses exercised in the summer exhibited higher (P < .05) plasma aldosterone concentrations than horses worked in the winter. Plasma CI and Na concentrations did not change (P > .30) with any treatment or exercise, indicating that the horses were not sufficiently stressed to induce any significant dehydration.  相似文献   

20.
OBJECTIVE: To determine whether recombinant equine growth hormone (rEGH) would alter the in vitro biomechanical properties of the forelimb superficial digital flexor tendon (SDFT) in exercising young Standardbred horses. STUDY DESIGN: Randomized complete block design. ANIMALS: Twelve Standardbred yearlings. METHODS: Horses were trained for 12 weeks on a high-speed treadmill (10% positive incline). rEGH was administered intramuscularly (IM) daily (10 microg/kg during week 4; 20 microg/kg for weeks 5-9) to 6 horses (treated group), whereas 6 horses (control group) were administered an equivalent daily volume of sterile water IM. At 12 weeks, horses were euthanatized and left forelimb SDFTs were collected and stored (-70 degrees C). A section from the mid-region of the SDFT was held in cryoclamps with a 4 cm interspace distance and distracted at 10 mm/s until failure. The variables evaluated were maximal load at yield and failure, ultimate and yield tensile stress and strain, tendon stiffness, and mode of failure. Data were analyzed using unpaired, two-tailed, Student's t-test. Statistical significance was set at P < or =.05. RESULTS: Yield and ultimate tensile stress were significantly lower in the rEGH-treated horses compared with controls. There was a trend toward increased maximal displacement, increased ultimate tensile strain, and decreased tendon stiffness in rEGH-treated horses compared with controls. Tensile stress and cross-sectional area, and tensile stress and stiffness were significantly correlated at yield and failure points. CONCLUSIONS: rEGH, administered at the manufacturer's recommended dose rates to maturing Standardbred horses in training, does not significantly augment the in vitro biomechanical properties of the forelimb SDFT. CLINICAL RELEVANCE: Administration of rEGH to young horses in training is unlikely to enhance the physiologic adaptation of the SDFT to exercise stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号