首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
沟灌三角形长喉道田间量水槽水力特性试验及数值模拟   总被引:1,自引:1,他引:0  
针对目前北方灌区田间沟灌缺乏有效量水设施的现状,提出了一种针对田间小流量情况的新型量水设备—便携式三角形长喉道量水槽,为进一步研究其水力特性,在沟灌简易长喉道量水槽原型试验的基础上,采用基于Flow-3D的计算流体力学方法对该量水槽的内部水流运动进行了模拟计算,对水流流态、水深、傅汝德数、纵向时均流速、紊动强度进行了分析。结果表明:试验水深值与模拟值的最大相对误差小于10%,二者水面线变化规律吻合,模拟结果精度较高;通过临界流理论推导与回归分析得到沟灌简易长喉道量水槽测流公式,其计算结果与实际流量的最大相对误差为4.34%;量水槽收缩段及喉道段纵向时均流速沿程不断增大,流速最大值的位置存在于水面以下,越靠近收缩段、喉道段出口,最大纵向流速位置越低,断面流速分布越不均匀;紊动强度总体呈现沿程增加的趋势,各断面的紊动强度最大值相对位置在0.13到0.30倍水深之间,沿程逐渐上升。  相似文献   

2.
U 形渠道量水平板水力性能试验研究   总被引:1,自引:0,他引:1  
根据北方灌区渠道底坡缓且灌溉水流多泥沙的现状,该文针对U型渠道设计了平板量水装置。为了探索不同尺寸悬垂薄平板在明渠水流冲击作用下的水力学特性,确定流量与平板偏转角度之间的关系。分析水流流态,将渠道运动水流分为3部分,对平板部分水流应用闸孔淹没出流公式,建立流量计算模型,得出流量与角度的半经验关系式。对流量系数计算模型中的待定系数进行估计,得到了统一形式的流量公式。U型平板测流范围为9~44L/s,经验证,计算流量与实测流量之间最大相对误差为6.9%,平均相对误差为3.2%,其中收缩比0.547、0.439平板测流相对误差均小于5%,满足灌区量水要求。同一收缩比板型,相对水头损失随着流量增大而减小,不同收缩比板型,相对水头损失随着板型收缩比增大而增大,除收缩比0.715平板在小流量(本试验大约为10L/s)测流时,相对水头损失比在10%以上,其余平板测流时相对水头损失均小于10%,其中收缩比为0.439和0.337平板最大水头损失不超过上游总水头6%。经过综合分析,选择0.547到0.439为平板最佳收缩比测流范围。研究可为灌区量水设施的改进提供依据。  相似文献   

3.
田间便携式平底短喉道量水槽水力特性试验   总被引:1,自引:5,他引:1  
为了探索研究灌区田间进水口的水量计量,该文在巴歇尔量水槽的基础上设计制作了一种体型简单、成本低的田间便携式平底短喉道量水槽,喉口宽度51 mm、长度774 mm,便于携带和田间安装;通过试验研究了该量水槽的水力性能,观测了24种流量下量水槽内11个控制断面的水位,拟合得到自由出流和淹没出流条件下的水深与流量公式,与实测流量对比,平均相对误差和最大相对误差均在10%以内,满足灌区田间量水精度要求;分析了不同流量下佛汝德数、断面比能沿槽身各控制断面的变化规律,确定临界水深断面位于该量水槽喉口段的中部偏后段;分析了槽内水头损失情况,得知该量水槽最大水头损失占上游总水头的12.10%,相较于长喉道量水槽较小,自由出流条件下槽内水头损失小于淹没出流条件下0.02倍上游总水头。该研究为田间进水口量水设施在中国北方灌区末级渠系的进一步应用提供参考。  相似文献   

4.
田间量水是实现灌区计划用水和节水农业的关键技术,但由于试验条件、测量方法和精度的限制,传统的水工模型试验分析田间量水设施的水力性能存在一定局限性。该文基于FLOW-3D软件,采用RNG k-ε三维湍流模型、Tru VOF方法、FAVOR(fractional area volume obstacle representation)技术模拟喉口宽度为51 mm的田间便携式短喉槽过槽水流的三维流场。与试验结果对比表明:过流能力、水流流态以及水深与试验结果较为吻合,误差小于10%,采用的数值模拟方法能够有效地模拟田间便携式短喉槽水力性能,在确定数值模拟可靠性的前提下,对其水力性能进行分析。数值模拟结果显示:佛汝德数、流速在自由出流工况下沿程增大,在淹没出流条件下先增大后减小,并由佛汝德数分析结果确定了临界水深断面所在区域为喉口段后半部分;通过回归分析得到的田间便携式短喉槽上游水深与流量计算公式最大测流误差为-5.63%,满足灌区量水精度的要求;该量水槽最大水头损失占总水头的12.10%,相比于长喉道量水槽的13%较小。该研究对提高量水设备研发效率、降低研发成本与周期、促进中国灌区流量精准测量设备的推广具有实用价值。  相似文献   

5.
弧底梯形渠道无喉道量水槽水位流量关系数值模拟   总被引:1,自引:0,他引:1  
目前为适应我国多数渠道断面方式和灌区管理方式,开发研制新型量水配套设施对灌区节水起着至关重要的作用。利用Fluent 6.3大型流体力学数值仿真软件,结合有限体积法、RNG k-ε湍流模型和VOF模型,在不同渠道底坡上对不同量水槽水位流量进行数值模拟试验研究。结果表明:(1)量水槽流态上游水面平稳属于缓流,量水槽槽内水流为急流,可知由缓流过度到急流必然会发生临界流,量水槽沿程弗劳德数可知量水槽喉口附近扩散段内产生临界流;(2)弧底梯形渠道无喉道量水槽具有较好的水位流量关系,渠道收缩比ε与渠道比降i对形成单值稳定的水位流量关系有较大的影响,随着渠道尺寸增大同时收缩比ε减小,量水槽水位流量逐渐在较大的底坡范围内形成统一的水位流量关系。(3)流量系数与量水槽宽和收缩比具有较好的线性关系,同时流量系数随R,Hε的增大而变大,回归分析建立的量水槽流量公式,测流公式平均误差值小于5%,说明弧底梯形渠道无喉道量水槽测流是可行的,满足明渠测流要求。研究成果对灌区渠道量水槽的设计优化提供了一定的参考和建议。  相似文献   

6.
U形渠道圆头量水柱测流影响因素试验及模拟   总被引:1,自引:6,他引:1  
为研究U形渠道圆头量水柱的测流规律及影响因素,基于绕流理论和RNG k-ε湍流模型,对18种体型圆头量水柱5种工况下的水力性能进行全流场数值计算,获得了时均流场、断面流速分布及柱后水流流态,并与实测值进行对比。同时,通过模型试验与数值仿真研究了V形尾翼对测流的影响。结果表明:水力参数的实测值与模拟值具有较好的一致性,渠道底坡为1/1 000,流量为45.01 L/s,收缩比及长宽比分别为0.50和2时,驻点处横断面最大流速模拟值与实测值相对误差为1.51%,水深15 cm位置剖面最大流速模拟值与实测值相对误差为0.45%。适宜长宽比的V形尾翼可以有效改善过槽水流:当收缩比为0.50~0.75时,建议长宽比为3/2~2;当收缩比0.50时,长宽比应相应增大,但不宜5/2。通过回归分析得到的圆头量水柱流量计算公式,在收缩比为0.63时最大测流误差为4.95%,平均误差仅为0.10%,该研究为圆头量水柱在中国北方灌区末级渠系的进一步应用提供参考。  相似文献   

7.
为了设计出构造简单、水力性能优良,同时能满足灌区量水需求的量水槽,该研究根据鸮翼曲线提出了一种仿鸮翼形渠道量水设施。首先,利用基于麻雀搜索算法的BP神经网络(SSA-BP)优化鸮翼展向比,得到最小水头损失的量水槽线形,并探究了优化后的量水槽在输水渠道的适用性。进一步地,在8种流量工况下,选用6组收缩比开展测流试验,结合FLOW-3D数值模拟分析仿鸮翼形量水槽水头损失、弗劳德数、壅水高度、临界淹没度等水力参数,建立测流公式。试验表明,基于SSA-BP优化的仿鸮翼形量水槽具有良好的测流性能,在建议收缩比0.60~0.66范围内,其水头损失为7.75%~14.21%,临界淹没度为0.812~0.898,上游壅水高度为0.84~3.16 cm,上游弗劳德数均小于0.42,符合灌区量水要求。建立的测流公式,平均测流误差为1.49%,测流精度较高。仿鸮翼形量水槽各项水力性能指标优良,能满足灌区测量精度,针对灌区优化水资源配置、精细化用水具有一定的推广价值。  相似文献   

8.
移动式量水槽较固定式具有不易淤积、可移动多处重复使用等优点,流线型外形的量水槽水力性能好,量水槽的扩散段对水力性能影响大,然而当前还缺乏扩散段的设计原理与方法方面的研究。为了研究量水槽结构型式对水力特性的影响,为流线型量水槽结构设计提供理论指导,该研究建立D40U型渠道模拟模型,其后用FLOW-3D对35、45和55 L/s流量下的半椭圆+半椭圆、半椭圆+抛物线、半椭圆+圆弧、半椭圆+Myring曲线和鱼形量水槽进行模拟,结合原型试验验证数值模拟效果,进而探讨扩散段设计原则与方法。最后基于isight平台对水力性能较好的半椭圆+ Myring曲线和鱼形量水槽进行结构优化。结果表明,45 L/s流量下数值模拟与试验水深相对误差为0.1%~1.3%,上游、喉口和下游断面流速相对误差分别为0.19%~6.63%、0.06%~6.15%和0.02%~6.22%,模拟结果精度高。5种量水槽上游佛汝德数均小于0.5,最大壅水高度为5.71 cm,均满足测流精度和渠道安全要求。其中,半椭圆+Myring曲线量水槽水头损失和壅水高度最低,半椭圆+半椭圆量水槽临界淹没度最高,佛汝德数最小。量水槽扩散段设计原则为:在略微减少临界淹没度的条件下,扩散段前半段设计为曲率较大的曲线,以降低上游壅水高度;后半段设计为曲率相反且曲率较小的曲线,以改善过流流态,平顺水流,降低水头损失。优化后的半椭圆+Myring曲线和鱼形前半段曲率增大,后半段曲率减小,壅水高度和佛汝德数均有所降低,水头损失分别降低5.5%和6.3%,优化后曲线线型满足扩散段设计原则。研究可为流线型量水槽结构设计与优化提供理论指导。  相似文献   

9.
在灌区渠道系统中,长喉槽是一种常用的测流设施,其测量精度依赖于水头损失的精确计算。为了检验其测流精度及有效性并加以改进,该文进行了一系列模型试验。试验结果表明对于进口有侧收缩的长喉槽,现有理论模型的计算流量皆大于实测值。该文认为这是由于现有的基于边界层理论的水头损失计算模型忽略了上游收缩段局部水头损失引起的。在试验数据和分析的基础上,该文引入了进口段局部水头损失?Hcon,对于侧收缩比分别为1∶2、1∶2.5、1∶3的长喉槽,建议局部水头损失系数分别取为0.317、0.263和0.203。在引入进口段局部水头损失后,计算误差从9.59%减少到了4.14%,研究结果为侧收缩长喉槽测流计算精度的提高提供了重要参考。  相似文献   

10.
机翼形量水槽的试验研究   总被引:24,自引:8,他引:16  
渠道量水设施对灌区节水、实现水资源高效可持续利用具有重要意义,研究具有结构简单、水头损失小、量水精度较高、流量计算公式简明的渠道量水设备,是灌区迫切需要的灌溉管理应用技术之一。该文提出了一种仿真机翼形状的渠道量水设施,在U形渠道中通过12种量水槽收缩比进行了系统的组合试验,试验结果表明:该量水槽过流顺畅,水头损失小,试验数据资料表现出极好的相关性,相关系数为R2=0.9988。应用量纲分析法建立的流量公式具有量纲和谐性,拟合的具有指数形式的流量计算公式简明实用,流量计算平均误差小于3%,临界淹没度可达0.92。  相似文献   

11.
机翼形量水设施水力条件优、量水精度高,但翼形曲线的复杂性制约其推广,为此,该研究基于结构简单的仿翼形便携式量水槽,探究其在末级梯形渠道的适用性。模型试验设计5组收缩比、7组流量进行水力性能试验,在此基础上,基于FLOW-3D软件对比分析仿翼形与机翼形量水槽水力性能的差异,深入研究不同收缩比对仿翼形量水槽水力性能的影响。研究结果表明:数值模拟与试验结果的水深数据吻合,误差小于4.91%,数值模拟的方法准确可靠;简化后未改变机翼形过流顺畅、雍水高度小等特点;所有工况上游佛汝德数均小于0.5,雍水高度小于7.6 cm,满足测流精度和渠道安全的要求,收缩比在0.60~0.64范围时,量水槽水力性能最优;基于能量方程及临界流原理建立的流量公式精度较高,平均测流误差为2.75%。该研究表明仿翼形保持了原机翼形良好的水力性能,测流精度高且曲线形式简单,便于推广,对于促进灌区末级梯形渠道便携式量水槽的推广具有实用价值。  相似文献   

12.
为研究适用于小型渠道以及田间进水口的量水设施,该文拟结合小型渠道分水闸设计体型简单的梯形薄壁侧堰,探讨其水力特性影响因素。设计7种堰顶与水平方向夹角(?9°、?6°、?3°、0°、3°、6°、9°)的梯形侧堰,在6种流量工况下进行42组试验,研究侧堰附近水面线、流量系数与其影响因素之间的关系、水头损失等水力特性。结果表明:建立的水面线函数最大相对误差仅为1.85%,满足测流精度要求;建立梯形薄壁侧堰流量与水头、堰高、堰顶角度的关系式,其相对误差绝对值最大为8.97%,满足测流精度要求;分析不同流量下水头损失及壅水高度,侧堰堰顶角度越大,水头损失及壅水高度越大;得到的上游水深与流量以及侧堰堰顶角度的关系式的决定系数可达0.9以上,便于在量水时根据渠道规格以及灌溉流量确定适宜的梯形侧堰堰型。该研究对梯形薄壁侧堰水力特性进行初步探索,为侧堰在灌区末级渠道或田间进水口的推广提供参考。  相似文献   

13.
即插式长喉道量水计的研究开发   总被引:2,自引:2,他引:2  
为满足灌区中小型渠道量水的需要,研制开发了由长喉道量水槽和自动测量水位、数字显示用水量的即插式测杆组成的新型量水设备——即插式长喉道量水计。新量水计具有数字显示瞬时流量、累计水量,可实现量水数字信号远距离传输等功能,其易损部件采用即插即用形式,使野外维护工作更简便。现场试验结果表明,新量水计有较好的测流稳定性和较高的精度,累计水量相对误差在±5%以内。为解决长喉道量水槽复杂的设计、计算困难,基于Windows98/2000,运用Visual Basic6.0开发了长喉道量水槽设计软件。设计软件包括尺寸设计  相似文献   

14.
田间量水是实现灌区计划用水和节水农业的关键技术,末级小截面灌区的精准测流则更为关键。该研究在机翼形量水槽的基础上,提出结构更为简单的仿机翼形量水设备。水工模型试验于西北农林科技大学水工与水力学实验室进行,试验渠道为17 m×70 cm×100 cm的矩形断面有机玻璃渠道,量水槽模型均采用空心木制材料制作。试验设计1组翼长、6组收缩比、7组流量,共42种试验方案。在水工模型试验的基础上,采用FLOW-3D软件补充了多组模型进行数值模拟,验证模拟准确性后,对其水力性能进行分析:上游佛汝德数小于0.5,喉口位置产生临界流,下游重新恢复缓流状态;壅水高度均值3.25 cm,最大值6.32 cm,最小值0.46 cm;水工模型试验与数值模拟共获得84组数据,依据机翼形量水槽的测流公式推导,得到仿机翼形便携式量水槽的测流公式,其平均相对误差为6.34%。仿机翼形便携式量水槽建议选择收缩比0.606~0.709、翼长65~80 cm,该收缩比范围测流平均相对误差6.15%。研究表明简化并没有改变机翼形量水槽原有的优点,可以保证测流渠道的安全性。该研究可改进量水方法,提高用水效率,对于促进中国灌区小截面便携式量水槽的推广具有实用价值。  相似文献   

15.
断面设计是渠道设计的重要内容之一,适宜的渠道断面不仅能够增加过流能力,提高输水效率,减小输水损失,还能降低建造成本。该文提出了一种具有平底和悬链线形侧边的明渠断面。这种断面将平底和悬链线侧边平滑连接,既具有平底断面建造容易、灵活,管护方便,底部容易压实,侧边和平底可以用不同材料建造(以降低成本)等优点,也具有悬链线形断面过流能力大、无应力集中拐角、不宜渗漏、防冻胀能力强,耐久性好等优点,可广泛应用于大、中、小型渠道及寒区,具有良好的实用价值。推导了过流面积、湿周、水面宽度等水力断面特性计算公式。提出了一个更简单的正常水深的迭代算法。基于拉格朗日乘子法,推导出了平底悬链线形明渠的水力最优断面,结果表明其水力最优断面的底宽与水深比、水面宽与水深比、底宽与形状系数比、水面宽度与形状系数比、形状系数与水深比均为常数:宽深比等于0.405,形状系数与水深比等于0.474,水面宽与水深的比值为2.112,底宽与形状系数的比值为0.855。与现有平底断面(梯形、平底抛物线形、平底半立方抛物线形)进行了比较,结果表明,在过流面积或湿周一定的情况下,平底悬链线形断面的过流能力最大,相反,在流量一定的情况下,平底悬链线形断面的过流面积、湿周、水面宽度是最小的。与传统的悬链线形渠道进行了比较,增加平底后,在同等条件下,平底悬链线形渠道水力最优断面的过流能力不仅没有降低,反而增加了,意味着其经济性也优于传统的悬链线断面。研究为平底悬链线形渠道设计提供理论支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号