首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
2.
3.
逆转录环介导等温扩增技术检测南方菜豆花叶病毒   总被引:3,自引:0,他引:3  
 根据南方菜豆花叶病毒外壳蛋白基因序列设计并合成了4组RT-LAMP引物,通过引物筛选试验,确定SB1组引物为最佳引物,并进行了引物特异性与灵敏度检测试验,最终建立了南方菜豆花叶病毒的RT-LAMP检测方法。灵敏度检测试验显示,RT-LAMP方法比普通RT-PCR法灵敏度高10倍,而检测时间明显缩短,整个反应过程只需40 min。此外,体系中加入钙黄绿素,反应结束后,可裸眼观察颜色变化来判定结果。本研究所建立的SBMV RT-LAMP方法具有快速、稳定、灵敏、特异、操作简单的特点,适合于SBMV的现场快速检测。  相似文献   

4.
5.
小苍兰花叶病毒Freesia mosaic virus(FreMV)是侵染兰花的主要病毒,严重影响其观赏价值。本研究根据FreMV的外壳蛋白基因序列设计了一组特异性引物,经过一系列条件优化,建立了该病毒的RT-LAMP检测方法。结果显示设计引物能特异扩增FreMV,与其他4种病毒(菜豆黄花叶病毒Bean yellow mosaic virus、黄瓜花叶病毒Cucumber mosaic virus、建兰花叶病毒Cymbidium mosaic virus和齿兰环斑病毒Odontoglossum ringspot virus)不发生反应;该方法灵敏度为RT-PCR的10倍。田间检测20份样品中,RT-LAMP和RT-PCR检测结果一致,检出率为60%。在产物中加入荧光染料SYBR GreenⅠ直接用肉眼观察就可判断样品是否感染FreMV,可省去电泳分析的时间。该方法具有特异性强、灵敏度高、操作简单、快速等特点。  相似文献   

6.
根据南芥菜花叶病毒外壳蛋白基因序列设计并合成了2组RT-LAMP引物,通过筛选试验,最终确定Ar4组引物为最佳引物,建立了南芥菜花叶病毒的RT-LAMP检测方法.同时,通过实时浊度仪和钙黄绿素分别对检测结果进行了判断.特异性和灵敏度试验结果显示,RT-LAMP方法快速、特异且灵敏,其灵敏度与普通RT-PCR法一致.  相似文献   

7.
马铃薯卷叶病毒Potato leafroll virus(PLRV)是目前严重影响马铃薯产量与品质的主要病毒之一,给马铃薯产业造成巨大损失。本研究采用环介导等温核酸扩增(loop-mediated isothermal amplification, LAMP)技术建立PLRV的RT-LAMP检测方法。采取单因素变化试验,对RT-LAMP反应体系中多个因素包括引物组合、温度条件及Mg~(2+)、betaine、Bst 3.0 DNA聚合酶、dNTPs、UNG、SYBR GreenⅠ和引物组合的浓度进行一系列试验和优化。采用RT-PCR检测方法进行平行比对试验,对优化后的RT-LAMP反应体系进行了验证。结果表明,最佳引物组合为P3,最适反应温度62℃,25μL反应体系中,Mg~(2+)、betaine、Bst 3.0 DNA聚合酶和UNG的最佳终浓度分别为4 mmol/L、0 mmol/L、0.64 U/μL和0.08 U/μL,dNTPs的最佳用量为1μL(dATP、dGTP、dCTP各0.4 mmol/L,dUTP 1.2 mmol/L),SYBR GreenⅠ(20×)的最佳用量1μL,primer mix的最佳用量2.5μL(PLRV-FIP/BIP、PLRV-F3/B3和PLRV-LF/LB的浓度分别为0.8、0.2μmol/L和0.6μmol/L),RNA模板1μL(2 ng/μL),加DEPC-H_2O至25μL,反应时间50 min。优化后的RT-LAMP检测结果与RT-PCR一致,且可视化判读结果。因此,建立的PLRV RT-LAMP检测方法为进一步开发RT-LAMP检测试剂盒及其实际应用奠定了基础。  相似文献   

8.
为明确我国葡萄中沙地葡萄茎痘相关病毒(GRSPaV)的感染情况及病毒外壳蛋白(coat protein,CP)基因的变异特点,从而为其致病性、病害的防治以及抗病毒基因工程等研究提供依据,本研究对采自我国16个省市自治区的65个葡萄品种305株葡萄样品中的GRSPaV进行RT-PCR检测,根据地区与品种差异选取了24个阳性样品进行cp基因克隆与测序分析,并对不同RNA提取方法进行了比较。结果显示,114株样品被GRSPaV侵染,平均带毒株率为37.4%;分离物间及同一分离物不同克隆间的序列差异较大,从24个分离物克隆获得的37条cp基因序列与来源于不同国家的12个GRSPaV分离物的核苷酸序列同源性为80.5%~99.7%,氨基酸序列同源性为88.8%~100%;各个分离物的遗传距离无明显地域差异;SiO2吸附法比SDS法和CTAB法更适宜葡萄样品RNA的提取。  相似文献   

9.
 葡萄茎枯病菌是我国进境植物检疫性有害生物。带菌植物材料是病害传播的重要载体,准确、灵敏、快速的检测方法是严格执行口岸检疫措施及研究病害防控措施的有力工具。根据葡萄茎枯病菌及其近似种的细胞骨架蛋白(Actin)基因序列差异,设计并合成1对引物和1条特异性TaqMan-MGB探针,建立了葡萄茎枯病菌的实时荧光PCR检测方法。通过对反应体系的优化,确定了葡萄茎枯病菌的实时荧光PCR最佳反应条件:引物终浓度为0.6 μmol·L-1,探针终浓度为0.6 μmol·L-1。灵敏度试验结果显示,最低检测限为总DNA含量20 pg(20 μL反应体系)。此方法快速灵敏,整个反应1 h即可完成,检测过程完全闭管,无需PCR产物后续处理,为快速检测葡萄茎枯病菌提供了重要参考。该方法用于口岸疑似菌株检测,可成功检测出葡萄茎枯病菌。本研究建立的基于TaqMan MGB探针的荧光定量PCR检测方法为葡萄茎枯病菌的早期快速检测监测提供了有力工具。  相似文献   

10.
 葡萄茎枯病菌是我国进境植物检疫性有害生物。带菌植物材料是病害传播的重要载体,准确、灵敏、快速的检测方法是严格执行口岸检疫措施及研究病害防控措施的有力工具。根据葡萄茎枯病菌及其近似种的细胞骨架蛋白(Actin)基因序列差异,设计并合成1对引物和1条特异性TaqMan-MGB探针,建立了葡萄茎枯病菌的实时荧光PCR检测方法。通过对反应体系的优化,确定了葡萄茎枯病菌的实时荧光PCR最佳反应条件:引物终浓度为0.6 μmol·L-1,探针终浓度为0.6 μmol·L-1。灵敏度试验结果显示,最低检测限为总DNA含量20 pg(20 μL反应体系)。此方法快速灵敏,整个反应1 h即可完成,检测过程完全闭管,无需PCR产物后续处理,为快速检测葡萄茎枯病菌提供了重要参考。该方法用于口岸疑似菌株检测,可成功检测出葡萄茎枯病菌。本研究建立的基于TaqMan MGB探针的荧光定量PCR检测方法为葡萄茎枯病菌的早期快速检测监测提供了有力工具。  相似文献   

11.
RT-LAMP技术检测菜豆荚斑驳病毒的研究   总被引:3,自引:0,他引:3  
菜豆荚斑驳病毒(Bean pod mottle virus,BPMV)是我国对外公布的检疫性有害生物,本研究采用环介导等温扩增技术(loop-mediated isothermal amplification,LAMP),建立了一种快速、灵敏和特异的BPMV检测方法。根据BPMV外壳蛋白编码基因上的8个位点,共设计了6条引物,通过RT-LAMP扩增得到特征性的瀑布状条带。特异性试验表明,引物对BPMV的检测具有良好的特异性;灵敏度试验显示RT-LAMP比RT-PCR灵敏度高1 000倍。该方法无需特殊的试剂和设备,只需在水浴锅中60℃等温扩增,整个检测周期约2~2.5 h,适合BPMV的快速、准确检测。  相似文献   

12.
 本研究采用环介导等温扩增技术(Loop-mediated isothermal amplification, LAMP),建立了一种快速、简便的烟草环斑病毒检测方法。根据TRSV外壳蛋白编码基因上的8个位点,共设计了6条引物,通过RT-LAMP扩增得到特征性的梯度条带。特异性试验表明,引物对TRSV的检测具有良好的特异性;灵敏度试验显示RT-LAMP比普通RT-PCR高10倍。通过反应温度和时间的优化,该方法只需在水浴锅中60℃等温扩增60 min,整个检测周期约1.5 h,结果采用SYBR green I染色显示,易于观察和判定。  相似文献   

13.
The unavailability of adequate immunological reagents has prevented the use of ELISA for the diagnosis of rupestris stem pitting disorder of grapevines. In this work, the performance of five primer pairs for broad-scale detection of rupestris stem pitting associated virus-1 by RT-PCR using ds-RNA templates was compared and contrasted with biological indexing. The virus was widespread among the budwood of 35 Portuguese grapevine varieties assayed, with a prevalence of 85%. The biological assay proved to be unreliable as an index of infection due to the high number of false negatives. Five sets of primers were assayed and compared by means of their relative sensitivity and negative predictive value. The primer pair specific for the coat protein gene was excluded because of the difficulty in identifying the specific amplified product. From the other four primer pairs, those specific for the helicase domain of the putative polymerase gene had the highest sensitivity and negative predictive value. However, a high confidence in the assay, as desirable for a certification scheme, could not be obtained by the sole use of this primer pair. An additional pair should be used in a separate or in a multiplex RT-PCR reaction.  相似文献   

14.
香蕉条斑病毒LAMP快速检测方法的建立   总被引:1,自引:0,他引:1  
 环介导等温扩增(loop-mediated isothermal amplification,LAMP)是一种特异、灵敏、快速的新型基因检测技术。本研究以香蕉条斑病毒(Banana streak virus,BSV)ORF3保守区域为基础针对6个特定区域设计并筛选了4条LAMP扩增引物,通过对LAMP反应中MgSO4、dNTPs、Betaine等主要试剂浓度进行优化,建立了香蕉BSV的LAMP检测方法,63℃反应90 min后通过在反应产物中添加SYBR Green Ⅰ染料后颜色的变化,肉眼即可判断检测结果。LAMP具有极高的检测特异性和灵敏性,其检测下限约为3.2 ng·μL-1,是PCR检测灵敏度的25倍,能快速、准确地对疑似样品进行检测,本研究对华南地区部分疑似样品的检测结果显示LAMP阳性检出率比PCR检出率高。本文建立的BSV LAMP检测方法是对BSV检测方法的拓展和延伸,为香蕉病毒的快速检测提供技术保障。  相似文献   

15.
辣椒黄脉病毒RT-LAMP快速检测方法的建立   总被引:1,自引:0,他引:1  
  相似文献   

16.
逆转录环介导等温扩增技术检测花生条纹病毒   总被引:1,自引:0,他引:1  
花生条纹病毒病(Peanut stripe virus,PStV)是我国花生上流行最广[1]、田间发病率最高的一种花生病毒病,严重影响花生的产量和品质.由于PStV存在不同症状类型株系,在中国占优势的轻斑驳株系,引起花生症状较轻,并且与其他花生病毒病症状类似,不易分辨,目前主要利用PCR方法对PStV进行检测[2],但该方法检测时间长,并且需要专业仪器,较难普及.  相似文献   

17.
采用环介导等温扩增法(LAMP)快速检测苹果根结线虫   总被引:7,自引:4,他引:3  
为高效、简便、快速地对我国进境植物检疫性有害生物名录中的非中国种—苹果根结线虫Meloidogyne mali进行检疫,通过比较Gen Bank中根结线虫相关序列,以苹果根结线虫28S r DNA非保守区域序列设计环介导等温扩增(loop-mediated isothermal amplification,LAMP)的特异性引物,并优化反应条件,建立一种可快速检测苹果根结线虫的LAMP检测体系。结果显示:d NTPs浓度为0.4 mmol/L、Mg~(2+)浓度为5.0 mmol/L、不添加甜菜碱、反应时间为60 min时,LAMP检测体系扩增效率最高;用琼脂糖凝胶电泳、SYBR Green I染色和LFD试纸均能检测到苹果根结线虫的扩增产物。所建立的LAMP检测体系能够从10种供试植物线虫种群中特异性地检测出苹果根结线虫,灵敏度为1/20 000条线虫DNA,比常规PCR灵敏度高10倍。表明所建立的苹果根结线虫LAMP快速检测体系可用于我国口岸进境植物中苹果根结线虫检疫。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号