首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monocular deprivation normally alters ocular dominance in the visual cortex only during a postnatal critical period (20 to 32 days postnatal in mice). We find that mutations in the Nogo-66 receptor (NgR) affect cessation of ocular dominance plasticity. In NgR-/- mice, plasticity during the critical period is normal, but it continues abnormally such that ocular dominance at 45 or 120 days postnatal is subject to the same plasticity as at juvenile ages. Thus, physiological NgR signaling from myelin-derived Nogo, MAG, and OMgp consolidates the neural circuitry established during experience-dependent plasticity. After pathological trauma, similar NgR signaling limits functional recovery and axonal regeneration.  相似文献   

2.
Ocular dominance column development: analysis and simulation   总被引:15,自引:0,他引:15  
The visual cortex of many adult mammals has patches of cells that receive inputs driven by the right eye alternating with patches that receive inputs driven by the left eye. These ocular dominance patches (or "columns") form during early life as a consequence of competition between the activity patterns of the two eyes. A mathematical model of several biological mechanisms that can account for this development is presented. Analysis of this model reveals the conditions under which ocular dominance segregation will occur and determines the resulting patch width. Simulations of the model also exhibit other phenomena associated with early visual development, such as topographic refinement of cortical receptive fields, the confinement of input cell connections to patches, monocular deprivation plasticity including a critical period, and the effect of artificially induced strabismus. The model can be used to predict the results of proposed experiments and to discriminate among various mechanisms of plasticity.  相似文献   

3.
The critical period for modifying the preferred direction in cat cortical units occurs earlier than that for monocular deprivation. The independence of the effects of these two types of deprivation from each other was tested by rearing six kittens with both reverse suture and reversed directional deprivation. The kittens were placed in a drum rotating in one direction with one eye open at ages 2 1/2 to 5 weeks; the drum rotation was reversed and the other eye opened when they were 5 to 12 weeks old. Recordings were then made in the visual cortex. The results were the sum of the effects of reverse suture and reversal of directional deprivation: most cells were driven by the eye that was open second, and most unidirectional cells preferred the direction to which the animals were exposed first. Consequently, many unidirectional cells preferred the first direction but were driven by the eye open second--a combination that the animal never saw during rearing. There was also an effect of ocular deprivation on directional properties and vice versa: reverse suture reduced the overall percentage of unidirectional cells, just as directional deprivation has been shown to affect the ocular dominance histogram. This result suggests that the same cells may be affected by both forms of deprivation.  相似文献   

4.
The segregation of lateral geniculate nucleus (LGN) axons into ocular dominance columns is believed to involve a prolonged, activity-dependent sorting process. However, visualization of early postnatal ferret LGN axons by direct LGN tracer injections revealed segregated ocular dominance columns <7 days after innervation of layer 4. These early columns were unaffected by experimentally induced imbalances in retinal activity, implying that different mechanisms govern initial column formation and their modification during the subsequent critical period. Instead of activity-dependent plasticity, we propose that ocular dominance column formation relies on the targeting of distinct axonal populations to defined locales in cortical layer 4.  相似文献   

5.
Weak inhibition within visual cortex early in life prevents experience-dependent plasticity. Loss of responsiveness to an eye deprived of vision can be initiated prematurely by enhancing gamma-aminobutyric acid (GABA)-mediated transmission with benzodiazepines. Here, we use a mouse "knockin" mutation to alpha subunits that renders individual GABA type A (GABA(A)) receptors insensitive to diazepam to show that a particular inhibitory network controls expression of the critical period. Only alpha1-containing circuits were found to drive cortical plasticity, whereas alpha2-enriched connections separately regulated neuronal firing. This dissociation carries implications for models of brain development and the safe design of benzodiazepines for use in infants.  相似文献   

6.
Monocular deprivation during early postnatal development remodels the circuitry of the primary visual cortex so that most neurons respond poorly to stimuli presented to the deprived eye. This rapid physiological change is ultimately accompanied by a matching anatomical loss of input from the deprived eye. This remodeling is thought to be initiated at the thalamocortical synapse. Ocular dominance plasticity after brief (24 hours) monocular deprivation was analyzed by intrinsic signal optical imaging and by targeted extracellular unit recordings. Deprived-eye responsiveness was lost in the extragranular layers, whereas normal binocularity in layer IV was preserved. This finding supports the hypothesis that thalamocortical organization is guided by earlier changes at higher stages.  相似文献   

7.
Cortical neurons receive balanced excitatory and inhibitory synaptic currents. Such a balance could be established and maintained in an experience-dependent manner by synaptic plasticity at inhibitory synapses. We show that this mechanism provides an explanation for the sparse firing patterns observed in response to natural stimuli and fits well with a recently observed interaction of excitatory and inhibitory receptive field plasticity. The introduction of inhibitory plasticity in suitable recurrent networks provides a homeostatic mechanism that leads to asynchronous irregular network states. Further, it can accommodate synaptic memories with activity patterns that become indiscernible from the background state but can be reactivated by external stimuli. Our results suggest an essential role of inhibitory plasticity in the formation and maintenance of functional cortical circuitry.  相似文献   

8.
目的:利用电生理学技术探讨Long Evans大鼠视皮层眼优势柱可塑性的发育性变化。方法:取22d Long Evans大鼠7只和100d Long Evans大鼠5只,通过缝合一侧眼睑建立单眼剥夺大鼠动物模型。利用电生理学技术检测22 d正常大鼠、22 d单眼剥夺大鼠、100 d正常大鼠、100 d单眼剥夺大鼠眼优势柱的分布。结果:正常22 d Long Evans大鼠、正常100 d Long Evans大鼠和100 d单眼剥夺大鼠视皮层眼优势柱分布为对侧眼优势,22 d单眼剥夺大鼠视皮层眼优势柱分布为同侧眼优势。结论:正常视觉环境下发育的Long Evans大鼠,其眼优势柱的分布为对侧眼优势,幼年Long Evans大鼠视皮层具有可塑性,异常的视觉环境能影响其眼优势柱的分布;成年Long Evans大鼠视觉可塑性终止,异常的视觉环境不能再影响其眼优势柱的分布。  相似文献   

9.
Multiple sensitive periods in the development of the primate visual system   总被引:5,自引:0,他引:5  
Early in life, abnormal visual experience may disrupt the developmental processes required for the maturation and maintenance of normal visual function. The effects of retinal image deprivation (monocular form deprivation) on four psychophysical functions were investigated in rhesus monkeys to determine if the sensitive period is of the same duration for all types of visual information processing. The basic spectral sensitivity functions of rods and cones have relatively short sensitive periods of development (3 and 6 months) when compared to more complex functions such as monocular spatial vision or resolution (25 months) and binocular vision (greater than 25 months). Therefore, there are multiple, partially overlapping sensitive periods of development and the sensitive period for each specific visual function is probably different.  相似文献   

10.
Experience-dependent brain plasticity typically declines after an early critical period during which circuits are established. Loss of plasticity with closure of the critical period limits improvement of function in adulthood, but the mechanisms that change the brain's plasticity remain poorly understood. Here, we identified an increase in expression of Lynx1 protein in mice that prevented plasticity in the primary visual cortex late in life. Removal of this molecular brake enhanced nicotinic acetylcholine receptor signaling. Lynx1 expression thus maintains stability of mature cortical networks in the presence of cholinergic innervation. The results suggest that modulating the balance between excitatory and inhibitory circuits reactivates visual plasticity and may present a therapeutic target.  相似文献   

11.
Heparan and chondroitin sulfate proteoglycans (HSPGs and CSPGs, respectively) regulate numerous cell surface signaling events, with typically opposite effects on cell function. CSPGs inhibit nerve regeneration through receptor protein tyrosine phosphatase sigma (RPTPσ). Here we report that RPTPσ acts bimodally in sensory neuron extension, mediating CSPG inhibition and HSPG growth promotion. Crystallographic analyses of a shared HSPG-CSPG binding site reveal a conformational plasticity that can accommodate diverse glycosaminoglycans with comparable affinities. Heparan sulfate and analogs induced RPTPσ ectodomain oligomerization in solution, which was inhibited by chondroitin sulfate. RPTPσ and HSPGs colocalize in puncta on sensory neurons in culture, whereas CSPGs occupy the extracellular matrix. These results lead to a model where proteoglycans can exert opposing effects on neuronal extension by competing to control the oligomerization of a common receptor.  相似文献   

12.
Yuan Q  Xiang Y  Yan Z  Han C  Jan LY  Jan YN 《Science (New York, N.Y.)》2011,333(6048):1458-1462
How to build and maintain a reliable yet flexible circuit is a fundamental question in neurobiology. The nervous system has the capacity for undergoing modifications to adapt to the changing environment while maintaining its stability through compensatory mechanisms, such as synaptic homeostasis. Here, we describe our findings in the Drosophila larval visual system, where the variation of sensory inputs induced substantial structural plasticity in dendritic arbors of the postsynaptic neuron and concomitant changes to its physiological output. Furthermore, our genetic analyses have identified the cyclic adenosine monophosphate (cAMP) pathway and a previously uncharacterized cell surface molecule as critical components in regulating experience-dependent modification of the postsynaptic dendrite morphology in Drosophila.  相似文献   

13.
Intracortical infusion of the "N-methyl-D-aspartate" (NMDA) receptor blocker D,L-2-amino-5-phosphonovaleric acid (APV) renders kitten striate cortex resistant to the effects of monocular deprivation. In addition, 1 week of continuous APV treatment (50 nanomoles per hour) produces a striking loss of orientation selectivity in area 17. These data support the hypothesis that crucial variables for the expression of activity-dependent synaptic modifications are a critical level of postsynaptic activation and calcium entry through ion channels linked to NMDA receptors.  相似文献   

14.
Synaptic plasticity is the experience-dependent change in connectivity between neurons that is believed to underlie learning and memory. Here, we discuss the cellular and molecular processes that are altered when a neuron responds to external stimuli, and how these alterations lead to an increase or decrease in synaptic connectivity. Modification of synaptic components and changes in gene expression are necessary for many forms of plasticity. We focus on excitatory neurons in the mammalian hippocampus, one of the best-studied model systems of learning-related plasticity.  相似文献   

15.
Experience can alter synaptic connectivity throughout life, but the degree of plasticity present at each age is regulated by mechanisms that remain largely unknown. Here, we demonstrate that Paired-immunoglobulin-like receptor B (PirB), a major histocompatibility complex class I (MHCI) receptor, is expressed in subsets of neurons throughout the brain. Neuronal PirB protein is associated with synapses and forms complexes with the phosphatases Shp-1 and Shp-2. Soluble PirB fusion protein binds to cortical neurons in an MHCI-dependent manner. In mutant mice lacking functional PirB, cortical ocular-dominance plasticity is more robust at all ages. Thus, an MHCI receptor is expressed in central nervous system neurons and functions to limit the extent of experience-dependent plasticity in the visual cortex throughout life. PirB is also expressed in many other regions of the central nervous system, suggesting that it may function broadly to stabilize neural circuits.  相似文献   

16.
We investigated whether fluoxetine, a widely prescribed medication for treatment of depression, restores neuronal plasticity in the adult visual system of the rat. We found that chronic administration of fluoxetine reinstates ocular dominance plasticity in adulthood and promotes the recovery of visual functions in adult amblyopic animals, as tested electrophysiologically and behaviorally. These effects were accompanied by reduced intracortical inhibition and increased expression of brain-derived neurotrophic factor in the visual cortex. Cortical administration of diazepam prevented the effects induced by fluoxetine, indicating that the reduction of intracortical inhibition promotes visual cortical plasticity in the adult. Our results suggest a potential clinical application for fluoxetine in amblyopia as well as new mechanisms for the therapeutic effects of antidepressants and for the pathophysiology of mood disorders.  相似文献   

17.
We often think of neurodevelopmental disorders as beginning before birth, and many certainly do. A handful, however, strike many months after birth, following a period of apparently normal growth and development. Autism and Rett syndrome are two such disorders, and here I consider some of their similarities at the phenotypic and pathogenic levels. I propose that both disorders result from disruption of postnatal or experience-dependent synaptic plasticity.  相似文献   

18.
The mechanisms underlying experience-dependent plasticity in the brain may depend on the AMPA subclass of glutamate receptors (AMPA-Rs). We examined the trafficking of AMPA-Rs into synapses in the developing rat barrel cortex. In vivo gene delivery was combined with in vitro recordings to show that experience drives recombinant GluR1, an AMPA-R subunit, into synapses formed between layer 4 and layer 2/3 neurons. Moreover, expression of the GluR1 cytoplasmic tail, a construct that inhibits synaptic delivery of endogenous AMPA-Rs during long-term potentiation, blocked experience-driven synaptic potentiation. In general, synaptic incorporation of AMPA-Rs in vivo conforms to rules identified in vitro and contributes to plasticity driven by natural stimuli in the mammalian brain.  相似文献   

19.
Mice experiencing repeated aggression develop a long-lasting aversion to social contact, which can be normalized by chronic, but not acute, administration of antidepressant. Using viral-mediated, mesolimbic dopamine pathway-specific knockdown of brain-derived neurotrophic factor (BDNF), we showed that BDNF is required for the development of this experience-dependent social aversion. Gene profiling in the nucleus accumbens indicates that local knockdown of BDNF obliterates most of the effects of repeated aggression on gene expression within this circuit, with similar effects being produced by chronic treatment with antidepressant. These results establish an essential role for BDNF in mediating long-term neural and behavioral plasticity in response to aversive social experiences.  相似文献   

20.
Activity-dependent modulation of synaptic efficacy in the brain contributes to neural circuit development and experience-dependent plasticity. Although glia are affected by activity and ensheathe synapses, their influence on synaptic strength has largely been ignored. Here, we show that a protein produced by glia, tumor necrosis factor alpha (TNFalpha), enhances synaptic efficacy by increasing surface expression of AMPA receptors. Preventing the actions of endogenous TNFalpha has the opposite effects. Thus, the continual presence of TNFalpha is required for preservation of synaptic strength at excitatory synapses. Through its effects on AMPA receptor trafficking, TNFalpha may play roles in synaptic plasticity and modulating responses to neural injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号