首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
ObjectiveTo evaluate the cardiorespiratory, sedative and antinociceptive effects of dexmedetomidine alone or in combination with methadone, morphine or tramadol in dogs.Study designExperimental, blinded, randomized, crossover study.AnimalsSix mixed breed dogs (two males and four females) weighing 10 ± 4 kg.MethodsThe animals were randomly divided into four treatments: D (10 μg kg?1 of dexmedetomidine), DM (dexmedetomidine 10 μg kg?1 and methadone 0.5 mg kg?1); DMO (dexmedetomidine 10 μg kg?1 and morphine 0.5 mg kg?1), and DT (dexmedetomidine 10 μg kg?1 and tramadol 2 mg kg?1). The combinations were administered intramuscularly in all treatments. The variables evaluated were heart rate (HR), respiratory rate (fR), rectal temperature (RT), systolic arterial pressure (SAP), sedation scale and pedal withdrawal reflex. These variables were measured at T0 (immediately before the administration of the protocol) and every 15 minutes thereafter until T105.ResultsA decrease in HR and fR occurred in all the treatments compared with T0, but no significant difference was observed between the treatments. The RT decreased from T45 onward in all the treatments. The SAP did not show a difference between the treatments, but in the DT treatment, the SAP was lower at T30 and T45 compared with T0. The D treatment had lower scores of sedation at T15 to T75 compared with the other treatments, and the DMO and DM treatments showed higher scores at T60 and T75 compared with DT.Conclusions and clinical relevanceThe treatments with morphine and methadone added to the dexmedetomidine showed higher sedation scores than the control treatment and the treatment with tramadol added to the dexmedetomidine showed no relevant differences in any of the variables evaluated in the study.  相似文献   

2.
ObjectiveTo evaluate the dexmedetomidine‐induced reduction in organ blood flow with quantitative contrast‐enhanced ultrasound (CEUS) method and to observe the influence of MK‐467 on such reduction.Study designRandomized cross‐over study.AnimalsSix adult purpose‐bred laboratory beagle dogs (mean body weight 15.3 ± 1.9 kg).MethodsContrast‐enhanced ultrasound was performed on six conscious healthy laboratory beagles. The animals on separate occasions underwent three treatments: awake without any medication (CTRL), dexmedetomidine 10 μg kg?1 (DEX) and DEX + MK‐467 500 μg kg?1 (DMK) intravenously (IV). The kidney (10–15 minutes post‐treatment), spleen (25–30 minutes post‐treatment), small intestine (40–45 minutes post‐treatment) and liver (50–55 minutes post‐treatment) were examined with CEUS. A time curve was generated and the following perfusion parameters were analysed: arrival time (AT), time to peak from injection (TTPinj), peak intensity (PI) and wash‐in rate (Wi). In addition to CEUS, renal glomerular filtration rate was indirectly estimated by the rate of iohexol elimination.ResultsAT and TTPinj were significantly higher for DEX than for CTRL in all studied organs. The same parameters were significantly higher for DEX than for DMK in the kidney, spleen and small intestine. PI was significantly lower for DEX than for CTRL or DMK in the kidney. Wi was significantly lower for DEX than for CTRL or DMK in the kidney and significantly lower than for CTRL only in the small intestine. Plasma concentration of iohexol was significantly higher after DEX than CTRL administration.ConclusionsContrast‐enhanced ultrasound was effective in detecting DEX‐induced changes in blood flow. MK‐467 attenuated these changes.Clinical relevanceClinicians should consider the effects of the sedation protocol when performing CEUS. Addition of MK‐467 might beneficially impact the haemodynamic function of sedation with alpha‐2 adrenoceptor agonists.  相似文献   

3.
ObjectiveTo describe alfaxalone total intravenous anaesthesia (TIVA) following premedication with buprenorphine and either acepromazine (ACP) or dexmedetomidine (DEX) in bitches undergoing ovariohysterectomy.Study designProspective, randomised, clinical study.AnimalsThirty-eight healthy female dogs.MethodsFollowing intramuscular buprenorphine (20 μg kg?1) and acepromazine (0.05 mg kg?1) or dexmedetomidine (approximately 10 μg kg?1, adjusted for body surface area), anaesthesia was induced and maintained with intravenous alfaxalone. Oxygen was administered via a suitable anaesthetic circuit. Alfaxalone infusion rate (initially 0.07 mg kg?1 minute?1) was adjusted to maintain adequate anaesthetic depth based on clinical assessment. Alfaxalone boluses were given if required. Ventilation was assisted if necessary. Alfaxalone dose and physiologic parameters were recorded every 5 minutes. Depth of sedation after premedication, induction quality and recovery duration and quality were scored. A Student's t-test, Mann–Whitney U and Chi-squared tests determined the significance of differences between groups. Data are presented as mean ± SD or median (range). Significance was defined as p < 0.05.ResultsThere were no differences between groups in demographics; induction quality; induction (1.5 ± 0.57 mg kg?1) and total bolus doses [1.2 (0 – 6.3) mg kg?1] of alfaxalone; anaesthesia duration (131 ± 18 minutes); or time to extubation [16.6 (3–50) minutes]. DEX dogs were more sedated than ACP dogs. Alfaxalone infusion rate was significantly lower in DEX [0.08 (0.06–0.19) mg kg?1 minute?1] than ACP dogs [0.11 (0.07–0.33) mg kg?1 minute?1]. Cardiovascular variables increased significantly during ovarian and cervical ligation and wound closure compared to baseline values in both groups. Apnoea and hypoventilation were common and not significantly different between groups. Arterial haemoglobin oxygen saturation remained above 95% in all animals. Recovery quality scores were significantly poorer for DEX than for ACP dogs.Conclusions and clinical relevanceAlfaxalone TIVA is an effective anaesthetic for surgical procedures but, in the protocol of this study, causes respiratory depression at infusion rates required for surgery.  相似文献   

4.
ObjectiveTo compare effects of four drug combinations on sedation, echocardiographic, haematologic and biochemical variables and recovery in cats.Study designExperimental randomized ‘blinded’ cross-over study.AnimalsSix healthy cats.Materials and MethodsTreatments were administered intramuscularly: midazolam 0.4 mg kg?1 and butorphanol 0.4 mg kg?1 (MB); midazolam 0.4 mg kg?1, butorphanol 0.4 mg kg?1 and ketamine 3 mg kg?1 (MBK); midazolam 0.4 mg kg?1, butorphanol 0.4 mg kg?1 and dexmedetomidine 5 μg kg?1 (MBD); ketamine 3 mg kg?1 and dexmedetomidine 5 μg kg?1(KD). Sedation was evaluated at time-points over 10 minutes post injection. Echocardiography, systolic arterial blood pressure (SAP) measurement and blood sampling were performed at baseline and from 10 minutes after treatment. Quality of recovery was scored. Data were analysed by anova for repeated measures. p < 0.05 was considered significant.ResultsThe lowest sedation score was obtained by MB, (median 10.5 [7; 20]), highest by KD (36.5 [32; 38]). Quality of recovery was best with KD (0.5 [0; 2]), and worst with MB (7.5 [4; 11]). Relative to baseline measurements, treatments decreased SAP by 17%, 25%, 13%, 5% in MB, MBK, MBD and KD, respectively. Heart rate decreased (p < 0.05) after MBD (44%) and KD (34%). All treatments decreased stroke volume by 24%, 21%, 24%, 36%, and cardiac output by 23%, 34%, 54%, 53% in MB, MBK, MBD and KD, respectively. Packed cell volume was decreased (p < 0.05) by 20%, 31%, 29% in MBK, MBD and KD, respectively. Plasma glucose was increased after MBD (31%) and KD (52%) and lactate concentration was decreased (p < 0.05) after MBK (58%), MBD (72%) and KD (65%).Conclusions and clinical relevanceThe MB combination did not produce sedation in healthy cats. Treatment MBK led to acceptable sedation and minimal cardiovascular changes. Both treatments with dexmedetomidine produced excellent sedation and recovery but induced more cardiovascular depression and haematologic changes.  相似文献   

5.
ObjectiveTo evaluate the antiemetic effect of butorphanol (BUT) when co-administered with dexmedetomidine (DEX) in cats.Study designDouble-blind, randomized controlled cross-over experimental study.AnimalsFourteen purpose-bred healthy Domestic Short Hair cats, seven females and seven males, aged median (range) 14–84 (78) months and weighing 1.7–5.5 (4.0) kg.MethodsEach cat received five different treatment protocols intramuscularly (IM): (A) 25 μg kg−1 DEX; (B) 20 μg kg−1 DEX and 0.2 mg kg−1 BUT; (C) 20 μg kg−1 DEX and 0.1 mg kg−1 BUT; (D) 25 μg kg−1 DEX and 0.2 mg kg−1 BUT; and (E) 20 μg kg−1 DEX. Episodes of emesis, incidence and severity of nausea, and time to lateral recumbency were recorded for a period of 8 minutes after treatment administration, and the sedation was scored at the end of this period. The Friedman test and the Cochran’s Q-test were used to analyse the data. Significance was evaluated at the 5% level.ResultsThe proportion of cats that vomited was significantly lower with the treatment protocols that included BUT (B, C and D) compared with the protocols that included only DEX (A and E). The proportion of cats that had nausea was significantly higher with the protocols that included only DEX (A and E) compared with protocols B and D. Time to lateral recumbency (p = 0.09) and sedation score (p = 0.07) was not statistically different between the treatment protocols.Conclusions and clinical relevanceButorphanol can be used to prevent emesis and reduce the incidence and the severity of nausea caused by DEX in cats. It seems that the combination of BUT and DEX is very useful not only when emesis could result in serious complications, but also to provide comfort and well-being in cats sedated for minor procedures.  相似文献   

6.
ObjectiveTo evaluate the isoflurane‐sparing effects of an intravenous (IV) constant rate infusion (CRI) of fentanyl, lidocaine, ketamine, dexmedetomidine, or lidocaine‐ketamine‐dexmedetomidine (LKD) in dogs undergoing ovariohysterectomy.Study designRandomized, prospective, blinded, clinical study.AnimalsFifty four dogs.MethodsAnesthesia was induced with propofol and maintained with isoflurane with one of the following IV treatments: butorphanol/saline (butorphanol 0.4 mg kg?1, saline 0.9% CRI, CONTROL/BUT); fentanyl (5 μg kg?1, 10 μg kg?1 hour?1, FENT); ketamine (1 mg kg?1, 40 μg kg?1 minute?1, KET), lidocaine (2 mg kg?1, 100 μg kg?1 minute?1, LIDO); dexmedetomidine (1 μg kg?1, 3 μg kg?1 hour?1, DEX); or a LKD combination. Positive pressure ventilation maintained eucapnia. An anesthetist unaware of treatment and end‐tidal isoflurane concentration (Fe′Iso) adjusted vaporizer settings to maintain surgical anesthetic depth. Cardiopulmonary variables and Fe′Iso concentrations were monitored. Data were analyzed using anova (p < 0.05).ResultsAt most time points, heart rate (HR) was lower in FENT than in other groups, except for DEX and LKD. Mean arterial blood pressure (MAP) was lower in FENT and CONTROL/BUT than in DEX. Overall mean ± SD Fe′Iso and % reduced isoflurane requirements were 1.01 ± 0.31/41.6% (range, 0.75 ± 0.31/56.6% to 1.12 ± 0.80/35.3%, FENT), 1.37 ± 0.19/20.8% (1.23 ± 0.14/28.9% to 1.51 ± 0.22/12.7%, KET), 1.34 ± 0.19/22.5% (1.24 ± 0.19/28.3% to 1.44 ± 0.21/16.8%, LIDO), 1.30 ± 0.28/24.8% (1.16 ± 0.18/32.9% to 1.43 ± 0.32/17.3%, DEX), 0.95 ± 0.19/54.9% (0.7 ± 0.16/59.5% to 1.12 ± 0.16/35.3%, LKD) and 1.73 ± 0.18/0.0% (1.64 ± 0.21 to 1.82 ± 0.14, CONTROL/BUT) during surgery. FENT and LKD significantly reduced Fe′Iso.Conclusions and clinical relevanceAt the doses administered, FENT and LKD had greater isoflurane‐sparing effect than LIDO, KET or CONTROL/BUT, but not at all times. Low HR during FENT may limit improvement in MAP expected with reduced Fe′Iso.  相似文献   

7.
ObjectiveTo investigate plasma drug concentrations and the effect of MK-467 (L-659′066) on sedation, heart rate and gut motility in horses sedated with intravenous (IV) detomidine.Study designExperimental randomized blinded crossover study.AnimalsSix healthy horses.MethodsDetomidine (10 μg kg?1 IV) was administered alone (DET) and in combination with MK-467 (250 μg kg?1 IV; DET + MK). The level of sedation and intestinal sounds were scored. Heart rate (HR) and central venous pressure (CVP) were measured. Blood was collected to determine plasma drug concentrations. Repeated measures anova was used for HR, CVP and intestinal sounds, and the Student's t-test for pairwise comparisons between treatments for the area under the time-sedation curve (AUCsed) and pharmacokinetic parameters. Significance was set at p < 0.05.ResultsA significant reduction in HR was detected after DET, and HR was significantly higher after DET + MK than DET alone. No heart blocks were detected in any DET + MK treated horses. DET + MK attenuated the early increase in CVP detected after DET, but later the CVP decreased with both treatments. Detomidine-induced intestinal hypomotility was prevented by MK-467. AUCsed was significantly higher with DET than DET + MK, but maximal sedations scores did not differ significantly between treatments. MK-467 lowered the AUC of the plasma concentration of detomidine, and increased its volume of distribution and clearance.Conclusions and clinical relevanceMK-467 prevented detomidine induced bradycardia and intestinal hypomotility. MK-467 did not affect the clinical quality of detomidine-induced sedation, but the duration of the effect was reduced, which may have been caused by the effects of MK-467 on the plasma concentration of detomidine. MK-467 may be useful clinically in the prevention of certain peripheral side effects of detomidine in horses.  相似文献   

8.

Objective

To compare the effects of two balanced anaesthetic protocols (isoflurane–dexmedetomidine versus medetomidine) on sedation, cardiopulmonary function and recovery in horses.

Study design

Prospective, blinded, randomized clinical study.

Animals

Sixty healthy adult warm blood horses undergoing elective surgery.

Methods

Thirty horses each were sedated with dexmedetomidine 3.5 μg kg?1 (group DEX) or medetomidine 7 μg kg?1 (group MED) intravenously. After assessing and supplementing sedation if necessary, anaesthesia was induced with ketamine/diazepam and maintained with isoflurane in oxygen/air and dexmedetomidine 1.75 μg kg?1 hour?1 or medetomidine 3.5 μg kg?1 hour?1. Ringer's lactate (7–10 mL kg?1 hour?1) and dobutamine were administered to maintain normotension. Controlled mechanical ventilation maintained end-tidal expired carbon dioxide pressures at 40–50 mmHg (5.3–6.7 kPa). Heart rate, invasive arterial blood pressure, inspired and expired gas composition and arterial blood gases were measured. Dexmedetomidine 1 μg kg?1 or medetomidine 2 μg kg?1 was administered for timed and scored recovery phase. Data were analysed using two-way repeated-measures analysis of variance and chi-square test. Significance was considered when p  0.05.

Results

In group DEX, significantly more horses (n = 18) did not fulfil the sedation criteria prior to induction and received one or more supplemental doses, whereas in group MED only two horses needed one additional bolus. Median (range) total sedation doses were dexmedetomidine 4 (4–9) μg kg?1 or medetomidine 7 (7–9) μg kg?1. During general anaesthesia, cardiopulmonary parameters did not differ significantly between groups. Recovery scores in group DEX were significantly better than in group MED.

Conclusions and clinical relevance

Horses administered dexmedetomidine required more than 50% of the medetomidine dose to reach equivalent sedation. During isoflurane anaesthesia, cardiopulmonary function was comparable between the two groups. Recovery scores following dexmedetomidine were better compared to medetomidine.  相似文献   

9.
ObjectiveTo assess as premedicants, the sedative, cardiorespiratory and propofol-sparing effects in dogs of dexmedetomidine and buprenorphine compared to acepromazine and buprenorphine.Study designProspective, randomised, blinded clinical studyAnimalsSixty healthy dogs (ASA grades I/II). Mean (SD) body mass 28.0 ± 9.1 kg, and mean age 3.4 ± 2.3 years.MethodsDogs were allocated randomly to receive 15 μg kg?1 buprenorphine combined with either 30 μg kg?1 acepromazine (group 1), 62.5 μg m?2 dexmedetomidine (group 2), or 125 μg m?2 dexmedetomidine (group 3) intramuscularly. After 30 minutes, anaesthesia was induced using a propofol target controlled infusion. Heart rate, respiratory rate, and oscillometric arterial blood pressure were recorded prior to induction, at endotracheal intubation and at 3 and 5 minutes post-intubation. Induction quality and pre-induction sedation were scored on 4 point scales. Propofol target required for endotracheal intubation was recorded. Data were analysed using Chi-squared tests, Kruskal-Wallis, one way and general linear model anova (p < 0.05).ResultsAge was significantly lower in group 1 (1.0 (1.0–3.8) years) than group 2 (5.0 (2.0–7.0) years), (median, (IQR)). There were no significant differences in sedation or quality of induction between groups. After premedication, heart rate was significantly lower and arterial blood pressures higher in groups 2 and 3 than group 1, but there was no significant difference between groups 2 and 3. Propofol targets were significantly lower in group 3 (1.5 (1.0–2.5) μg mL?1) than group 1 (2.5 (2.0–3.0) μg mL?1); no significant differences existed between group 2 (2.0 (1.5–2.5) μg mL?1) and the other groups (median, (interquartile range)).Conclusions and Clinical relevanceWhen administered with buprenorphine, at these doses, dexmedetomidine had no advantages in terms of sedation and induction quality over acepromazine. Both doses of dexmedetomidine produced characteristic cardiovascular and respiratory effects of a similar magnitude.  相似文献   

10.
11.
ObjectiveTo investigate the influence of a dexmedetomidine constant rate infusion (CRI) in horses anaesthetized with isoflurane.Study designProspective, randomized, blinded, clinical study.AnimalsForty adult healthy horses (weight mean 491 ± SD 102 kg) undergoing elective surgery.MethodsAfter sedation [dexmedetomidine, 3.5 μg kg?1 intravenously (IV)] and induction IV (midazolam 0.06 mg kg?1, ketamine 2.2 mg kg?1), anaesthesia was maintained with isoflurane in oxygen/air (FiO2 55–60%). Horses were ventilated and dobutamine was administered when hypoventilation [arterial partial pressure of CO2 > 8.00 kPa (60 mmHg)] and hypotension [arterial pressure 70 mmHg] occurred respectively. During anaesthesia, horses were randomly allocated to receive a CRI of dexmedetomidine (1.75 μg kg?1 hour?1) (D) or saline (S). Monitoring included end-tidal isoflurane concentration, cardiopulmonary parameters, and need for dobutamine and additional ketamine. All horses received 0.875 μg kg?1 dexmedetomidine IV for the recovery period. Age and weight of the horses, duration of anaesthesia, additional ketamine and dobutamine, cardiopulmonary data (anova), recovery scores (Wilcoxon Rank Sum Test), duration of recovery (t-test) and attempts to stand (Mann–Whitney test) were compared between groups. Significance was set at p < 0.05.ResultsHeart rate and arterial partial pressure of oxygen were significantly lower in group D compared to group S. An interaction between treatment and time was present for cardiac index, oxygen delivery index and systemic vascular resistance. End-tidal isoflurane concentration and heart rate significantly increased over time. Packed cell volume, systolic, diastolic and mean arterial pressure, arterial oxygen content, stroke volume index and systemic vascular resistance significantly decreased over time. Recovery scores were significantly better in group D, with fewer attempts to stand and significantly longer times to sternal position and first attempt to stand.Conclusions and clinical relevance A dexmedetomidine CRI produced limited cardiopulmonary effects, but significantly improved recovery quality.  相似文献   

12.
ObjectiveTo compare the effects of a constant rate infusion (CRI) of dexmedetomidine and morphine to those of morphine alone on the minimum end-tidal sevoflurane concentration necessary to prevent movement (MACNM) in ponies.Study designProspective, randomized, crossover, ‘blinded’, experimental study.AnimalsFive healthy adult gelding ponies were anaesthetized twice with a 3-week washout period.MethodsAfter induction of anaesthesia with sevoflurane in oxygen (via nasotracheal tube), the ponies were positioned on a surgical table (T0), and anaesthesia was maintained with sevoflurane (Fe‘SEVO 2.5%) in 55% oxygen. Monitoring included pulse oximetry, electrocardiography and measurement of anaesthetic gases, arterial blood pressure and body temperature. The ponies were mechanically ventilated and randomly allocated to receive IV treatment M [morphine 0.15 mg kg?1 (T10-T15) followed by a CRI (0.1 mg kg?1 hour?1)] or treatment DM [dexmedetomidine 3.5 μg kg?1 plus morphine 0.15 mg kg?1 (T10-T15) followed by a CRI of dexmedetomidine 1.75 μg kg?1 hour?1 and morphine 0.1 mg kg?1 hour?1]. At T60, a stepwise MACNM determination was initiated using constant current electrical stimuli at the skin of the lateral pastern region. Triplicate MACNM estimations were obtained and then averaged in each pony. Wilcoxon signed-rank test was used to detect differences in MAC between treatments (a = 0.05).ResultsSevoflurane-morphine MACNM values (median (range) and mean ± SD) were 2.56 (2.01–4.07) and 2.79 ± 0.73%. The addition of a continuous infusion of dexmedetomidine significantly reduced sevoflurane MACNM values to 0.89 (0.62–1.05) and 0.89 ± 0.22% (mean MACNM reduction 67 ± 11%).Conclusion and clinical relevanceCo-administration of dexmedetomidine and morphine CRIs significantly reduced the MACNM of sevoflurane compared with a CRI of morphine alone at the reported doses.  相似文献   

13.
ObjectiveTo evaluate the sedative, analgesic and recovery characteristics of two subanaesthetic ketamine doses in combination with dexmedetomidine and methadone for intramuscular sedation in healthy Beagles.Study designRandomized, blinded, crossover, experimental study.AnimalsSix healthy adult Beagles.MethodsDogs were randomly given three treatments: dexmedetomidine (3 μg kg–1) and methadone (0.3 mg kg–1) combined with ketamine at 1 and 2 mg kg–1 (K1 and K2, respectively) or saline (K0), intramuscularly. Sedation score, response to tail clamping and rectal temperature were recorded at baseline, 5, 15, 25, 35, and 45 minutes posttreatment. Pulse rate (PR), respiratory rate, oxygen haemoglobin saturation and noninvasive blood pressure were also recorded at baseline and every 5 minutes until 45 minutes posttreatment. Onset and duration of recumbency, response to venous catheterization and recovery quality were also assessed. Sedation and physiological variables were compared between treatments and within treatments compared to baseline (analysis of variance). Nonparametric data were analysed with the Friedman and Cochran’s Q tests; p < 0.050.ResultsIncreased sedation was found at 15 (K0 and K1), 25 (all treatments) and 35 (K1) minutes compared with baseline. Sedation score, onset (3–12 minutes) and duration of recumbency (29–51 minutes) were similar between treatments. Recovery quality was considered acceptable in all cases. Response to tail clamping was inconsistent within treatments with no differences between them. None of the dogs responded to venous catheterization. There were no differences between treatments in physiological variables, except for PR which was higher in K2 than in K0. Oxygen supplementation was required in five and three dogs administered saline and ketamine, respectively.Conclusions and clinical relevanceThe addition of 1 or 2 mg kg–1 of ketamine to methadone and dexmedetomidine combination did not enhance sedation or antinociception in healthy dogs. Recovery quality was unaffected.  相似文献   

14.
ObjectiveTo compare the sedative and clinical effects of intravenous (IV) administration of dexmedetomidine and xylazine in dromedary calves.Study designExperimental, crossover, randomized, blinded study.AnimalsA total of seven healthy male dromedary calves aged 14 ± 2 weeks and weighing 95 ± 5.5 kg.MethodsCalves were assigned three IV treatments: treatment XYL, xylazine (0.2 mg kg−1); treatment DEX, dexmedetomidine (5 μg kg−1); and control treatment, normal saline (0.01 mL kg−1). Sedation scores, heart rate (HR), respiratory rate (fR), rectal temperature (RT) and ruminal motility were recorded before (baseline) and after drug administration. Sedation signs were scored using a 4-point scale. One-way anova and Mann–Whitney U tests were used for data analysis.ResultsCalves in treatments XYL and DEX were sedated at 5–60 minutes. Sedation had waned in XYL calves, but not DEX calves, at 60 minutes (p = 0.037). Sedation was not present in calves of any treatment at 90 minutes. HR decreased from baseline in XYL and DEX at 5–90 minutes after drug administration and was lower in DEX than XYL at 5 minutes (p = 0.017). HR was lower in DEX (p = 0.001) and XYL (p = 0.013) than in control treatment at 90 minutes. fR decreased from baseline in XYL and DEX at 5–60 minutes after drug administration and was lower in DEX than XYL at 5 minutes (p = 0.013). RT was unchanged in any treatment over 120 minutes. Ruminal motility was decreased in XYL at 5, 90 and 120 minutes and absent at 10–60 minutes. Motility was decreased in DEX at 5, 10 and 120 minutes and was absent at 15–90 minutes.Conclusion and clinical relevanceThe duration of sedation from dexmedetomidine (5 μg kg–1) and xylazine (0.2 mg kg–1) was similar in dromedary calves.  相似文献   

15.
ObjectiveTo document the effects of two doses of dexmedetomidine on the induction characteristics and dose requirements of alfaxalone.Study designRandomized controlled clinical trial.AnimalsSixty one client owned dogs, status ASA I-II.MethodsDogs were allocated randomly into three groups, receiving as pre-anaesthetic medication, no dexmedetomidine (D0), 1 μg kg?1 dexmedetomidine (D1) intramuscularly (IM) or 3 μg kg?1 dexmedetomidine IM (D3). All dogs also received 0.2 mg kg?1 methadone IM. Level of sedation was assessed prior to induction of anaesthesia. Induction of general anaesthesia was performed with alfaxalone administered intravenously to effect at a rate of 1 mg kg?1 minute?1; the required dose to achieve tracheal intubation was recorded. Anaesthesia was maintained with isoflurane in oxygen. Cardiopulmonary parameters were recorded throughout the anaesthetic period. Quality of intubation, induction and recovery of anaesthesia were recorded. Quantitative data were compared with one-way anova or Kruskal-Wallis test. Repeated measures were log-transformed and analysed with repeated measures anova (p < 0.05).ResultsTreatment groups were similar for categorical data, with exception of sedation level (p < 0.001). The doses (mean ± SD) of alfaxalone required for intubation were D0 1.68 ± 0.24, D1 1.60 ± 0.36 and D3 1.41 ± 0.43, the difference between D0 and D3 being statistically significant (p = 0.036). Heart and respiratory rates during the anaesthetic period were significantly different over time and between groups (p < 0.001); systolic arterial blood pressure was significantly different over time (p < 0.001) but not between groups (p = 0.833). Induction quality and recovery scores were similar between groups (p = 1.000 and p = 0.414, respectively).Conclusions and clinical relevanceThe administration of alfaxalone resulted in a good quality anaesthetic induction which was not affected by the dose of dexmedetomidine. Dexmedetomidine at 3 μg kg?1 IM combined with methadone provides good sedation and enables a reduction of alfaxalone requirements.  相似文献   

16.
ObjectiveTo evaluate the sedative effects of two doses of alfaxalone when added to a combination of dexmedetomidine and methadone injected intramuscularly (IM) in healthy Beagles.Study designRandomized, blinded, crossover, experimental study.AnimalsA group of six adult Beagles.MethodsDogs were sedated on three different occasions with IM dexmedetomidine (3 μg kg–1) and methadone (0.3 mg kg–1) combined with two doses of alfaxalone (0.5 and 1 mg kg–1; A0.5 and A1, respectively) or saline (A0). Quality of sedation, response to tail clamping and rectal temperature were recorded at baseline, 5, 15, 25, 35 and 45 minutes. Pulse and respiratory rates, oxygen saturation of haemoglobin (SpO2) and noninvasive blood pressure (NIBP) were recorded every 5 minutes. Onset of sedation and duration of recumbency, response to venous catheterization and recovery quality were assessed. Physiological variables (analysis of variance) were analysed between treatments and within treatments compared with baseline (Student t test). Nonparametric data were analysed using Friedman and Cochran’s Q tests. Significance was p < 0.05.ResultsSedation scores were significantly higher when alfaxalone was co-administered (area under the curve; p = 0.024, A0.5; p = 0.019, A1), with no differences between doses. Onset of sedation was similar, but duration of recumbency was longer in A0.5 than in A0 [median (minimum–maximum), 43 (35–54) versus 30 (20–47) minutes, p = 0.018], but not in A1. Response to venous catheterization and tail clamping, and quality of recovery (acceptable) presented no differences between treatments. A decrease in all physiological variables (compared with baseline) was observed, except for NIBP, with no differences between treatments. All dogs required oxygen supplementation due to reduced SpO2.Conclusions and clinical relevanceAdding alfaxalone to methadone and dexmedetomidine enhanced sedation and duration of recumbency. Although cardiopulmonary depression was limited, oxygen supplementation is advisable.  相似文献   

17.
ObjectiveTo evaluate the postoperative analgesic effects of a constant rate infusion (CRI) of either fentanyl (FENT), lidocaine (LIDO), ketamine (KET), dexmedetomidine (DEX), or the combination lidocaine-ketamine-dexmedetomidine (LKD) in dogs.Study designRandomized, prospective, blinded, clinical study.AnimalsFifty-four dogs.MethodsAnesthesia was induced with propofol and maintained with isoflurane. Treatments were intravenous (IV) administration of a bolus at start of anesthesia, followed by an IV CRI until the end of anesthesia, then a CRI at a decreased dose for a further 4 hours: CONTROL/BUT (butorphanol 0.4 mg kg−1, infusion rate of saline 0.9% 2 mLkg−1 hour−1); FENT (5 μg kg−1, 10 μg kg−1hour−1, then 2.5 μg kg−1 hour−1); KET (1 mgkg−1, 40 μg kg−1 minute−1, then 10 μg kg−1minute−1); LIDO (2 mg kg−1, 100 μg kg−1 minute−1, then 25 μg kg−1 minute−1); DEX (1 μgkg−1, 3 μg kg−1 hour−1, then 1 μg kg−1 hour−1); or a combination of LKD at the aforementioned doses. Postoperative analgesia was evaluated using the Glasgow composite pain scale, University of Melbourne pain scale, and numerical rating scale. Rescue analgesia was morphine and carprofen. Data were analyzed using Friedman or Kruskal–Wallis test with appropriate post-hoc testing (p < 0.05).ResultsAnimals requiring rescue analgesia included CONTROL/BUT (n = 8), KET (n = 3), DEX (n = 2), and LIDO (n = 2); significantly higher in CONTROL/BUT than other groups. No dogs in LKD and FENT groups received rescue analgesia. CONTROL/BUT pain scores were significantly higher at 1 hour than FENT, DEX and LKD, but not than KET or LIDO. Fentanyl and LKD sedation scores were higher than CONTROL/BUT at 1 hour.Conclusions and clinical relevanceLKD and FENT resulted in adequate postoperative analgesia. LIDO, CONTROL/BUT, KET and DEX may not be effective for treatment of postoperative pain in dogs undergoing ovariohysterectomy.  相似文献   

18.
ObjectiveTo determine if buprenorphine plus dexmedetomidine administered via the oral transmucosal route produces sufficient sedation in cats so that students can insert intravenous catheters.Study DesignProspective, randomized, blinded, clinical trial.AnimalsEighty‐seven shelter‐owned female cats aged 4–48 months, weighing 1.1–4.9 kg.MethodsCats were randomly allocated to two treatment groups based on route of drug administration: oral transmucosal (OTM), or intramuscular (IM). Buprenorphine (20 μg kg?1) plus dexmedetomidine (20 μg kg?1) were administered as pre‐medicants via one of these two routes. Prior to and 20 minutes after drug administration, heart and respiratory rates, systolic arterial pressure, and posture were measured and recorded. Twenty minutes after drug administration the same variables plus each cat’s response to clipper sound, clipping, and restraint were recorded; higher scores indicated more sedation.ResultsThere were no significant differences between the two groups prior to pre‐medication. Within each treatment group heart rate was significantly lower 20 minutes after treatment, but it did not differ significantly between the two groups. Twenty minutes after treatment, respiratory rate was significantly less in the OTM group, but did not differ significantly between the two groups. Systolic arterial pressure did not differ within or between the two groups at either time. Scores for posture increased significantly within both groups, and cats in the IM group had higher scores after treatment. Twenty minutes after treatment, cats in the IM group had higher scores for clipping and restraint than OTM cats. Ketamine (IM) was necessary to facilitate catheterization in 25% and 16% of cats in the OTM and IM groups, respectively, but this was not significantly different.Conclusions and clinical relevanceAdministration of dexmedetomidine plus buprenorphine by the OTM route is easy to perform, but produces less sedation than the IM route for IV catheterization in cats.  相似文献   

19.
ObjectiveTo compare the clinical usefulness of constant rate infusion (CRI) protocols of romifidine with or without butorphanol for sedation of horses.Study designProspective ‘blinded’ controlled trial using block randomization.AnimalsForty healthy Freiberger stallions.MethodsThe horses received either intravenous (IV) romifidine (loading dose: 80 μg kg?1; infusion: 30 μg kg?1 hour?1) (treatment R, n = 20) or romifidine combined with butorphanol (romifidine loading: 80 μg kg?1; infusion: 29 μg kg?1 hour?1, and butorphanol loading: 18 μg kg?1; infusion: 25 μg kg?1 hour?1) (treatment RB, n = 20). Twenty-one horses underwent dentistry and ophthalmic procedures, while 19 horses underwent only ophthalmologic procedure and buccal examination. During the procedure, physiologic parameters and occurrence of head/muzzle shaking or twitching and forward movement were recorded. Whenever sedation was insufficient, additional romifidine (20 μg kg?1) was administered IV. Recovery time was evaluated by assessing head height above ground. At the end of the procedure, overall quality of sedation for the procedure was scored by the dentist and anaesthetist using a visual analogue scale. Statistical analyses used two-way anova or linear mixed models as relevant.ResultsSedation quality scores as assessed by the anaesthetist were R: median 7.55, range: 4.9–9.0 cm, RB: 8.8, 4.7–10.0 cm, and by the dentist R: 6.6, 3.0–8.2 cm, RB: 7.9, 6.6–8.8 cm. Horses receiving RB showed clinically more effective sedation as demonstrated by fewer poor scores and a tendency to reduced additional drug requirements. More horses showed forward movement and head shaking in treatment RB than treatment R. Three horses (two RB, one R) had symptoms of colic following sedation.Conclusions and clinical relevanceThe described protocols provide effective sedation under clinical conditions but for dentistry procedures, the addition of butorphanol is advantageous.  相似文献   

20.
ObjectiveTo compare the haemodynamic effects of three premedicant regimens during propofol-induced isoflurane anaesthesia.Study designProspective, randomized cross-over study.AnimalsEight healthy purpose-bred beagles aged 4 years and weighing mean 13.6 ± SD 1.9 kg.MethodsThe dogs were instrumented whilst under isoflurane anaesthesia prior to each experiment, then allowed to recover for 60 minutes. Each dog was treated with three different premedications given intravenously (IV): medetomidine 10 μg kg?1 (MED), medetomidine 10 μg kg?1 with MK-467 250 μg kg?1 (MMK), or acepromazine 0.01 mg kg?1 with butorphanol 0.3 mg kg?1 (AB). Anaesthesia was induced 20 minutes later with propofol and maintained with isoflurane in oxygen for 60 minutes. Heart rate (HR), cardiac output, arterial blood pressures (ABP), central venous pressure (CVP), respiratory rate, inspired oxygen fraction, rectal temperature (RT) and bispectral index (BIS) were measured and arterial and venous blood gases analyzed. Cardiac index (CI), systemic vascular resistance index (SVRI), oxygen delivery index (DO2I), systemic oxygen consumption index (VO2I) and oxygen extraction (EO2) were calculated. Times to extubation, righting, sternal recumbency and walking were recorded. The differences between treatment groups were evaluated with repeated measures analysis of covariance.ResultsHR, CI, DO2I and BIS were significantly lower with MED than with MMK. ABP, CVP, SVRI, EO2, RT and arterial lactate were significantly higher with MED than with MMK and AB. HR and ABP were significantly higher with MMK than with AB. However, CVP, CI, SVRI, DO2I, VO2I, EO2, T, BIS and blood lactate did not differ significantly between MMK and AB. The times to extubation, righting, sternal recumbency and walking were significantly shorter with MMK than with MED and AB.Conclusions and clinical relevanceMK-467 attenuates certain cardiovascular effects of medetomidine in dogs anaesthetized with isoflurane. The cardiovascular effects of MMK are very similar to those of AB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号