首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The compressive, bending and torsional mechanical properties of osteotomized adult equine tibiae stabilized with an interlocking intramedullary nail (nail-tibia composite) were compared with those of intact tibiae to determine the clinical applicability of the nail for repair of tibial fractures in adult horses. The mean yield load, failure load, and stiffness for the nail-tibia composites were significantly less ( P < .05) than those for the intact tibiae in all loading configurations. The mean compressive yield load for the nail-tibia composites was greater than the compressive load calculated from previously reported in vivo data for walking and trotting, and was equal to the load calculated for recovery from anesthesia. The mean yield bending moment for the nail-tibia composites was greater than the bending moment previously calculated for standing, walking, and recovery from anesthesia. The mean torsional yield load for the nail-tibia composites was less than the torsional load determined for the walk from another in vivo study. The design of the interlocking nail evaluated in the present study should be modified to increase torsional and compressive yield strengths and torsional stiffness before reasonable success could be expected for the treatment of adult equine tibial fractures.  相似文献   

2.
OBJECTIVE: This study compared the mechanical properties of the normal intact suspensory apparatus and two methods of fixation for repair of transverse, midbody fractures of the proximal sesamoid bones of adult horses: transfixation wiring (TW) and screws placed in lag fashion (LS). STUDY DESIGN: An in vitro, paired study using equine cadaver limbs mounted in a loading apparatus was used to test the mechanical properties of TW and LS. ANIMAL OR SAMPLE POPULATION: Seventeen paired (13 repaired, 4 normal) equine cadaver limbs consisting of the suspensory apparatus third metacarpal bone, and first and second phalanges. METHOD: The two methods of repair and normal intact specimens were evaluated in single cycle-to-failure loading. Yield failure was defined to occur at the first notable discontinuity (>50 N) in the load-displacement curve, the first visible failure as evident on the videotape, or a change in the slope of the moment-fetlock angle curve. Ultimate failure was defined to occur at the highest load resisted by the specimen. Corresponding resultant force and force per kg of body weight on the suspensory apparatus, fetlock joint moment, and angle of fetlock dorsiflexion were calculated by use of specimen dimensions and applied load. These were compared along with specimen stiffness, and ram displacement. RESULTS: Load on the suspensory apparatus, load on the suspensory apparatus per kg of body weight, moment, applied load, and angle of fetlock dorsiflexion at yield failure were significantly greater for the TW-repaired than for the LS-repaired specimens. A 3 to 5 mm gap was observed before yield failure in most TW-repaired osteotomies. CONCLUSIONS: Transfixation wiring provided greater strength to yield failure than screws placed in lag fashion in single cycle load-to-failure mechanical testing of repaired transverse osteotomized specimens of the medial proximal forelimb sesamoid bone.  相似文献   

3.
OBJECTIVE: To compare the mechanical properties of two stabilization methods for ostectomized equine third metacarpi (MC3): (1) an interlocking nail system and (2) two dynamic compression plates. Animal or Sample Population-Ten pairs of adult equine forelimbs intact from the midradius distally. METHODS: Ten pairs of equine MC3 were divided into two test groups (five pairs each): caudocranial four-point bending and torsion. Interlocking nails (6 hole, 13-mm diameter, 230-mm length) were placed in one randomly selected bone from each pair. Two dynamic compression plates one dorsally (12 hole, 4.5-mm broad) and one laterally (10 hole, 4.5-mm broad) were attached to the contralateral bone from each pair. All bones had 1 cm mid-diaphyseal ostectomies. Five construct pairs were tested in caudocranial four-point bending to determine stiffness and failure properties. The remaining five construct pairs were tested in torsion to determine torsional stiffness and yield load. Mean values for each fixation method were compared using a paired t-test within each group. Significance was set at P<.05. RESULTS: Mean (+/-SEM) values for the MC3-interlocking nail composite and the MC3-double plate composite, respectively, in four-point bending were: composite rigidity, 3,454+/-407.6 Nm/rad and 3,831+/-436.5 Nm/rad; yield bending moment, 276.4+/-40.17 Nm and 433.75+/-83.99 Nm; failure bending moment, 526.3+/-105.9 Nm and 636.2+/-27.77 Nm. There was no significant difference in the biomechanical values for bending between the two fixation methods. In torsion, mean (+/-SEM) values for the MC3-interlocking nail composite and the MC3-double plate composite were: composite rigidity, 124.1+/-16.61 Nm/rad and 262.4+/-30.51 Nm/rad; gap stiffness, 222.3+/-47.32 Nm/rad and 1,557+/-320.9 Nm/rad; yield load, 94.77+/-7.822 Nm and 130.66+/-20.27 Nm, respectively. Composite rigidity, gap stiffness, and yield load for double plate fixation were significantly higher compared with interlocking nail fixation in torsion. CONCLUSIONS: No significant differences in biomechanical properties were identified between an interlocking nail and double plating techniques for stabilization of ostectomized equine MC3 in caudocranial four-point bending. Double plating fixation was superior to interlocking nail fixation in torsion.  相似文献   

4.
5.
Objectives: To compare the monotonic biomechanical properties and fatigue life of a 5.5‐mm‐broad locking compression plate (5.5 LCP) fixation with a 4.5‐mm‐broad locking compression plate (4.5 LCP) fixation to repair osteotomized equine 3rd metacarpal (MC3) bones. Study Design: In vitro biomechanical testing of paired cadaveric equine MC3 with a middiaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. Animal Population: Fifteen pairs of adult equine cadaveric MC3 bones. Methods: Fifteen pairs of equine MC3 were divided into 3 test groups (5 pairs each) for (1) 4‐point bending single cycle to failure testing, (2) 4‐point bending cyclic fatigue testing, and (3) torsional single cycle to failure testing. An 8‐hole, 5.5 LCP was applied to the dorsal surface of 1 randomly selected bone from each pair and an 8‐hole, 4.5 LCP was applied dorsally to the contralateral bone from each pair using a combination of cortical and locking screws. All plates and screws were applied using standard ASIF techniques. All MC3 bones had middiaphyseal osteotomies. Mean test variable values for each method were compared using a paired t‐test within each group with significance set at P<.05. Results: Mean yield load, yield bending moment, composite rigidity, failure load, and failure bending moment, under 4‐point bending, single cycle to failure, of the 5.5 LCP fixation were significantly greater than those of the 4.5 LCP fixation. Mean cycles to failure in 4‐point bending of the 5.5 LCP fixation (170,535±19,166) was significantly greater than that of the 4.5 LCP fixation (129,629±14,054). Mean yield load, mean composite rigidity, and mean failure load under torsional testing, single cycle to failure was significantly greater for the broad 5.5 LCP fixation compared with the 4.5 LCP fixation. In single cycle to failure under torsion, the mean±SD values for the 5.5 LCP and the 4.5 LCP fixation techniques, respectively, were: yield load, 151.4±19.6 and 97.6±12.1 N m; composite rigidity, 790.3±58.1 and 412.3±28.1 N m/rad; and failure load: 162.1±20.2 and 117.9±14.6 N m. Conclusion: The 5.5 LCP was superior to the 4.5 LCP in resisting static overload forces (palmarodorsal 4‐point bending and torsional) and in resisting cyclic fatigue under palmarodorsal 4‐point bending. Clinical Relevance: These in vitro study results may provide information to aid in selection of an LCP for repair of equine long bone fractures.  相似文献   

6.
7.
Six forelimb specimens from three adult horses had the fetlock joint fused by application of a dorsal plate and by a screw placed in lag fashion through the metacarpus to each proximal sesamoid bone. Five specimens were instrumented on the central dorsal surface of the plate with a single rosette strain gage, and the plate of the sixth specimen was instrumented with four longitudinally oriented single-axis strain gages. The specimens were loaded axially in compression to 4,000 N in a cast (test 1), in a cast with a heel block (test 2), and uncast (test 3). The principal angle of strain in all specimens, in all tests, closely approximated the vertical axis at loads < 1,000 N. The principal angle in uncast specimens was significantly different at loads > 1,000 N than the cast specimens ( P <.05). At loads > 3,000 N, the principal angle in test 3 closely approximated the horizontal axis, indicating a change from tension to compression on the dorsal surface of the plate, whereas the principal angle of the cast specimens was unchanged. Specimens in a cast (tests 1 and 2) suffered less surface deformation than did uncast specimens (test 3). Therefore, the cast changed the direction and extent of bending at the point of fixation, and thereby decreased the deformation of the plate. This effect would lead to greater fatigue life of the implant in the cast specimens compared with the uncast specimens.  相似文献   

8.
Objectives: To compare number of cycles to failure for palmarodorsal 4‐point bending of a modified 5.5 mm broad locking compression plate (M5.5‐LCP) fixation with a 5.5 mm broad LCP (5.5‐LCP) fixation used to repair osteotomized equine third metacarpal (MC3) bones. Study Design: In vitro biomechanical testing. Animal Population: Adult equine cadaveric MC3 bones (n=6 pairs). Methods: An 8‐hole, M5.5‐LCP, obtained by having a 1.0 mm thickness removed from the bone contact portion of the 5.5‐LCP, was applied to the dorsal surface of 1 randomly selected MC3 from each pair, and an 8‐hole, 5.5‐LCP was applied dorsally to the contralateral bone from each pair using a combination of cortical and locking screws. Plates and screws were applied using standard ASIF techniques to MC3 bones with a mid‐diaphyseal osteotomy. MC3 constructs had palmarodorsal 4‐point bending cyclic fatigue testing. Mean cycles to failure for each method were compared using a paired t‐test within each group. Significance was set at P<.05. Results: Mean±SD cycles to failure of the M5.5‐LCP fixation (188,641±17,971) was significantly greater than that of the 5.5‐LCP fixation (166,497±15,539). Conclusion: M5.5‐LCP fixation was superior to 5.5‐LCP fixation of osteotomized equine MC3 bones in resisting cyclic fatigue under palmarodorsal 4‐point bending. Clinical Relevance: This suggests that biological plate fixation is not the ideal choice for osteotomized equine MC3 bones.  相似文献   

9.
Objective — To determine the monotonic mechanical properties of osteotomized adult equine tibiae stabilized with two dynamic compression plates (DCP) and to compare the mechanical properties with those of intact tibiae and in vivo loads.
Study Design — The compressive, bending, and torsional mechanical properties of plated and intact tibiae were assessed in vitro.
Animals or Sample Population — Twelve pairs of adult equine tibiae.
Methods — Tibiae were loaded in axial compression, craniocaudal 3-point bending, or torsion in external rotation in a single cycle to failure. Mechanical properties were determined from load-displacement data.
Results — Compared to intact tibiae, the mean yield load, failure load and stiffness of plated tibiae were significantly lower ( P <.05) (compression and torsion); and the mean yield and failure bending moments, and bending stiffness, of the plated tibiae were lower ( P <.075 for yield), or significantly lower, respectively. The mean compression and bending yield loads for plated tibiae were greater than in vivo loads. The mean torsional yield load for plated tibiae approximated the torsional load determined for the adult horse at a walk.
Conclusions — Simple, anatomically reduced, DCP plated tibiae should have adequate strength to withstand immediate, postoperative in vivo compressive loads and bending moments placed on the tibia in vivo during immediate postoperative activities, however, may not have adequate torsional strength during immediate postoperative weight-bearing at a walk.
Clinical Relevance — Additional supportive methods, to decrease torsional loads, may be beneficial in maintaining stability of plate repaired tibiae during recovery from anesthesia and postoperative healing.  相似文献   

10.
Attempted stabilization of open, distal radius and ulnar fractures in a 3-year-old German shepherd dog using intramedullary pins and a Schroeder-Thomas splint resulted in malalignment of the limb and osteomyelitis. A double hook plate was used to rigidly stabilize the distal radial fracture after anatomical realignment. An autogenous cancellous bone graft was used where a lateral architectural defect remained after reduction. Culture of the fracture site showed Staphylococcus sp., which responded to chloramphenicol therapy. Fracture union and resolution of osteomyelitis occurred by 9 weeks after surgery, and the dog had no lameness and a normal muscle mass 22 weeks after surgery. The double hook plate provided rigid internal fixation of the radial fracture, allowed a rapid return to function during osteosynthesis, and minimal interference of antebrachiocarpal joint function occurred.  相似文献   

11.
12.
Objective: To evaluate the efficacy of a novel pin–sleeve cast (PSC) system for external fixation of distal limb fractures in horses and to compare it with the transfixation pin cast (TPC) system. Study Design: Experimental. Sample Population: One bone substitute each was used for the TPC and PSC systems. The PSC was tested in 4 configurations characterized by different pin preloads. Methods: Specimens were loaded in axial compression in the elastic range. Variables compared statistically were: bone substitute axial displacement and axial strain measured above implants with strain gauges. Pin preload was correlated with the variables investigated. Load to failure and a fatigue tests supplemented the investigation. Results: The PSC configuration with the highest pin preload showed a significantly lower axial displacement compared with the TPC. No significant differences were observed between all other PSC configurations and the TPC. All PSC systems had a significant decrease in recorded strain compared with the TPC system. Pin axial preload inversely correlated with axial displacement but had no effect on axial strain. In the failure test, the PSC encountered plastic deformation earlier than the TPC. In the fatigue test, the PSC ran >200,000 cycles. Conclusions: Preliminary in vitro tests showed that the PSC system significantly reduced peri‐implant strain while concurrently having comparable axial displacement to the TPC system. Clinical Relevance: The PSC system has the potential to reduce the risk of pin loosening in horses.  相似文献   

13.
14.
Objective— To compare mechanical stability between a novel polypropylene mesh repair (Mesh), a modified 3-loop pulley suture (Suture), and a combination of the techniques (Suture+Mesh) for the repair of distal canine Achilles' tendon ruptures.
Study Design— In vitro mechanical evaluation.
Sample Population— Cadaveric canine Achilles' tendon/calcaneus units (n=34).
Methods— Constructs were loaded under tension to failure in a materials testing machine with synchronized kinematic analysis. Ultimate load to failure, global construct stiffness, and force required to reach 1 and 3 mm gap formation was recorded.
Results— Ultimate load to failure was greatest for the Suture+Mesh group and lowest for the Suture group. The Suture+Mesh technique afforded a significantly greater global stiffness than the Suture or Mesh treatments. Force to generate 1 and 3 mm gap formation was greatest with the Suture group.
Conclusions— The Suture+Mesh group had the highest ultimate load to failure and afforded the greatest global stiffness though it had no added benefit to resist local gap formation at the repair.
Clinical Relevance— Achilles' ruptures repaired with suture can be augmented with mesh to increase the ultimate load to failure, but as currently tested, there was a decrease in resistance to gap formation At this time we cannot recommend Mesh or the Suture+Mesh techniques without further testing.  相似文献   

15.
Objective— Compare the biomechanical characteristics of screw and wire fixation with and without polymethylmethacrylate (PMMA) re-enforcement for acetabular osteotomy stabilization in dogs. Animals— Pelves removed from 8 adult mixed breed dogs weighing between 25 and 30 kg. Procedure— The pubic symphysis of each pelvis was split and a central transverse acetabular osteotomy was performed. One hemipelvis from each dog was stabilized with the composite fixation (interfragmentary Kirschner wire, two screws and a figure-of-eight orthopedic wire with PMMA). The contralateral hemipelves was stabilized with an interfragmentary Kirschner wire, two screws, and a figure-of-eight orthopedic wire without PMMA. All hemipelves were tested in bending by using a materials testing machine at a cross head speed of 5 mm/min. An extensometer was placed on the dorsomedial surface of the hemipelves centered over acetabular osteotomy to record distraction of the osteotomy during loading. A load/deformation curve and a load/distraction curve was produced for each hemipelvis. The slope for the initial linear portion of the load/deformation curve and the load/distraction curve, yield load and maximum load sustained were compared between repair groups using a paired t-test with P < .05 considered significant. Results— The slope of the load/deformation curve was significantly greater (P= .001 ) for hemipelves stabilized with the composite fixation (mean ± SD: 69 ± 18 N/mm) compared with hemipelves stabilized without PMMA (mean ± SD: 39 ± 8 N/mm). There was no significant difference (P= .593 ) between repair groups in the slope of the load/distraction curves as measured on the extensometer. Yield load was significantly greater (P= .0002 ) for hemipelves stabilized with the composite fixation (mean ± SD: 184 ± 25 N) compared to hemipelves stabilized without PMMA (mean ± SD: 74 ± 12 N). Maximum load sustained was also significantly greater (P= .013 ) for hemipelves stabilized with the composite fixation (mean ± SD: 396 ± 71 N) compared to hemipelves stabilized without PMMA (mean ± SD: 265 ± 94 N). Failure of hemipelves stabilized with the composite fixation occurred primarily by ventrolateral bending of the cranial and caudal pelvic segments at the osteotomy site. Failure of hemipelves stabilized without PMMA occurred by ventrolateral bending of the cranial and caudal pelvic segments at the osteotomy site with pronounced concurrent ventrolateral rotation of the cranial pelvic segment. Conclusion— PMMA improves the mechanical characteristics of acetabular fracture fixation, at least in part by neutralization of rotational forces. The results of this study justify use of PMMA as a component of the composite fixation when repairing acetabular fractures.  相似文献   

16.
This study biomechanically evaluates solid and tubular interlocking nails in bovine neonatal femurs. Paired femurs from 40 neonatal dairy calves were obtained for mechanical testing. Intact femurs and four combinations of experimentally manipulated femurs (intact or ostectomized femurs with either a solid or tubular interlocking nail) were tested in craniocaudal and lateromedial bending, eccentric axial compression, and external torsion to evaluate composite rigidity, local/gap stiffness, and load to failure (compression and torsion only). In torsional composite rigidity, femurs with tubular interlocking nails were more compliant than intact femurs or intact femurs with solid interlocking nails (P <.001). Ostectomized femurs with solid interlocking nails were similar to intact femurs with tubular interlocking nails. Within femurs with tubular interlocking nails, ostectomized femurs were more compliant than intact femurs (P <.0001). In craniocaudal and lateromedial bending rigidity, ostectomized femurs were more compliant than intact femurs, regardless of interlocking nail type (P <.001). Within ostectomized femurs, tubular interlocking nails were more compliant than solid interlocking nails in craniocaudal bending (P <.05) and there was a similar trend in lateromedial bending (P=.06). In eccentric axial compression, local/ gap stiffness was significantly greater in intact femurs compared with intact femurs with solid (48% of intact bone) or tubular (45% of intact bone) interlocking nails and ostectomized femurs with solid (18% of intact bone) or tubular (11 % of intact bone) interlocking nails (P <.0001). In torsional testing, local/gap stiffness was not significantly different between intact femurs and intact femurs with interlocking nails, but was significantly lower in ostectomized femurs with solid (2% of intact bone) and tubular (0.2% of intact bone) interlocking nails (P <.0001). In torsional and compressive failure testing, plastic deformation of the tubular interlocking nail occurred at the unoccupied screw hole at the ostectomy site before bone failure. Interlocking nails should be considered as an optional repair method for neonatal bovine femoral fractures. Until the actual physiological loading characteristics of neonatal calf femurs are measured, it is uncertain whether solid or tubular interlocking nails tested in this study will provide sufficient strength and stiffness to stabilize neonatal bovine femoral fractures and facilitate healing.  相似文献   

17.
18.
Objective: To compare the mechanical properties and failure modes of a standardized short oblique distal radial metaphyseal osteotomy stabilized using either a transfixation pin cast (TPC), a modular‐sidebar external skeletal fixator (ESF), or a solid‐sidebar ESF (modular‐ or solid‐ESF, respectively) using static or cyclic axial loading to failure. Study Design: In vitro study. Animals: Equine cadaver forelimbs. Methods: A 30° oblique distal radial osteotomy was created and stabilized using 1 of the 3 fixation methods: (1) TPC, (2) modular‐ESF, or (3) solid‐ESF. Limbs were tested using static (TPC, modular‐ESF, and solid‐ESF) or cyclic (TPC and solid‐ESF) axial loading to failure. The stiffness, yield load, yield displacement, failure load, and failure displacement for static loading and the cycles to failure for cyclic loading at 75% failure load were obtained. Data were analyzed using a Kruskal–Wallis test. Level of significance was P<.05. Results: The solid‐ESF had a greater stiffness, higher yield and failure load and a lower yield and failure displacement than the TPC (P=.01) and the modular‐ESF (P=.02). TPC had a higher yield load, failure load, and yield displacement than the modular‐ESF (P=.01). Mean cycles to failure for TPC was 2996±657 at a load of 16,000 N and for solid‐ESF 6560±90 cycles at a load of 25,000 N. Conclusions: The solid‐ESF was stiffer and stronger than the TPC and modular‐ESF and failed at a greater number of cycles in axial loading compared with the TPC. Clinical Relevance: This study is an initial step in evaluating the solid‐ESF. Further testing needs to be performed, but this fixation may offer a viable alternative to the traditional TPC for stabilization of long bone fractures in adult horses.  相似文献   

19.
This study was conducted to evaluate the effect of pilot hole (PH) diameter (0, 1.5, 2.0, 2.7, 3.1, 3.3, 3.5, and 3.7 mm) on the biomechanical and microstructural performance of positive-profile threaded external skeletal fixation pins (3.18 mm inner diameter, 3.97 mm outer diameter) using cadaveric canine tibiae. Eight pins per pilot hole diameter (four pins per bone) were used to assess differences in end-insertional torque and pin pull-out strength. Histological evaluation of eight bicortical pin tracts per pilot hole diameter was accomplished using computer-interfaced videomicroscopy on specimens processed using a bulk-staining technique. Compared with no predrill, use of 2.7 mm PH increased end-insertional torque and pull-out strength by 25% and 13.5%, respectively. No significant differences were observed in biomechanical variables for the PH diameter range of 2.0 to 3.1 mm. Compared with no predrill, use of a 3.1 mm PH increased thread area by 18%. Microfracturing around the threads decreased as PH diameter increased. Damage to the interface at the entry and exit sites of both near and far cortices also decreased as PH diameter increased. It was concluded that predrilling a PH whose diameter approximates, but does not exceed the inner diameter of the positive profile pin will not only improve initial pin stability compared with no predrilling, but it will also reduce microstructural damage that may lead to excessive bone resorption and premature pin loosening.  相似文献   

20.
OBJECTIVE: To compare drilling, tapping, and screw-insertion torque, force, and time for the 4.5-mm AO and 6.5-mm Acutrak Plus (AP) bone screws, and to compare the mechanical shear strength and stiffness of a simulated complete lateral condylar fracture of the equine third metacarpal bone (MC3) stabilized with either an AO or AP screw. STUDY DESIGN: In vitro biomechanical assessment of screw-insertion variables, and shear failure tests of a bone-screw-stabilized simulated lateral condylar fracture. SAMPLE POPULATION: Eight pairs of cadaveric equine MC3s METHODS: Metacarpi were placed in a fixture and centered on a biaxial load cell in a materials-testing system to measure torque, compressive force, and time for drilling, tapping, and screw insertion. Standardized simulated lateral condylar fractures were stabilized by either an AO or AP screw and tested in shear until failure. A paired t test was used to assess differences between screws, with significance set at P < .05. RESULTS: Insertion and mechanical shear testing variables were comparable for AO and AP insertion equipment and screws. CONCLUSION: The 6.5-mm tapered AP screw can be inserted in equine third metacarpal condyles and is mechanically comparable with the 4.5-mm AO screw for fixation of a simulated lateral condylar fracture. CLINICAL RELEVANCE: Considering the comparable mechanical behavior, the potential for less-persistent soft-tissue irritation with the headless design, and the ability to achieve interfragmentary compression by inserting the screw in one hole drilled perpendicular to the fracture plane, the 6.5-mm tapered AP screw may be an attractive alternative for repair of incomplete lateral condylar fractures in horses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号