共查询到19条相似文献,搜索用时 319 毫秒
1.
将相关性剪枝算法(CPA)和变学习率、附加动量方法结合提出了一种基于CPA的改进的BP神经网络剪枝算法.实验结果表明,改进的算法可以降低训练步数,加快神经网络的收敛速度,在测试数据集上的均方误差也得到了进一步的优化. 相似文献
2.
BP网络的改进和应用 总被引:4,自引:0,他引:4
BP网络的目标点附近收敛速度较慢,学习效率较低,解释复杂,常不保证全局收敛而导致学习失败。通过对其算法进行改进,并应用改进后的BP神经网络对红桔振动损伤进行分析建模,能准确地反应其损伤程度。 相似文献
3.
基于支持向量机与径向基(RBF)神经网络在结构上的相似性,提出了一种用于RBF网络的支持向量机与BP的混合学习算法.算法分为2步:首先采用序贯最小优化算法学习训练支持向量机,得到RBF网络较优的初始结构和参数;随后由BP算法调整优化RBF网络参数.混合学习算法结合了支持向量机小样本学习、学习训练快捷以及BP算法在线修改网络参数的特点.仿真研究表明,混合学习算法学习效率高,网络性能优良,应用于函数逼近时效果优良. 相似文献
4.
提出了一种采用改进型的BP神经网络诊断模拟电路故障的新方法。介绍了包括附加动量法和自适应学习速率法在内的改进型的BP网络算法,其中附加动量法是在每一个权值的变化上加上一项正比于前次权值变化量的值,不仅考虑了误差在梯度上的作用,而且考虑在曲面上变化趋势的影响;自适应学习速率是根据误差函数值的变化对学习率进行实时调整,可以保证网络总是以最大的学习速率学习。最后,本文给出了仿真实例,实验证明所提出的方法与传统方法相比有更好的实时性和诊断效率。 相似文献
5.
针对标准的BP神经网络模型对我国南方的重要木本油料树种油茶产量进行预测过程中存在的缺陷,采用相对误差逐步优化回溯算法在迭代过程的参数,使原始的BP神经网算法在运算精度和计算速度上均得到显著的提高,即一种改进的回溯算法优化BP神经网络预测模型。经过试验效验与仿真证明,得到的改进算法不仅能提高油茶产量预测的收敛速度,而且在油茶产量预测精度上也有很大的提高。优化后的BP神经网络算法为多要素因子之间相互影响事件的结果预测,提供了新的设计思路和更好的解决方法。 相似文献
6.
为克服BP神经网络收敛速度缓慢的缺陷,以L-M算法代替梯度下降法训练网络.建立了基于L-M算法的大坝安全监控整体L-M模型和逐一L-M模型,并与快速BP模型进行对比.应用实例研究表明:整体L-M模型和逐一L-M模型的预测效果及训练速度均显著优于快速BP模型,逐一L-M模型的预测精度及泛化能力均优于整体L-M模型,且预报时间短,可以用于大坝监控的实时预报. 相似文献
7.
BP神经网络算法的一种改进及在小麦赤霉病预测中的应用 总被引:4,自引:0,他引:4
针对BP网络收敛速度慢,计算量大等缺点,提出了动量法和批处理梯度下降学习算法相结合的BP神经网络改进算法,用以提高BP网络训练速度。该方法成功地实现了小麦赤霉病流行程度预测,效果显著。 相似文献
8.
BP神经网络在农业植物分类识别中的应用 总被引:1,自引:0,他引:1
本文尝试利用BP算法对中国农业植物的56科进行分类识别的训练,其训练结果在精度范围内平均准确率达到90%,实现了科级上的植物分类的快速识别的目的,为植物分类识别工作的智能化提供了又一种思路。 相似文献
9.
10.
以BP神经网络为基础,通过对神经网络的各个参数进行优化后建立洪水预报模型,并利用四川省达州市州河干流水文站所采集的水文数据进行仿真预报并和实测流量对比。研究表明,采用基于BP神经网络的洪水预测模型进行洪水预测的精度较高,是一种有效可靠的洪水预测方法。 相似文献
11.
12.
基于BP神经网络股价预测的一种改进方法 总被引:1,自引:0,他引:1
为提高神经网络经济预测的泛化能力,对神经网络预测数据处理方法进行了改进,把对数据的归一化变为对数据增长量的归一化,因而只要被预测的增长量不超过以往的历史数据增长量,则不会发生外延问题。根据这一思路,采用个股(中国石化)收盘价的数据,通过对收盘价的增长量进行了归一化,得到新的时间序列,将该时间序列视为一个从输入到输出的非线性映射,用BP神经网络进行非线性映射的逼近。对网络进行学习与训练的仿真试验后,预测结果与实际结果的比较说明,改进方法有效。 相似文献
13.
基于遗传算法优化的BP神经网络进行水稻氮素营养诊断 总被引:2,自引:0,他引:2
应用遗传算法优化BP神经网络进行水稻氮素营养诊断,为水稻的合理施氮提供理论指导。水稻田间试验供试品种为‘两优培九’,设置4个施氮水平(0、210、300、390 kg·hm-2)。在水稻幼穗分化期,扫描获取水稻顶部第三完全展开叶图像,并通过图像处理技术获取19维水稻图像中的颜色和几何形态特征,采用归一化处理、离散小波变换及主成分分析对原始数据进行预处理,并应用遗传算法优化的BP神经网络进行水稻氮素营养诊断。该方法建立的水稻氮素营养诊断模型较单一BP神经网络模型和传统遗传算法优化BP神经网络模型好,模型测试所得4个施氮水平的平均识别率分别为100.000%、99.000%、97.000%、100.000%,测试集样本平均总识别率达到99.000%。基于遗传算法优化的BP神经网络所建立的水稻氮素营养诊断模型具有较强的学习能力和泛化能力,能够很好地识别出水稻氮素营养的缺失,表明运用该方法能够很好地进行水稻氮素营养诊断识别。 相似文献
14.
15.
清代书院课艺总集多为连续出版物,或具有连续出版物的刊行初衷。刊期短则一季,多则一年或数年。经费充足与否,会影响刊期。发表周期多为一年至五年,也有十余年的。用稿率以10%~20%居多,偶见“关系稿”。时文的用稿标准是“清真雅正”。题目多为官师所拟。一般全文刊登,也偶有“论点摘编”。多经润色,并附录评点。有的以袖珍本刊行,有的宣称“翻刻必究”,标出定价,附载广告。稿费已在膏火费中预支,优秀作品可被转载。从本质属性和诸多要素来看,书院课艺总集实开今日“大学学报”、“学术集刊”之先河。 相似文献
16.
BP神经网络在小麦赤霉病气象预测中的应用* 总被引:1,自引:0,他引:1
应用BP神经网络的方法建立四川资中小麦赤霉病发病的预报模型,为预防小麦赤霉病发病提供科学依据。根据四川资中小麦赤霉病发生发展的气象生理指标及历年该病发生的统计资料,借助人工神经网络强大的函数映射能力,采用Fletcher-Reeves算法的变梯度反向传播算法——Traincgf,建立了小麦赤霉病发病的气象预报模型。该模型不需要事先确定数学模型,拟合与预测的平均绝对偏差分别为0.01,0.05,优于多元线性回归模型的0.17,0.29。BP神经网络预报模型的拟合精度和预报精度都较高,优于多元线性回归模型,能很好地实现预期效果,对小麦赤霉病发病的预测预防工作具有一定的指导意义。 相似文献
17.
18.
提出一种基于遗传算法优化BP神经网络的方法预测日光温室湿度环境因子。实测日光温室内影响空气湿度的环境因子组成数据样本作为神经网络的输入,采用基于实数编码的遗传算法替代随机设定神经网络的初始权阈值,然后通过改进的BP算法在由遗传算法确定的搜索空间中对网络进行精确训练。模型预报值和实测值基于1:1线的决定系数R2和预测平均相对误差MSE分别为0.9857和3.1%。结果表明,遗传算法优化BP神经网络预报模型收敛速度快、预测精度高。可为日光温室的湿度环境调控制提供理论依据和决策支持。 相似文献
19.
基于遗传算法优化的BP神经网络的组合预测模型方法研究 总被引:2,自引:1,他引:2
【目的】提出以传统猪瘟发病率为对象的组合预测模型。【方法】利用ARIMA模型以及灰色模型GM(1,1)进行数据初始化处理,将初步处理结果作为优化后的BP神经网络输入构建组合模型。【结果】利用组合模型对2000年到2009年的月度发病数据进行实例分析,结果表明预测数据精度达到97.379%,较ARIMA模型,灰色模型、BP神经网络模型分别提高了5.469%、3.499%、1.188%,模型平稳性增强,预测结果良好。【结论】本研究为动物疫情测报提供了有效的分析手段,验证了组合模型在动物疫情研究中的可行性,并可为其它动物疫病提供借鉴和参考。 相似文献