首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The susceptibilities to methamidophos as well as the kinetic and inhibitory parameter of acetylcholinesterases (AChE) and the activities of carboxyestsrases (CarE) and glutathione-S-transferases (GST) were studied in 18 species field populations of insects collected in Fuzhou, China during April and May 2000 and 2001. The insect species included five hymenopteran endoparasitoids, one hymenopteran exoparasitoid, one hymenopteran hyperparasitoid, one dipteran predator, four coleopteran predator ladybirds, six herbivorous pest insects of lepidoptera, diptera, homoptera, and coleoptera, respectively. There existed significant correlations between the susceptibility to methamidophos and the ki values of AChE to methamidophos, dichlorvos, and carbofuran and between the ki and Vmax values of AChE among 18 species of insects. The six herbivorous pests and four ladybirds showed significantly low ki and Vmax values of AChE compared to the seven parasitoids and predator Epistrophe balteate. It was difficult to correlate the susceptibility to methamidophos or the ki values with the Km values of AChE, or with the activity of CarE and GST. The activities of CarE and GST varied depending on the different insect species. Significant synergisms of piperonyl butoxide (PB), triphenyl phosphate (TPP), and diethyl maleate (DEM) with methamidophos were observed in 14 pest insects and their natural enemies. Synergisms of PB were found to be the greatest. Reduced ki values suggested that insensitive AChE might play a critical role in the tolerance to methamidophos in the 18 insect species. The detoxification enzymes, mixed-function oxidase (MFO), CarE, and GST, were believed to be involved in the tolerance to methamidophos. MFO might play the most important role, and CarE or GST might be important in the tolerance in some insect species. Different models of tolerance to methamidophos and enzymatic potential were existed in parasitoids, predators, and herbivores based on the different selection of insecticide pressure (either directly by exposing to the spray in the field, or indirectly by the insecticides penetrated into the body of host insects) as well as different ecological and biological habitats.  相似文献   

2.
杀虫增效剂--酶抑制剂对蝶蛹金小蜂和颈双缘姬蜂的影响   总被引:2,自引:0,他引:2  
采用药膜法测定了3种酶抑制剂对蝶蛹金小蜂和颈双缘姬蜂杀虫剂敏感性的影响。结果表明,胡椒基丁醚、磷酸三苯酯和马来酸二乙酯显著增大了蝶蛹金小蜂和颈双缘姬蜂对甲胺磷、氰戊菊酯、氯氰菊酯、氟虫腈和阿维菌素的敏感性,胡椒基丁醚的作用显著高于后两者,而后两者之间较为接近。2种寄生蜂对氰戊菊酯和氯氰菊酯的击倒作用具明显的恢复能力,而胡椒基丁醚、磷酸三苯酯和马来酸二乙酯可显著抑制这种击倒恢复能力。上述结果表明,2种寄生蜂对所测试杀虫剂的耐药性与多功能氧化酶、羧酸酯酶和谷胱甘肽-S-转移酶的解毒作用有关,其中多功能氧化酶的作用可能是最重要的。  相似文献   

3.
增效剂对菜蚜茧蜂杀虫剂敏感性的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
以田间菜蚜茧蜂为试虫,采用药膜法研究了增效剂胡椒基丁醚(PB)、磷酸三苯酯(TPP)和马来酸二乙酯(DEM)对6种杀虫剂的增效作用。结果表明,三种增效剂对6种杀虫剂均有显著增效作用,其大小依次为PB>DEM>TPP。PB对甲胺磷、阿维菌素、氟虫腈、氰戊菊酯、氯氰菊酯和吡虫啉的增效比达5.0~9.6倍。TPP和DEM对甲胺磷、DEM对氟虫腈的增效比达2.6~3.0倍,但TPP和DEM对阿维菌素、氰戊菊酯和氯氰菊酯、TPP对氟虫腈的增效比均在1.9倍以下。PB、TPP和DEM对吡虫啉的增效比分别高达9.6、6.8和8.2倍。体内抑制试验结果显示,PB、TPP和DEM对菜蚜茧蜂AChE活性无明显抑制作用,而PB和TPP对羧酸酯酶(CarE)、DEM对谷胱甘肽S转移酶(CST)活性有显著抑制作用。由此认为,菜蚜茧蜂对所用的6种杀虫剂的耐药性与多功能氧化酶(MFO)、CarE和GST的解毒作用有关。  相似文献   

4.
常用杀虫剂对菜蛾绒茧蜂的影响及毒理机制研究   总被引:3,自引:0,他引:3  
田间采集试虫室内测定结果表明,敌敌畏、灭多威和杀虫双对菜蛾绒茧蜂Apanteles plutellae高毒,乙酰甲胺磷对绒茧蜂毒性较低,而氰戊菊酯、氯氰菊酯、氟虫腈、阿维菌素、定虫隆和Bt则是低毒的。菜蛾绒茧蜂AChE的Km及Vmax值分别是小菜蛾的0.22和2.08倍,AChE对敌敌畏的敏感性(K/em>i值)分别是小菜蛾的10.37倍。100 mg/L的胡椒基丁醚(PB)或磷酸三苯酯(TPP)均可使氰戊菊酯明显增效,其中PB的增效作用显著高于TPP。体内抑制实验结果表明,PB和TPP对绒茧蜂AChE活力无显著影响,低浓度(100 mg/L)的PB即可显著抑制绒茧蜂的α-NA和β-NA CarE活力,且抑制率高于TPP,TPP仅在高浓度(1 000 mg/L)时对绒茧蜂的两种CarE活力有显著抑制作用。由此推断,与小菜蛾相比,菜蛾绒茧蜂对有机磷的高敏感性与其显著较高的AChE敏感性有关;此外,多功能氧化酶的解毒代谢在菜蛾绒茧蜂对氰戊菊酯的耐药性中具重要作用。  相似文献   

5.
对甲胺磷敏感性的田间监测结果显示,绒茧蜂存在着抗性演化,毒力生物测定结果与AChE的K_i值的监测结果呈明显的相关性,每年9月至次年2月期间AChE敏感性最低,8月期间敏感性最高。甲胺磷可显著地抑制绒茧蜂AChE、CarE和GSTs的活性。PB和TPP对AChE的活体抑制率极低,但PB可强烈抑制CarE的活性,而TPP仅在高浓度时对CarE有较显著的抑制作用,PB对甲胺磷有显著的增效作用,而TPP对甲胺磷无增效作用。AChE的K_m、V_(max)及K_i值研究结果表明,田间绒茧蜂对有机磷和氨基甲酸酯的抗性与AChE对杀虫剂的不敏感性有关。由此认为,绒茧蜂对有机磷的抗性主要与其最重要的靶标酶AChE的敏感性改变及多功能氧化酶有关。  相似文献   

6.
茚虫威对草地贪夜蛾的毒力及解毒酶的诱导作用   总被引:2,自引:0,他引:2  
茚虫威对鳞翅目害虫幼虫具有卓越的杀虫活性,是替代传统杀虫剂及治理抗药性害虫的理想药剂。为了明确茚虫威对草地贪夜蛾的生物活性及对其主要解毒酶活性的影响,为使用茚虫威科学防治草地贪夜蛾提供参考,本研究采用浸叶法测定了广西南宁草地贪夜蛾种群3龄幼虫对茚虫威敏感性及增效醚(PBO)、磷酸三苯酯(TPP)、顺丁烯二酸二乙酯(DEM)对茚虫威的增效作用;并测定了亚致死浓度(LC_(20))茚虫威对草地贪夜蛾体内MFO、GSTs和CarE酶的诱导作用。结果表明,茚虫威对草地贪夜蛾的LC_(20)、LC_(50)和LC_(90)分别为8.95、20.62 mg/L和73.57 mg/L。DEM、PBO和TPP对茚虫威的增效倍数依次为2.24、2.05和0.50倍。亚致死浓度(LC_(20))茚虫威处理后对3龄幼虫体内GSTs的活性和MFO含量与无药剂处理(CK)相比显著升高(P0.05),而CarE活性无显著变化(P0.05)。本文结果显示,广西草地贪夜蛾仍可以用推荐剂量80 mg/L茚虫威防治,而代谢抑制剂PBO和DEM对茚虫威有明显的增效作用,且GSTs活性和MFO含量在茚虫威诱导后显著升高,初步推测这两种解毒酶可能影响将来草地贪夜蛾对茚虫威的抗药性发展。  相似文献   

7.
Of the 23 species of agricultural pest known to resist insecticides in China, 4 are cotton pests, 4 rice pests and 5 are pests of brassicae. In the green rice leafhopper, malathion resistance is caused by increased carboxylesterase (CarE) activity, which plays a more important role in the resistance to dimethoate than the mixed-function oxidases (mfos). The in-vitro and in-vivo results are in agreement with studies of synergism of malathion and dimethoate by TPP and EBP. These synergists delay the development of resistance, and EBP when added to malathion has limited the development of resistance to malathion in the green rice leafhopper. In the cotton aphid, resistance to organophosphates involves several factors: acetylcholinesterase (AChE) insensitivity, high CarE activity, slight (× 2) increase in glutathione S-transferases (GSH-ases), mfo activity as well as reduced penetration. In vitro, the I50 of the insensitive AChE is × 14 that of S aphids, and anaphthyl-acetate CarE hydrolysing activity is 70 times greater in R than in S aphids. Insecticide mixtures, alternation or rotation can delay build-up of resistance; resistance to malathion and trichlorfon was delayed in Culex pipiens pallens when the two insecticides were used together. Used singly each insecticide selected for high resistance within 25 generations. Mosaic rotation of dimethoate and fenvalerate delayed the onset of insecticide resistance in Lipaphis erysimi pseudobrassicae.  相似文献   

8.
The common pistachio psyllid, Agonoscena pistaciae, is the most damaging pest of pistachio in Iran, and is generally controlled by insecticides belonging to various classes especially, phosalone. The toxicity of phosalone in nine populations of the pest was assayed using the residual contact vial and insect-dip methods. The bioassay results showed significant discrepancy in susceptibility to phosalone among the populations. Resistance ratio of the populations to the susceptible population ranged from 3.3 to 11.3. The synergistic effects of TPP, PBO and DEM were evaluated on the susceptible and the most resistant population to determine the involvement of esterases, mixed function oxidases and glutathione S-transferases in resistance mechanisms, respectively. The level of resistance to phosalone in the resistant population was suppressed by TPP, PBO and DEM, suggesting that the resistance to phosalone is mainly caused by esterase detoxification. Biochemical enzyme assays revealed that esterase, glutathione S-transferase and cytochrome P450 monooxygenase activities in the resistant population was higher than that in the susceptible. Glutathione-S-transferases play a minor role in the resistance of the pest to phosalone.  相似文献   

9.
小菜蛾对阿维菌素的抗性机制及交互抗性研究   总被引:29,自引:3,他引:29  
用叶片药膜法研究了阿维菌素抗性小菜蛾 Plutella xylostella (L.)品系 对常用药剂的交互抗性谱以及增效醚(PB)和磷酸三苯酯(TPP)的增效作用。小菜蛾对阿 维菌素与高效氯氰菊酯、溴氰菊酯、氰戊菊酯和联苯菊酯等菊酯类药剂间具有比较低的交互 抗性,对后者抗性为3~20倍,对阿维菌素的抗性为575.6倍;对氟虫脲和氟啶脲没有交互抗 性。PB和TPP对阿维菌素分别增效8.2和5.5倍,说明小菜蛾对阿维菌素的抗性可能与多功能 氧化酶(MFO)和羧酸酯酶有关。通过差光谱技术测定了阿维菌素抗性和敏感小菜蛾细胞色 素P450的含量,抗性品系是敏感品系的1.38倍。  相似文献   

10.
选用辛硫磷、对硫磷、敌敌畏和氧乐果4种有机磷类杀虫剂以及灭多威和甲萘威两种氨基甲酸酯类杀虫剂分别以1∶1、1∶3和3∶1的比例混用,以棉铃虫Helicoverpa armigera为试虫,分别测得单剂和混剂对其乙酰胆碱酯酶(AChE)和羧酸酯酶(CarE)的抑制中浓度(I50),以联合抑制系数作为增效作用的参考指标进行了比较。研究发现,两种药剂不同配比的混剂对同种酯酶的联合抑制作用也往往不同。对AChE和CarE同时具有抑制作用的只有其中的对硫磷+甲萘威(1∶3)、辛硫磷+对硫磷(1∶3)和灭多威+氧乐果(1∶3),而甲萘威+敌敌畏(1∶3)、甲萘威+氧乐果(1∶1)、辛硫磷+甲萘威(1∶1)、对硫磷+氧乐果(1∶1)、对硫磷+氧乐果(1∶3)、敌敌畏+氧乐果(1∶3)、灭多威+对硫磷(1∶1) 7种混剂对AChE和CarE都具有拮抗作用。  相似文献   

11.
研究表明:秦椒田天敌有70佘种,主要14种。以蜘蛛、瓢虫、寄生性天敌、食虫蝽为天敌优势类群。各类群天敌在椒田的发生季节和数量不同,主要受地区差异、栽培方式、椒田化学农药使用量的影响。秦椒田天敌种群数量与害虫发生密度成正相关(γ=0.43~0.79),对秦椒田害虫有很强的控制作用。采用麦椒间套、挖窝诱蛛、插种玉米、花生以及合理使用化学农药,对保护椒田天敌效果显著。  相似文献   

12.
为研究寄主对苹果黄蚜药剂敏感性及体内酶活力的影响,采用生物测定和生化方法分别对取食杏树、李子树、梨树和苹果树的苹果黄蚜种群的药剂敏感性及解毒酶活性进行了测定。供试药剂对杏树、李子树、梨树和苹果树上蚜虫种群的相对毒力指数测定结果表明,吡虫啉为3.53、3.12、2.55和1.00,马拉硫磷为2.42、2.06、1.69和1.00,溴氰菊酯为2.96、1.66、1.43和1.00,灭多威为2.11、1.65、1.37和1.00;对四种药剂的敏感性大小均为杏树种群>李子树种群>梨树种群>苹果树种群。蚜虫的谷胱甘肽-S-转移酶(GST)、乙酰胆碱酯酶(AChE)、羧酸酯酶(CarE)、多功能氧化酶(MFO)的离体酶活力顺序均为苹果种群>梨树种群>李子树种群>杏树种群,四个蚜虫种群的GST活力比值分别为2.32、1.73、1.35和1.00,AChE活力比值为2.48、1.73、1.66和1.00,CarE活力比值为1.60、1.27、1.23和1.00,MFO活力比值为2.02、1.31、1.13和1.00。各种群间的四种酶活力差异均达显著水平。说明寄主植物能影响苹果黄蚜药剂敏感性及解毒酶活力水平。  相似文献   

13.
A Tetranychus cinnabarinus strain was collected from Chongqing, China. After 42 generations of selection with abamectin and 20 generations of selection with fenpropathrin in the laboratory, this T. cinnabarinus strain developed 8.7- and 28.7-fold resistance, respectively. Resistance to abamectin in AbR (abamectin resistant strain) and to fenpropathrin in FeR (fenpropathrin resistant strain) was partially suppressed by piperonyl butoxide (PBO), diethyl maleate (DEM) and triphenyl phosphate (TPP), inhibitors of mixed function oxidase (MFO), glutathione S-transferases (GST), and hydrolases, respectively, suggesting that these three enzyme families are important in conferring abamectin and fenpropathrin resistance in T. cinnabarinus. The major resistant mechanism to abamectin was the increasing activities of carboxylesterases (CarE), glutathione-S-transferase (GST) and mixed function oxidase (MFO), and the activity in resistant strain developed 2.7-, 3.4- and 1.4-fold contrasted to that in susceptible strain, respectively. The activity of glutathione-S-transferase (GST) in the FeR strain developed 2.8-fold when compared with the susceptible strain, which meant the resistance to fenpropathrin was related with the activity increase of glutathione-S-transferase (GST) in T. cinnabarinus. The result of the kinetic mensuration of carboxylesterases (CarE) showed that the structure of CarE in the AbR has been changed.  相似文献   

14.
The correlation between the natural levels of glutathione S-transferase (GST) and the tolerance to the organophosphorus insecticides parathion-methyl and paraoxon-methyl, as well as the interaction of affinity-purified enzyme and the insecticides were investigated in order to collect further information on the role of the glutathione S-transferase system as a mechanism of defence against insecticides in insects. The studies were carried out on the larvae and pupae of the coleopteran Tenebrio molitor L, which exhibit varying natural levels of GST activity. Stage-dependent susceptibility of the insect against insecticides was observed during the first 24 h. However, 48 h after treatment, the KD50 value increased significantly due to the recovery of some individuals. Simultaneous injection of insecticide with compounds which inhibit GST activity in vitro caused an alteration in susceptibility of insects 24 or 48 h post-treatment, depending on stage and insecticide used. Inhibition studies combined with competitive fluorescence spectroscopy revealed that the insecticides probably bind to the active site of the enzyme, thus inhibiting its activity towards 1-chloro-2,4-dinitrobenzene in a competitive manner. High-performance liquid chromatography and gas chromatography revealed that T molitor GST catalyses the conjugation of the insecticides studied to a reduced form of glutathione (GSH). From the above experimental results, it is considered that GST offers a protection against the organophosphorus insecticides studied by active site binding and subsequent conjugation with GSH. © 2001 Society of Chemical Industry  相似文献   

15.
农田生物多样性对昆虫的生态调控作用   总被引:2,自引:0,他引:2  
随着农田作物的单一性种植,植食性昆虫暴发、物种流失等问题日益突出,化学农药大量应用于作物有害生物的防治更加剧了对农田生态系统的破坏和不稳定性.因此,从生物多样性-农田生态系统-植食性昆虫的相互关系入手,探讨生物多样性的保护及其在农业有害生物防控上的应用,回归农田生态系统动态平衡的生态调控举措,成为可持续发展农业领域中研究的焦点之一.本文综述了农田生物多样性对昆虫生态影响的重要性及其生态功能,进一步阐述了农田生物多样性在农业生产中的应用及前景.  相似文献   

16.
The effects of sublethal dosages of insecticides applied to Plutella xylostella L. (Lepidoptera: Yponomeutidae) and Lipaphis erysimi Kaltenbach (Homoptera: Aphidiidae) on the insecticide susceptibility of the surviving endoparasitoids, Cotesia plutellae Kurdjumov (Hymenoptera: Braconidae) and Diaeretiella rapae (M'Intosh) (Hymenoptera: Aphidiidae), were studied in Shangjie, Minhou, China. The susceptibility to methamidophos and the sensitivity of acetylcholinesterase (AChE) to methamidophos and dichlorvos in the adults of host insects were substantially lower than those in the two parasitoids. The host insects were treated with sublethal dosages of methamidophos in P. xylostella and of methamidophos and avermectin in L. erysimi. The cocoon formation in the two parasitoids decreased significantly, from 35.0% (control) to 13.0% (with methamidophos treatment) for C. plutellae; from 20.6% (control) to 9.0% (with methamidophos treatment) and from 24.3% (control) to 16.7% (with avermectin treatment) for D. rapae. The susceptibility to methamidophos of the resultant emerging adults of the two parasitoids was found to be significantly lower than that of the control when the parasitoids were left in contact with the same dosages of methamidophos. The average AChE activity inhibition by methamidophos and dichlorvos in 34-60 adults of the two parasitoids that emerged from the treatments (15.1% and 31.8% respectively for C. plutellae, and 21.1% and 26.9% for D. rapae) was also significantly lower than those of the controls (55.4% and 48.3% respectively for C. plutellae, and 42.9% and 51.7% for D. rapae). The bimolecular rate constant (k(i)) values of AChE to methamidophos and dichlorvos in the adults of parasitoids without the insecticide treatment were 1.78 and 1.56 times as high as those that emerged from the host insects treated with methamidophos for C. plutellae, and 1.91 and 1.66 times as high as those in the case of D. rapae. It is suggested that there is a difference in AChE sensitivity to insecticides between the resultant emerging parasitoids with and without insecticide pretreatment. Furthermore, the introduction of the insecticides to the host insects could be an important factor in the insecticide resistance development of the endoparasitoids. The natural selectivity would favour the parasitoids that had developed an insensitivity to the insecticide(s).  相似文献   

17.
Widespread use of Bt crops for control of lepidopterous pests has reduced insecticide use and provided the tarnished plant bug the opportunity to become a serious pest on mid-South cotton. Organophosphate insecticides have predominantly been used against plant bugs in recent years due to the reduced efficacy of other insecticides. In this study, a biochemical approach was developed to survey enzymatic levels associated with organophosphate resistance levels in field populations of the tarnished plant bug. Forty-three populations were collected from the delta areas of Arkansas, Louisiana, and Mississippi. Three esterase substrates and one substrate each of glutathione S-transferase (GST) and acetylcholinesterase (AChE) were used to determine corresponding detoxification enzyme activities in different populations. Compared to a laboratory susceptible colony, increases up to 5.29-fold for esterase, 1.96-fold for GST, and 1.97-fold for AChE activities were detected in the field populations. In addition to the survey of enzyme activities among the populations, we also examined the susceptibility of major detoxification enzymes to several inhibitors which could be used in formulations to synergize insecticide toxicity against the target pests. As much as 52-76% of esterase, 72-98% of GST, and 93% of AChE activities were inhibited in vitro. Revealing variable esterase and GST activities among field populations may lead to a better understanding of resistance mechanisms in the tarnished plant bug. This study also reports effective suppression of detoxification enzymes which may be useful in future insecticide resistance management program for the tarnished plant bug and other Heteropteran pests on Bt crops.  相似文献   

18.
小菜蛾对溴氰菊酯抗性选育及其机理   总被引:15,自引:3,他引:15  
本研究用溴氰菊酯在室内以点滴法处理小菜蛾4龄幼虫,连续继代药剂淘汰选育其抗药性,至F65代,抗药性提高到1163倍,已形成高抗生品系。其抗性的形成发展趋势为前期相对缓慢,中期较快,后期迅速增长。于1992、1993、1994年分别以氯氰菊酯、敌敌畏、杀虫双、灭虫剂有明显 正交互抗性,对其它非菊酯类杀虫虫没有产生交互抗性。用聚丙烯酰胺凝胶电泳地(PAGE)测定表明,小菜蛾对溴氰菊酯抗性的产生可能与非  相似文献   

19.
BACKGROUND: Glutathione S‐transferases (GSTs) have received considerable attention in insects for their roles in insecticide resistance. Laodelphax striatellus (Fallén) is a serious rice pest. L. striatellus outbreaks occur frequently throughout eastern Asia. A key problem in controlling this pest is its rapid adaptation to numerous insecticides. In this research, nine cDNAs encoding GSTs in L. striatellus were cloned and characterised. RESULTS: The cloned GSTs of L. striatellus belonged to six cytosolic classes and a microsomal subgroup. Exposure to sublethal concentrations of each of the six insecticides, DDT, chlorpyrifos, fipronil, imidacloprid, buprofezin and beta‐cypermethrin, quickly induced (6 h) up‐expression of LsGSTe1. The expression of LsGSTs2 was increased by chlorpyrifos, fipronil and beta‐cypermethrin. Furthermore, exposure of L. striatellus to fipronil, imidacloprid, buprofezin and beta‐cypermethrin increased the expression of the LsGSTm gene after 24 or 48 h. CONCLUSION: This work is the first identification of GST genes from different GST groups in Auchenorrhyncha species and their induction characteristics with insecticide types and time. The elevated expression of GST genes induced by insecticides might be related to the enhanced tolerance of this insect to insecticides and xenobiotics. Copyright © 2012 Society of Chemical Industry  相似文献   

20.
The oriental tobacco worm, Helicoverpa assulta Guenée, is one of the most destructive pests of tobacco and peppers in China. We determined the susceptibility of H. assulta reared on an artificial diet, chili pepper and tobacco to four insecticides (fenvalerate, phoxim, methomyl, indoxacarb) under laboratory conditions associated with the activities of acetylcholinesterase (AChE), carboxylesterase (CarE) and glutathione S-transferase (GST) in its larvae. H. assulta larvae that were fed with chili pepper were more susceptible to fenvalerate, indoxacarb, and phoxim than those that were fed with tobacco and the artificial diet, but not to methomyl. The larvae that were fed with chili pepper were 3.65-, 2.49-, 1.92- and 2.44-fold more susceptible to fenvalerate, phoxim, methomyl, and indoxacarb than those fed with tobacco, respectively. The AChE activities of H. assulta larvae that were fed with chili pepper and tobacco were 2.12 and 1.07 μmol mg−1 15 min−1, respectively, almost 2-fold difference. The CarE activity of H. assulta larvae that were fed with chili pepper, tobacco and the artificial diet was 4.12, 7.40 and 7.12 μmol mg−1 30 min−1, respectively. Similarly, the GST activities of H. assulta larvae that were fed with chili pepper, tobacco and the artificial diet was 52.02, 79.37 and 80.02 μmol mg−1 min−1, respectively. H. assulta larvae that were fed with chili pepper were more resistance to the tested insecticides. The low activities of AChE and the high activities of CarE and GST lead to H. assulta become more susceptible to the tested insecticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号