首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectiveTo compare the cardiovascular effects of four epidural treatments in isoflurane anaesthetised dogs.Study designProspective, randomized. experimental study.AnimalsSix female, neutered Beagle dogs (13.3 ± 1.0 kg), aged 3.6 ± 0.1 years.MethodsAnaesthesia was induced with propofol (8.3 ± 1.1 mg kg?1) and maintained with isoflurane in a mixture of oxygen and air [inspiratory fraction of oxygen (FiO2) = 40%], using intermittent positive pressure ventilation. Using a cross-over model, NaCl 0.9% (P); methadone 1% 0.1 mg kg?1 (M); ropivacaine 0.75% 1.65 mg kg?1 (R) or methadone 1% 0.1 mg kg?1 + ropivacaine 0.75% 1.65 mg kg?1 (RM) in equal volumes (0.23 mL kg?1) using NaCl 0.9%, was administered epidurally at the level of the lumbosacral space. Treatment P was administered to five dogs only. Cardiovascular and respiratory variables, blood gases, and oesophageal temperature were recorded at T-15 and for 60 minutes after epidural injection (T0).ResultsMean overall heart rate (HR in beats minute?1) was significantly lower after treatment M (119 ± 16) (p = 0.0019), R (110 ± 18) (p < 0.0001) and RM (109 ± 13) (p < 0.0001), compared to treatment P (135 ± 21). Additionally, a significant difference in HR between treatments RM and M was found (p = 0.04). After both ropivacaine treatments, systemic arterial pressures (sAP) were significantly lower compared to other treatments. No significant overall differences between treatments were present for central venous pressure, cardiac output, stroke volume, systemic vascular resistance, oxygen delivery and arterial oxygen content (CaO2). Heart rate and sAP significantly increased after treatment P and M compared to baseline (T-15). With all treatments significant reductions from baseline were observed in oesophageal temperature, packed cell volume and CaO2. A transient unilateral Horner’s syndrome occurred in one dog after treatment R.Conclusions and clinical relevanceClinically important low sAPs were observed after the ropivacaine epidural treatments in isoflurane anaesthetised dogs. Systemic arterial pressures were clinically acceptable when using epidural methadone.  相似文献   

2.
ObjectiveTo compare, versus a control, the sensory, sympathetic and motor blockade of lidocaine 1% and 2% administered epidurally in bitches undergoing ovariohysterectomy.Study designRandomized, blinded, controlled clinical trial.AnimalsA total of 24 mixed-breed intact female dogs.MethodsAll dogs were administered dexmedetomidine, tramadol and meloxicam prior to general anesthesia with midazolam–propofol and isoflurane. Animals were randomly assigned for an epidural injection of lidocaine 1% (0.4 mL kg−1; group L1), lidocaine 2% (0.4 mL kg−1; group L2) or no injection (group CONTROL). Heart rate (HR), respiratory rate (fR), end-tidal partial pressure of carbon dioxide (Pe′CO2), and invasive systolic (SAP), mean (MAP) and diastolic (DAP) arterial pressures were recorded every 5 minutes. Increases in physiological variables were treated with fentanyl (3 μg kg−1) intravenously (IV). Phenylephrine (1 μg kg−1) was administered IV when MAP was <60 mmHg. Postoperative pain [Glasgow Composite Pain Score – Short Form (GCPS–SF)] and return of normal ambulation were recorded at 1, 2, 3, 4 and 6 hours after extubation.ResultsThere were no differences over time or among groups for HR, fR, Pe′CO2 and SAP. MAP and DAP were lower in epidural groups than in CONTROL (p = 0.0146 and 0.0047, respectively). There was no difference in the use of phenylephrine boluses. More fentanyl was administered in CONTROL than in L1 and L2 (p = 0.011). GCPS–SF was lower for L2 than for CONTROL, and lower in L1 than in both other groups (p = 0.001). Time to ambulation was 2 (1–2) hours in L1 and 3 (2–4) hours in L2 (p = 0.004).Conclusions and clinical relevanceEpidural administration of lidocaine (0.4 mL kg−1) reduced fentanyl requirements and lowered MAP and DAP. Time to ambulation decreased and postoperative pain scores were improved by use of 1% lidocaine compared with 2% lidocaine.  相似文献   

3.
ObjectiveTo assess the effect of morphine on the bispectral index (BIS) in dogs during isoflurane anesthesia maintained at a constant end–tidal concentration.Study designProspective, randomized, experimental trial.AnimalsEight adult Beagle dogs, weighing between 7.1 and 9.8 kg.MethodsAnesthesia was induced with isoflurane via a face mask. Dog's tracheas were intubated and anesthesia maintained with isoflurane at a constant end–tidal concentration (e′Iso) of 1.81% for a 30–minute equilibration period. Pulmonary ventilation was controlled to normocapnia. After equilibration, baseline values were recorded prior to intravenous administration of morphine sulfate (0.5 mg kg?1) (MT) or an equal volume of saline (CT). Measurements for heart rate, systolic, diastolic and mean arterial pressure (SAP, DAP and MAP) were recorded at 10, 20, 30, 45, 60, 75, 90, 105 and 120 minutes after treatment. Bispectral index was recorded every 10 seconds for 3 minutes for each time measurement. Venous blood samples were collected at baseline, 10, 20, 30, 45, 60 and 120 minutes for determination of morphine serum concentrations. Anesthesia was discontinued after the last measurement and dogs were allowed to recover.ResultsBaseline BIS for MT and CT at 1.81%e′Iso were 63 ± 10 and 58 ± 9, respectively. Bispectral index in MT was 4–8% lower at 20, 75, 90 and 105 minutes compared with CT. There were no differences in BIS between baseline and any subsequent measurement within either MT or CT. Heart rate, SAP, MAP, and DAP decreased after morphine administration.Conclusion and clinical relevanceIntravenous administration of 0.5 mg kg?1 morphine sulfate did not cause clinically significant changes in the BIS of unstimulated dogs during isoflurane anesthesia at an e′Iso of 1.81%.  相似文献   

4.
ObjectiveTo investigate the epidural administration of combinations of ropivacaine, morphine and xylazine in bitches undergoing unilateral mastectomy.Study designProspective, randomized, blinded, clinical study.AnimalsA total of 22 bitches scheduled to undergo unilateral mastectomy for mammary tumor excision.MethodsDogs were anesthetized with acepromazine (0.02 mg kg–1) and morphine (0.3 mg kg–1) intramuscularly, propofol intravenously (IV) and isoflurane. Prior to the beginning of surgery, dogs were randomly administered one of three epidural treatments: ropivacaine (0.75 mg kg–1) with morphine (0.1 mg kg–1) (group RM, n = 7); ropivacaine with xylazine (0.1 mg kg–1) (group RX, n = 8); or ropivacaine with morphine and xylazine (group RMX, n = 7). Cardiopulmonary variables and the expired concentration of isoflurane (Fe′Iso) were recorded intraoperatively. Meloxicam (0.1 mg kg–1) was administered IV during skin closure. Postoperative pain scores were evaluated with the Glasgow composite measure pain scale short form for 24 hours, and rescue analgesia with morphine (0.5 mg kg–1) was administered intramuscularly when pain scores were ≥ 6/24.ResultsFe′Iso was significantly higher in group RM than in groups RX and RMX. Heart rate decreased significantly in groups RX and RMX, but blood pressure remained within acceptable values. The number of dogs administered rescue analgesia within 24 hours was significantly higher in group RX (seven dogs, 87.5%) than in groups RM (one dog, 14.3%; p = 0.01) and RMX (two dogs, 28.6%; p = 0.04). Time to standing was significantly longer in group RX than in group RM.Conclusions and clinical relevanceAll epidural treatments provided adequate antinociception with minimal cardiovascular adverse effects during mastectomy. The inclusion of morphine (groups RM and RMX) provided the best postoperative analgesia. Owing to the undesirable effect of xylazine on ambulation, the combination ropivacaine–morphine appeared to provide greater benefits in bitches undergoing unilateral mastectomy.  相似文献   

5.
ObjectiveTo investigate the clinical efficacy of four analgesia protocols in dogs undergoing tibial tuberosity advancement (TTA).Study designProspective, randomized, blinded study.AnimalsThirty-two client owned dogs undergoing TTA-surgery.MethodsDogs (n= 8 per treatment) received an oral placebo (PM and PRM) or tepoxalin (10 mg kg?1) tablet (TM and TRM) once daily for 1 week before surgery. Epidural methadone (0.1 mg kg?1) (PM and TM) or the epidural combination methadone (0.1 mg kg?1)/ropivacaine 0.75% (1.65 mg kg?1) (PRM and TRM) was administered after induction of anaesthesia. Intra-operative fentanyl requirements (2 μg kg?1 IV) and end-tidal isoflurane concentration after 60 minutes of anaesthesia (Fe′ISO60) were recorded. Post-operative analgesia was evaluated hourly from 1 to 8 and at 20 hours post-extubation with a visual analogue scale (VAS) and the University of Melbourne Pain Scale (UMPS). If VAS > 50 and/or UMPS > 10, rescue methadone (0.1 mg kg?1) was administered IV. Analgesic duration (time from epidural until post-operative rescue analgesia) and time to standing were recorded. Normally distributed variables were analysed with an F-test (α = 0.05) or t-test for pairwise inter-treatment comparisons (Bonferonni adjusted α = 0.0083). Non-normally distributed data were analysed with the Kruskall–Wallis test (α = 0.05 or Bonferonni adjusted α = 0.005 for inter-treatment comparison of post-operative pain scores).ResultsMore intra-operative analgesia interventions were required in PM [2 (0–11)] [median (range)] and TM [2 (1–2)] compared to PRM (0) and TRM (0). Fe′ISO60 was significantly lower in (PRM + TRM) compared to (PM + TM). Analgesic duration was shorter in PM (459 ± 276 minutes) (mean ± SD) and TM (318 ± 152 minutes) compared to TRM (853 ± 288 minutes), but not to PRM (554 ± 234 minutes). Times to standing were longer in the ropivacaine treatments compared to TM.Conclusions and clinical relevanceInclusion of epidural ropivacaine resulted in reduction of Fe′ISO60, avoidance of intra-operative fentanyl administration, a longer duration of post-operative analgesia (in TRM) and a delay in time to standing compared to TM.  相似文献   

6.

Objective

To determine the cardiovascular and acid-base effects of 6% hydroxyethyl starch (HES) 130/0.4 and 0.9% sodium chloride (NaCl) administered to anaesthetized greyhounds with haemorrhagic shock.

Study design

Prospective, experimental, complete randomized block design.

Animals

Twelve healthy adult greyhounds.

Methods

After 60 minutes of isoflurane anaesthesia, 48 mL kg?1 of blood was removed to induce hypotension. Dogs were randomized to receive either 20 mL kg?1 of HES 130/0.4 or 80 mL kg?1 of 0.9% NaCl over 20 minutes. Haemoglobin, arterial and central venous blood gas and electrolytes, lactate, mean arterial pressure (MAP) and cardiac index were measured at: T0, 60 minutes after induction of anaesthesia, immediately prior to blood removal; T1, immediately after blood removal; T2, immediately after fluid administration; and T3, 40 minutes after fluid administration. Oxygen extraction ratio (O2ER) was calculated at each sample time.

Results

O2ER increased at T1 and decreased at T2 and T3, with no difference between the two groups. Dogs administered HES 130/0.4 had higher lactate at T2 [mean (95% confidence interval) 1.3 (0.8–1.9) mmol L?1] than dogs administered 0.9% NaCl [0.8 (0.5–1.1) mmol L?1]; p = 0.045. Dogs administered HES 130/0.4 had a higher MAP at T3 [88 (74–102) mmHg] than dogs administered 0.9% NaCl [69 (60–79) mmHg]; p = 0.019. Dogs administered 0.9% NaCl were more acidaemic at T2 and T3, including higher hydrogen ion, lower bicarbonate, lower base excess and higher chloride concentrations.

Conclusion

and clinical relevance The effect of 20 mL kg?1 of HES 130/0.4 on shock, as measured by O2ER, was no different than that of 80 mL kg?1 of 0.9% NaCl in dogs under general anaesthesia. Acidaemia in the NaCl group is likely attributable to hyperchloraemic metabolic acidosis from the larger volume administered.  相似文献   

7.
ObjectiveTo evaluate medetomidine as a continuous rate infusion (CRI) in horses in which anaesthesia is maintained with isoflurane and CRIs of ketamine and lidocaine.Study designProspective, randomized, blinded clinical trial.AnimalsForty horses undergoing elective surgery.MethodsAfter sedation and induction, anaesthesia was maintained with isoflurane. Mechanical ventilation was employed. All horses received lidocaine (1.5 mg kg?1 initially, then 2 mg kg?1 hour?1) and ketamine (2 mg kg?1 hour?1), both CRIs reducing to 1.5 mg kg?1 hour?1 after 50 minutes. Horses in group MILK received a medetomidine CRI of 3.6 μg kg?1 hour?1, reducing after 50 minutes to 2.75 μg kg?1 hour?1, and horses in group ILK an equal volume of saline. Mean arterial pressure (MAP) was maintained above 70 mmHg using dobutamine. End-tidal concentration of isoflurane (FE′ISO) was adjusted as necessary to maintain surgical anaesthesia. Group ILK received medetomidine (3 μg kg?1) at the end of the procedure. Recovery was evaluated. Differences between groups were analysed using Mann-Whitney, Chi-Square and anova tests as relevant. Significance was taken as p < 0.05.ResultsFE′ISO required to maintain surgical anaesthesia in group MILK decreased with time, becoming significantly less than that in group ILK by 45 minutes. After 60 minutes, median (IQR) FE′ISO in MILK was 0.65 (0.4–1.0) %, and in ILK was 1 (0.62–1.2) %. Physiological parameters did not differ between groups, but group MILK required less dobutamine to support MAP. Total recovery times were similar and recovery quality good in both groups.Conclusion and clinical relevanceA CRI of medetomidine given to horses which were also receiving CRIs of lidocaine and ketamine reduced the concentration of isoflurane necessary to maintain satisfactory anaesthesia for surgery, and reduced the dobutamine required to maintain MAP. No further sedation was required to provide a calm recovery.  相似文献   

8.
ObjectiveTo test if the addition of butorphanol by constant rate infusion (CRI) to medetomidine–isoflurane anaesthesia reduced isoflurane requirements, and influenced cardiopulmonary function and/or recovery characteristics.Study designProspective blinded randomised clinical trial.Animals61 horses undergoing elective surgery.MethodsHorses were sedated with intravenous (IV) medetomidine (7 μg kg?1); anaesthesia was induced with IV ketamine (2.2 mg kg?1) and diazepam (0.02 mg kg?1) and maintained with isoflurane and a CRI of medetomidine (3.5 μg kg?1 hour?1). Group MB (n = 31) received butorphanol CRI (25 μg kg?1 IV bolus then 25 μg kg?1 hour?1); Group M (n = 30) an equal volume of saline. Artificial ventilation maintained end-tidal CO2 in the normal range. Horses received lactated Ringer’s solution 5 mL kg?1 hour?1, dobutamine <1.25 μg kg?1 minute?1 and colloids if required. Inspired and exhaled gases, heart rate and mean arterial blood pressure (MAP) were monitored continuously; pH and arterial blood gases were measured every 30 minutes. Recovery was timed and scored. Data were analyzed using two way repeated measures anova, independent t-tests or Mann–Whitney Rank Sum test (p < 0.05).ResultsThere was no difference between groups with respect to anaesthesia duration, end-tidal isoflurane (MB: mean 1.06 ± SD 0.11, M: 1.05 ± 0.1%), MAP (MB: 88 ± 9, M: 87 ± 7 mmHg), heart rate (MB: 33 ± 6, M: 35 ± 8 beats minute?1), pH, PaO2 (MB: 19.2 ± 6.6, M: 18.2 ± 6.6 kPa) or PaCO2. Recovery times and quality did not differ between groups, but the time to extubation was significantly longer in group MB (26.9 ± 10.9 minutes) than in group M (20.4 ± 9.4 minutes).Conclusion and clinical relevanceButorphanol CRI at the dose used does not decrease isoflurane requirements in horses anaesthetised with medetomidine–isoflurane and has no influence on cardiopulmonary function or recovery.  相似文献   

9.
Objective To compare the cardiopulmonary effects and sensory blockade of epidural bupivacaine and ropivacaine. Study Design Prospective randomized study. Animals Six young adult medium‐sized crossbred dogs weighing 25.7 ± 7.1 kg. Method Dogs were chronically implanted with a lumbosacral epidural catheter. Acepromazine sedated dogs received all treatments: 0.5% bupivacaine at 0.14 mL kg?1 (LB5) or 0.22 mL kg?1 (HB5); 0.5% ropivacaine at 0.14 mL kg?1 (LR5) or 0.22 mL kg?1 (HR5); 0.75% bupivacaine at 0.22 mL kg?1 (HB7.5) or 0.75% ropivacaine at 0.22 mL kg?1 (HR7.5). Loss of sensation was tested at the level of the perineum, hind toe webs, flank, and caudodorsal rib areas before injection, and post‐injection (PI) up to 150 minutes PI. Systemic arterial blood pressure and heart rate were recorded before injection, and every 10 minutes PI until 150 minutes PI. Arterial blood gas analyses were performed prior to injection, and at 30, 60 and 150 minutes PI. Results No statistical differences existed between groups for the cardiopulmonary data or time to onset of block. Group HR7.5 had lower systolic (10–70 minutes PI) and diastolic (10–70 minutes PI) blood pressures and group HR5 had lower mean (10–90 minutes PI) and diastolic (10–90 minutes PI) blood pressures compared to baseline. Heart rate was lower compared to baseline in groups LR5 and HB7.5. A significant, but mild metabolic acidosis developed in groups LR5 and HB7.5 (150 minutes PI). No differences were present for the duration of block between groups, but duration of block in the dorsocaudal rib area was shorter in group HR5 compared to HR7.5. Conclusion Epidural ropivacaine and bupivacaine at the doses used have mild effects on the cardiopulmonary system, and extent of block are similar. Clinical Relevance The 0.75% concentration of bupivacaine and ropivacaine at 0.22 mL kg?1 appeared to contribute to greater success of block (>80%) at dermatomes L5–L7.  相似文献   

10.
ObjectiveTo determine whether dobutamine, norepinephrine or phenylephrine infusions alleviate hypotension in isoflurane-anaesthetized dogs administered dexmedetomidine with vatinoxan.Study designBalanced, randomized crossover trial.AnimalsA total of eight healthy Beagle dogs.MethodsEach dog was anaesthetized with isoflurane (end-tidal isoflurane 1.3%) and five treatments: dexmedetomidine hydrochloride (2.5 μg kg–1) bolus followed by 0.9% saline infusion (DEX-S); dexmedetomidine and vatinoxan hydrochloride (100 μg kg–1) bolus followed by an infusion of 0.9% saline (DEX-VAT-S), dobutamine (DEX-VAT-D), norepinephrine (DEX-VAT-N) or phenylephrine (DEX-VAT-P). The dexmedetomidine and vatinoxan boluses were administered at baseline (T0) and the treatment infusion was started after 15 minutes (T15) if mean arterial pressure (MAP) was < 90 mmHg. The treatment infusion rate was adjusted every 5 minutes as required. Systemic haemodynamics were recorded at T0 and 10 (T10) and 45 (T45) minutes. A repeated measures analysis of covariance model was used.ResultsMost dogs had a MAP < 70 mmHg at T0 before treatment. Treatments DEX-S and DEX-VAT all significantly increased MAP at T10, but systemic vascular resistance index (SVRI) was significantly higher and cardiac index (CI) lower after DEX-S than after DEX-VAT. CI did not significantly differ between DEX-S and DEX-VAT-S at T45, while SVRI remained higher with DEX-S. Normotension was achieved by all vasoactive infusions in every dog, whereas MAP was below baseline with DEX-VAT-S, and higher than baseline with DEX-S at T45. Median infusion rates were 3.75, 0.25 and 0.5 μg kg–1 minute–1 for dobutamine, norepinephrine and phenylephrine, respectively. Dobutamine and norepinephrine increased CI (mean ± standard deviation, 3.35 ± 0.70 and 3.97 ± 1.24 L minute–1 m–2, respectively) and decreased SVRI, whereas phenylephrine had the opposite effect (CI 2.13 ± 0.45 L minute–1 m–2).Conclusions and clinical relevanceHypotension in isoflurane-anaesthetized dogs administered dexmedetomidine and vatinoxan can be treated with either dobutamine or norepinephrine.  相似文献   

11.
ObjectiveTo assess the cardiovascular changes of a continuous rate infusion of lidocaine in calves anesthetized with xylazine, midazolam, ketamine and isoflurane during mechanical ventilation.Study designProspective, randomized, cross-over, experimental trial.AnimalsA total of eight, healthy, male Holstein calves, aged 10 ± 1 months and weighing 114 ± 11 kg were included in the study.MethodsCalves were administered xylazine followed by ketamine and midazolam, orotracheal intubation and maintenance on isoflurane (1.3%) using mechanical ventilation. Forty minutes after induction, lidocaine (2 mg kg?1 bolus) or an equivalent volume of saline (0.9%) was administered IV followed by a continuous rate infusion (100 μg kg?1 minute?1) of lidocaine (treatment L) or saline (treatment C). Heart rate (HR), systolic, diastolic and mean arterial pressures (SAP, DAP and MAP), central venous pressure (CVP), mean pulmonary arterial pressure (mPAP), pulmonary arterial occlusion pressure (PAOP), cardiac output, end-tidal carbon dioxide (Pe’CO2) and core temperature (CT) were recorded before lidocaine or saline administration (Baseline) and at 20-minute intervals (T20-T80). Plasma concentrations of lidocaine were measured in treatment L.ResultsThe HR was significantly lower in treatment L compared with treatment C. There was no difference between the treatments with regards to SAP, DAP, MAP and SVRI. CI was significantly lower at T60 in treatment L when compared with treatment C. PAOP and CVP increased significantly at all times compared with Baseline in treatment L. There was no significant difference between times within each treatment and between treatments with regards to other measured variables. Plasma concentrations of lidocaine ranged from 1.85 to 2.06 μg mL?1 during the CRI.Conclusion and clinical relevanceAt the studied rate, lidocaine causes a decrease in heart rate which is unlikely to be of clinical significance in healthy animals, but could be a concern in compromised animals.  相似文献   

12.
ObjectiveTo determine the cardiovascular effects of a proprietary l-methadone/fenpipramide combination (Polamivet) alone and in addition to acepromazine in dogs.Study designProspective, randomized, experimental crossover study.AnimalsFive adult healthy Beagle dogs (one male and four females, weighing 12.8–16.4 kg).MethodsDogs were instrumented for haemodynamic measurements whilst anaesthetized with isoflurane. Three hours after recovery dogs received 0.025 mg kg?1 acepromazine (AP) or saline (SP) IM followed by 0.5 mg kg?1L-methadone/ 0.025 mg kg?1 fenpipramide IV after 30 minutes. Cardiac output using thermodilution, heart rate, mean arterial pressure (MAP), central venous pressure (CVP), mean pulmonary artery pressure (MPAP), pulmonary artery occlusion pressure (PAOP), haemoglobin concentration, arterial and mixed-venous blood gas analysis were measured and sedation evaluated at baseline (BL), 30 minutes after acepromazine or saline IM (A/S), 5 minutes after L-methadone/fenpipramide IV application (35), every 15 minutes for 1 hour (50, 65, 80, 95 minutes) and every hour until baseline cardiac output was regained. Standard cardiovascular parameters were calculated. Data were analyzed by repeated measures anova and paired t-tests with p < 0.05 considered significant.ResultsBaseline measurements did not differ. Cardiac index decreased after acepromazine administration in treatment AP (p = 0.027), but was not significantly influenced after l-methadone/fenpipramide injection in either treatment. In both treatments heart rate did not change significantly over time. Stroke volume index increased after A/S in both treatments (p = 0.049). Systemic vascular resistance index, MAP, CVP, MPAP, and pulmonary vascular resistance index did not change significantly after either treatment and did not differ between treatments. Dogs were deeply sedated in both treatments with a longer duration in treatment AP.Conclusions and clinical relevanceIn healthy dogs the dose of l-methadone/fenpipramide used in this study alone and in combination with acepromazine induced deep sedation without significant cardiovascular changes.  相似文献   

13.
ObjectiveTo evaluate the isoflurane‐sparing effects of an intravenous (IV) constant rate infusion (CRI) of fentanyl, lidocaine, ketamine, dexmedetomidine, or lidocaine‐ketamine‐dexmedetomidine (LKD) in dogs undergoing ovariohysterectomy.Study designRandomized, prospective, blinded, clinical study.AnimalsFifty four dogs.MethodsAnesthesia was induced with propofol and maintained with isoflurane with one of the following IV treatments: butorphanol/saline (butorphanol 0.4 mg kg?1, saline 0.9% CRI, CONTROL/BUT); fentanyl (5 μg kg?1, 10 μg kg?1 hour?1, FENT); ketamine (1 mg kg?1, 40 μg kg?1 minute?1, KET), lidocaine (2 mg kg?1, 100 μg kg?1 minute?1, LIDO); dexmedetomidine (1 μg kg?1, 3 μg kg?1 hour?1, DEX); or a LKD combination. Positive pressure ventilation maintained eucapnia. An anesthetist unaware of treatment and end‐tidal isoflurane concentration (Fe′Iso) adjusted vaporizer settings to maintain surgical anesthetic depth. Cardiopulmonary variables and Fe′Iso concentrations were monitored. Data were analyzed using anova (p < 0.05).ResultsAt most time points, heart rate (HR) was lower in FENT than in other groups, except for DEX and LKD. Mean arterial blood pressure (MAP) was lower in FENT and CONTROL/BUT than in DEX. Overall mean ± SD Fe′Iso and % reduced isoflurane requirements were 1.01 ± 0.31/41.6% (range, 0.75 ± 0.31/56.6% to 1.12 ± 0.80/35.3%, FENT), 1.37 ± 0.19/20.8% (1.23 ± 0.14/28.9% to 1.51 ± 0.22/12.7%, KET), 1.34 ± 0.19/22.5% (1.24 ± 0.19/28.3% to 1.44 ± 0.21/16.8%, LIDO), 1.30 ± 0.28/24.8% (1.16 ± 0.18/32.9% to 1.43 ± 0.32/17.3%, DEX), 0.95 ± 0.19/54.9% (0.7 ± 0.16/59.5% to 1.12 ± 0.16/35.3%, LKD) and 1.73 ± 0.18/0.0% (1.64 ± 0.21 to 1.82 ± 0.14, CONTROL/BUT) during surgery. FENT and LKD significantly reduced Fe′Iso.Conclusions and clinical relevanceAt the doses administered, FENT and LKD had greater isoflurane‐sparing effect than LIDO, KET or CONTROL/BUT, but not at all times. Low HR during FENT may limit improvement in MAP expected with reduced Fe′Iso.  相似文献   

14.
ObjectiveTo determine the effects of intravenous (IV) magnesium sulphate (MgSO4) as a bolus followed by a constant rate infusion (CRI) on anaesthetic requirements, neuroendocrine stress response to surgery, haemostasis and postoperative analgesia in healthy dogs undergoing ovariohysterectomy.Study designBlinded randomized clinical trial.AnimalsSixteen female dogs.MethodsAfter intramuscular premedication with acepromazine (0.05 mg kg?1) and morphine (0.3 mg kg?1), anaesthesia was induced with diazepam (0.2 mg kg?1) and propofol (2 mg kg?1) intravenously and maintained with isoflurane in oxygen in all dogs. Dogs were randomly assigned to two groups, M and C. Group M received MgSO4 (50 mg kg?1 over 15 minutes, followed by a 15 mg kg?1 hour?1 CRI). Group C received an equivalent bolus and CRI of lactated Ringer's solution. In addition, all dogs received lactated Ringer's solution (10 mL kg?1 over 15 minutes followed by 10 mL kg?1 hour?1). End-tidal isoflurane and carbon dioxide tensions, cardio-respiratory variables, arterial blood gases, electrolytes, ACTH and cortisol concentrations were measured at different time points. Thromboelastography (TEG) was performed pre- and post-anaesthesia. Postoperative pain was evaluated using the short form of the Glasgow Composite Pain Scale. Data were analysed with repeated measures anova and Mann–Whitney U tests (p< 0.05).ResultsNo statistically significant differences between groups were found in any of the measured variables. However, the alpha angle and maximal amplitude recorded by TEG in group M were significantly increased post-anaesthesia, but remained within the reference interval. One dog in Group M and two in Group C received rescue analgesia during recovery.Conclusions and clinical relevanceAs used in this study, MgSO4 failed to decrease isoflurane requirements, postoperative pain and stress hormone concentrations; however, it did not produce any cardio-respiratory or major haemostatic side effects. Administration of intravenous MgSO4 together with an opioid during ovariohysterectomy in dogs does not seem to provide any clinical advantage.  相似文献   

15.
The purpose of this study was to determine the cardiovascular effects of 2.0% end‐tidal isoflurane in dogs administered dexmedetomidine (DEX). Using a randomized crossover design and allowing at least 2 weeks between treatments 12 adult hound dogs of either sex weighing 22 ± 1.7 SD kg were anesthetized by face mask administration of either sevoflurane or isoflurane to facilitate instrumentation prior to administration of treatment drugs. Dogs were intubated and instrumented to enable measurement of heart rate (HR), systolic (SAP), mean (MAP) and diastolic (DAP) arterial pressures, mean pulmonary arterial pressure (PAP), pulmonary capillary wedge pressure (PCWP), central venous pressure (CVP), pulmonary arterial temperature (TEMP), and cardiac output (CO) via thermodilution using 5 mL of 5% dextrose, and recording the average of three replicate measurements. Cardiac index (CI) and systemic (SVR) and pulmonary vascular resistances were calculated. Following completion of instrumentation, dogs were allowed to recover for 40 minutes. After collection of baseline data, dogs were administered one of four treatments at T‐10 minutes prior to injection of DEX (500? g M–2 IM): 1) saline (SAL); 2) atropine [ATR, 0.02 (n = 6) or 0.04 (n = 6) mg kg–1 IM]; 3) ISO (2.0% end tidal concentration); or 4) ISO + ATR. Cardiovascular data were collected at T‐20 and T‐5 minutes prior to administration of DEX, and at 5, 10 , 20, 30, 40, and 60 min following DEX. Data were analyzed using anova for repeated measures with post‐hoc differences between means identified using Bonferroni's method (p < 0.05). Differences in ATR dose were not found to be significant and thus results for ATR dose groups were pooled. Administration of SAL (dexmedetomidine alone) was associated with decreases in HR and CO and increases in SAP, MAP, DAP, CVP, and SVR. Administration of ATR was associated with an increase in HR and CO compared with SAL. Administration of ISO was associated with an increase in HR and a decrease in SVR, MAP and CVP compared with SAL. Administration of ISO + ATR was associated with effects similar to that of ISO or ATR alone. We conclude that administration of ISO reduces the increase in SVR associated with administration of DEX and does not adversely affect CO.  相似文献   

16.
17.

Objectives

To compare the effects of a lidocaine constant rate infusion (CRI) combined with 1% isoflurane versus those of 2% isoflurane alone on cardiovascular variables in anaesthetized horses, and to estimate the sample size required to detect a difference in recovery quality.

Study design

Prospective, randomized, blinded, crossover study.

Animals

Twelve healthy experimental horses.

Methods

Horses were anaesthetized twice using an intravenous (IV) administration of acepromazine, romifidine, diazepam and ketamine. Horses were placed in dorsal recumbency and ventilated mechanically. During the first 10 minutes (P1), anaesthesia was maintained with a 2% inspired isoflurane fraction (FIIso). During the following 20 minutes (P2), horses received IV lidocaine (1.5 mg kg?1) (group IL) or saline (group I). During the last 60 minutes (P3), group IL received a lidocaine CRI (50 μg kg?1 minute?1 IV) and FIIso 1%, whereas group I received a saline CRI and FIIso 2%. Three weeks later, the horses received the alternative treatment. Painful stimuli were induced by introducing an 18 gauge needle intramuscularly. Ketamine and dobutamine requirements and physiological variables were recorded. Recoveries were assessed by two anaesthetists unaware of the treatment. Lidocaine plasma concentrations were measured during recovery. Data were analysed with anova.

Results

During P3, group IL had a lower heart rate (p = 0.002), higher mean arterial pressure (p < 0.001) and lower dobutamine requirement (p < 0.001) than group I. One horse had lidocaine plasma concentrations above toxic levels. Recoveries did not differ significantly between groups. Sample sizes of 208 horses in each group would be necessary to detect a statistically significant difference (85% statistical power) in recovery quality.

Conclusions and clinical relevance

A lidocaine CRI combined with FIIso 1% rather than FIIso 2% alone may improve cardiovascular variables in healthy anaesthetized horses.  相似文献   

18.
ObjectiveTo evaluate the systemic cardiovascular effects of dose escalating administration of norepinephrine in healthy dogs anesthetized with isoflurane.Study designExperimental study.AnimalsA total of six adult laboratory Beagle dogs, 10.5 (9.2–12.0) kg [median (range)].MethodsEach dog was anesthetized with isoflurane at an end-tidal concentration of 1.7%, mechanically ventilated and administered a continuous rate infusion of rocuronium (0.5 mg kg–1 hour–1). Each dog was administered incremental dose rates of norepinephrine (0.05, 0.125, 0.25, 0.5, 1.0 and 2.0 μg kg–1 minute–1), and each dose was infused for 15 minutes. Cardiovascular variables were recorded before administration and at the end of each infusion period.ResultsNorepinephrine infusion increased mean arterial pressure (MAP), cardiac output (CO) and oxygen delivery in a dose-dependent manner. Systemic vascular resistance did not significantly change during the experiment. Stroke volume increased at the lower dose rates and heart rate increased at the higher dose rates. Oxygen consumption and lactate concentrations did not significantly change during infusions.ConclusionsIn dogs anesthetized with isoflurane, norepinephrine increased MAP by increasing the CO. CO increased with a change in stroke volume at lower dose rates of norepinephrine. At higher dosage, heart rate also contributed to an increase in CO. Norepinephrine did not cause excessive vasoconstriction that interfered with the CO during this study.Clinical relevanceNorepinephrine can be useful for treating hypotension in dogs anesthetized with isoflurane.  相似文献   

19.
ObjectiveTo determine if general anaesthesia influences the intravenous (IV) pharmacokinetics (PK) of acetaminophen in dogs.Study designProspective, crossover, randomized experimental study.AnimalsA group of nine healthy Beagle dogs.MethodsAcetaminophen PK were determined in conscious and anaesthetized dogs on two separate occasions. Blood samples were collected before, and at 5, 10, 15, 30, 45, 60 and 90 minutes and 2, 3, 4, 6, 8, 12 and 24 hours after 20 mg kg–1 IV acetaminophen administration. Haematocrit, total proteins, albumin, alanine aminotransferase, aspartate aminotransferase, urea and creatinine were determined at baseline and 24 hours after acetaminophen. The anaesthetized group underwent general anaesthesia (90 minutes) for dental cleaning. After the administration of dexmedetomidine (3 μg kg–1) intramuscularly, anaesthesia was induced with propofol (2–3 mg kg–1) IV, followed by acetaminophen administration. Anaesthesia was maintained with isoflurane in 50% oxygen (Fe′Iso 1.3–1.5%). Dogs were mechanically ventilated. Plasma concentrations were analysed with high-performance liquid chromatography. PK analysis was undertaken using compartmental modelling. A Wilcoxon test was used to compare PK data between groups, and clinical laboratory values between groups, and before versus 24 hours after acetaminophen administration. Data are presented as median and range (p < 0.05).ResultsA two-compartmental model best described time–concentration profiles of acetaminophen. No significant differences were found for volume of distribution values 1.41 (0.94–3.65) and 1.72 (0.89–2.60) L kg–1, clearance values 1.52 (0.71–2.30) and 1.60 (0.91–1.78) L kg–1 hour–1 or terminal elimination half-life values 2.45 (1.45–8.71) and 3.57 (1.96–6.35) hours between conscious and anaesthetized dogs, respectively. Clinical laboratory variables were within normal range. No adverse effects were recorded.Conclusions and clinical relevanceIV acetaminophen PK in healthy Beagle dogs were unaffected by general anaesthesia under the study conditions. Further studies are necessary to evaluate the PK in different clinical contexts.  相似文献   

20.
ObjectiveTo compare the cardiorespiratory, anesthetic-sparing effects and quality of anesthetic recovery after epidural and constant rate intravenous (IV) infusion of dexmedetomidine (DEX) in cats given a low dose of epidural lidocaine under propofol-isoflurane anesthesia and submitted to elective ovariohysterectomy.Study designRandomized, blinded clinical trial.AnimalsTwenty-one adult female cats (mean body weight: 3.1 ± 0.4 kg).MethodsCats received DEX (4 μg kg?1, IM). Fifteen minutes later, anesthesia was induced with propofol and maintained with isoflurane. Cats were divided into three groups. In GI cats received epidural lidocaine (1 mg kg?1, n = 7), in GII cats were given epidural lidocaine (1 mg kg?1) + DEX (4 μg kg?1, n = 7), and in GIII cats were given epidural lidocaine (1 mg kg?1) + IV constant rate infusion (CRI) of DEX (0.25 μg kg?1 minute?1, n = 7). Variables evaluated included heart rate (HR), respiratory rate (fR), systemic arterial pressures, rectal temperature (RT), end-tidal CO2, end-tidal isoflurane concentration (e′ISO), arterial blood gases, and muscle tone. Anesthetic recovery was compared among groups by evaluation of times to recovery, HR, fR, RT, and degree of analgesia. A paired t-test was used to evaluate pre-medication variables and blood gases within groups. anova was used to compare parametric data, whereas Friedman test was used to compare muscle relaxation.ResultsEpidural and CRI of DEX reduced HR during anesthesia maintenance. Mean ± SD e′ISO ranged from 0.86 ± 0.28% to 1.91 ± 0.63% in GI, from 0.70 ± 0.12% to 0.97 ± 0.20% in GII, and from 0.69 ± 0.12% to 1.17 ± 0.25% in GIII. Cats in GII and GIII had longer recovery periods than in GI.Conclusions and clinical relevanceEpidural and CRI of DEX significantly decreased isoflurane consumption and resulted in recovery of better quality and longer duration, despite bradycardia, without changes in systemic blood pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号