首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Soil water availability is most essential in the Sahelian agriculture but is hampered by several factors. Surface crusts or crust-like surfaces, which are characteristic of most Sahelian soils, have been shown to decrease water infiltrability and increase runoff. Their type and structure are influenced by soil texture, vegetation cover, erosion and deposition effects of wind and water. A soil and terrain survey in semi-arid SW-Niger was carried out to explain the patterns of soil surface crusts and the deterioration of the land. The soil surface crusts were shown to depend also on specific terrain factors including land use type and intensity, and terrain type and position. Chemical and physical soil factors such as organic carbon, soil colour and texture occurring with specific crusts indicate soil degradation, especially in sloping terrain, which increases runoff and soil erosion. For sandy soils, surface tillage is required to break up the crusts. Higher surface organic matter is recommended to enhance water infiltration in soils.  相似文献   

2.
黄土区坡耕地土壤结皮对入渗的影响   总被引:8,自引:2,他引:8  
黄土高原地区,坡面土壤水分是生态建设的关键问题。以黄土高原坡耕地人为管理方式为背景,在室内人工模拟降雨条件下采用等高耕作和人工掏挖两种措施,并且设计直线坡作为对照,研究不同耕作措施下土壤结皮的形成特征,同时从降雨-入渗的角度研究两种类型结皮(结构结皮和沉积结皮)对坡面土壤水分入渗的影响。研究结果表明:土壤结皮阻碍坡面土壤水分入渗,结皮坡面产流时间早,且土壤累积入渗量明显低于无结皮坡面;采用Kostiakov模型、Horton模型、蒋定生模型对坡面土壤水分入渗过程进行优化模拟的结果表明蒋定生模型适用于描述本研究坡面土壤水分入渗的特征;耕作措施造成的微地形对土壤结皮的类型有很大影响,在洼地径流携带泥沙堆积形成沉积结皮,地势较高处降雨雨滴直接打击形成结构结皮。研究两种类型结皮发现,沉积结皮相对于结构结皮密度高且孔隙度低,并且两种类型结皮对坡面土壤水分入渗的影响存在差异,沉积结皮平均减渗效应为37.13%,结构结皮平均减渗效应为19.79%,因此,沉积结皮更大程度影响坡面土壤水分入渗。  相似文献   

3.
不同下垫面径流小区次降雨侵蚀特征相关分析   总被引:4,自引:3,他引:1       下载免费PDF全文
在延安市燕沟流域试验区布设了裸地、荒草地和灌木地3个坡面径流小区,对次降雨雨量、历时、径流深、产沙量、入渗率等数据进行了定位观测,并运用SAS软件对不同下垫面径流小区次降雨的侵蚀特征等相关问题进行了分析研究。结果表明,无论降雨强度如何变化,3个小区的径流量、产沙量均呈依次降低趋势:灌木地<荒草地<裸地;而入渗率呈依次增大趋势:灌木地>荒草地>裸地。其径流量与降雨量之间存在着很好的相关关系;产沙量随降雨量的增大而增大,其中裸地产沙量增大最为显著;入渗率随着降雨量的增大有增加趋向,但雨强增大时,入渗率表现为降低趋势;产沙量与径流量存在较好的相关关系,相关系数最高达到0.928 4,荒草地小区产沙量与径流量的关系可用二次函数很好地描述。  相似文献   

4.
Runoff sediment from disturbed soils in the Lake Tahoe Basin has resulted in light scattering, accumulation of nutrients, and subsequent loss in lake clarity. Little quantified information about erosion rates and runoff particle‐size distributions (PSDs) exists for determining stream and lake loading associated with land management. Building on previous studies using rainfall simulation (RS) techniques for quantifying infiltration, runoff, and erosion rates, we determine the dependence and significance of runoff sediment PSDs and sediment yield (SY, or erodibility) on slope and compare these relationships between erosion control treatments (e.g., mulch covers, compost, or woodchip incorporation, plantings) with bare and undisturbed, or ‘native’ forest soils. We used simulated rainfall rates of 60–100 mm h−1 applied over replicated 0·64 m2 plots. Measured parameters included time to runoff (s), infiltration and runoff rates (mm h−1), SY (g mm−1 runoff), and average sediment concentration (SC, g L−1) as well as PSDs in runoff samples. In terms of significant relationships, granitic soils had larger particle sizes than volcanic soils in bulk soil and runoff samples. Consequently, runoff rates, SCs, and SYs were greater from bare volcanic as compared to that from bare granitic soils at similar slopes. Generally, runoff rates increased with increasing slope on bare soils, while infiltration rates decreased. Similarly, SY increased with slope for both soil types, though SYs from volcanic soils are three to four times larger than that from granitic soils. As SY increased, smaller particle sizes are observed in runoff for all soil conditions and particle sizes decreased with increasing slope. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
土壤结皮坡面流水动力学特征   总被引:16,自引:12,他引:4  
为了深入探讨土壤结皮对侵蚀的影响机制以及两者之间的关系,以10°坡为例,在变流量(1.0,1.4,2.0,2.4和2.8 L/min)条件下进行室内冲刷试验,研究土壤结皮坡面径流水动力学特征(平均流速、平均径流深度、雷诺数、水流剪切力、水流功率、阻力系数)并分析坡面流水动力学参数与土壤侵蚀量的关系。结果表明,土壤结皮对坡面流水动力学参数影响显著。土壤结皮坡面雷诺数始终小于500,坡面流流态为层流;土壤结皮坡面具有较大坡面流流速,较小径流深度、水流剪切力和水流功率。结皮坡面的土壤侵蚀量明显低于无结皮坡面的土壤侵蚀量。土壤侵蚀量与坡面水动力学参数相关关系显著(相关系数R0.90),土壤侵蚀量与雷诺数呈线性正相关,与水流剪切力、水流功率的对数呈线性正相关,与阻力系数呈线性负相关。因此,在本研究中,单纯从径流冲刷侵蚀的角度土壤结皮的存在有利于减小坡面土壤侵蚀量。由于降雨因素对土壤结皮的侵蚀效应影响较大,将雨滴打击与径流冲刷相结合才能更好地研究土壤结皮对侵蚀的影响机制。  相似文献   

6.
《CATENA》1998,32(2):101-114
Soil surface crusting has a major impact on water infiltration and erosion in many soils. Considerable progress has been made in describing crusting processes and in modelling the impact of crusting on infiltration. Most studies, however, have neglected the high spatial variability in crust characteristics observed in the field. The objective of this experiment was to determine the influence of runoff depth on infiltration rate in the presence of a surface seal varying in hydraulic characteristics with microtopography. The Blosseville silt loam has a low aggregate stability and forms crusts readily. The Villamblain silty clay loam has a greater aggregate stability due to its greater clay and organic matter contents, and it is more resistant to aggregate breakdown processes under rainfall. Samples of the soils were sieved to retain aggregates less than 2.0 cm and packed in 50×50×15 cm soil trays. The trays were surrounded by a 10 cm soil border to compensate for splash loss. After molding the surface into a mound and depression microtopography, the samples were subjected to simulated rainfall at an intensity of 22.8 mm h−1. Hourly measurements of surface roughness showed that the original roughness was smoothed out due to the infilling of depressions by sediments detached from the mounds. For the final hour, runon was added to the top of the soil tray to increase the runoff rate and depth. For both soils, infiltration rate increased more than could be attributed to the increased ponding pressure head. The change in infiltration rate was particularly great for Villamblain. The measurements of hydraulic resistance showed that structural crusts had a lower hydraulic resistance than sedimentary crusts. They also showed that the crusts formed on Villamblain were of a lower hydraulic resistance than those of Blosseville. It appears that small changes in runoff depth can significantly increase infiltration rate when structural crusts of lower hydraulic resistance are inundated. The effect was less important in Blosseville which formed seals of relatively high hydraulic resistance everywhere. The results provide a suitable explanation for field observations of increasing infiltration rate with either increasing rainfall intensity or runoff rate. The results also have implications for the relationships between surface roughness, surface water storage, and infiltration.  相似文献   

7.
The Pyrenean and Pre‐Pyrenean mountain areas have been intensively used at least since roman times, but nowadays depopulation has lead to widespread land abandonment without a steering land‐management. Vegetation recovery is weak in most abandoned fields. Soil formation and characteristics are conditioned by this fact, and for this, soils show past degradation processes and are mostly predominant factors for continuing land degradation or restoration. Three study areas were set up along a climatic gradient with increasing summer water deficit in the sub‐humid zone between the Central Pyrenees and Pre‐Pyrenees. Soil survey combined with experiments for the determination of infiltration, runoff and erosion were applied for understanding the degradation history and the future development of the soils. All areas are dominated by Entisols, but also Inceptisols and Alfisols are found, and even soils with hydromorphic features. The soils show signs of heavy erosion. The parental material determines the nutrient supply and the general chemical properties. All sites show a weak water storing capacity, as a result of the removal of fine material by erosion and due to the depletion of soil organic matter. In addition, infiltration capacity and runoff generation are high within the studied areas, averaging between 27 and 37 per cent. The driest area studied shows an ongoing trend to degradation, with high erosion rates combined with a high degradations status of the soil. The other areas are characterised by a patchy pattern of soil degradation and regradation processes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
紫色土表土结皮发育特征的试验研究   总被引:3,自引:0,他引:3  
通过模拟降雨试验,探讨了紫色土表土结皮的发育特征。结果表明:有、无雨滴打击下,紫色土在30min内均形成稳定结皮层,厚度约7~8mm;淋移作用是紫色土形成结皮的主导作用,降雨打击使表土在降雨前期迅速形成致密薄层,抑制了淋移作用并使盖网处理的结皮容重略高;孔隙的剖面分布对入渗、抗剪强度有较大影响,表现在发生层总孔隙度低但分布均匀的盖网处理具有更强的入渗能力,且由于降雨初期未发生致密上层使其抗剪强度略低。  相似文献   

9.
Soil erosion such as sheet erosion is frequently encountered in subalpine grassland in the Urseren Valley (Swiss Central Alps). Erosion damages have increased enormously in this region during the last 50 y, most likely due to changes in land‐use practices and due to the impact of climatic changes. In order to estimate the effect of vegetation characteristics on surface runoff and sediment loss, we irrigated 22 pasture plots of 1 m2 during 1 h at an intense rain rate of 50 mm h–1 in two field campaigns using a portable rain simulator. The rain‐simulation plots differed in plant composition (herb versus grass dominance) and land‐use intensity but not in plant cover (>90%) nor in soil conditions. Prior to the second rain‐simulation campaign, aboveground vegetation was clipped in order to simulate intense grazing. The generated surface runoffs, sediment loss, relative water retention in the aboveground vegetation, and changes in soil moisture were quantified. Runoff coefficient varied between 0.1% and 25%, and sediment loss ranged between 0 and 0.053 g m–2. Thus, high infiltration rates and full vegetation cover resulted in very low erosion rates even under such extreme rain events. Surface runoff did not differ significantly between herb‐ and grass‐dominated plots. However, clipping had a notable effect on surface runoff in the test plots under different land‐use intensity. In plots without or with intensive use, surface runoff decreased after clipping whereas in extensively used plots, surface runoff increased after the clipping. This opposite effect was mainly explained by higher necromass and litter presence at the extensively used plots after the clipping treatment. The results obtained here contribute to a better understanding of the importance of vegetation characteristics on surface‐runoff formation, thus, on soil‐erosion control. Overall, we delineate vegetation parameters to be crucial in soil‐erosion control which are directly modified by the land‐use management.  相似文献   

10.
Soil-surface seals and crusts resulting from aggregate breakdown reduce the soil infiltration rate and may induce erosion by increasing runoff. The cultivated loess areas of northwestern Europe are particularly prone to these processes.Surface samples of ten tilled silty loamy loess soils, ranging in clay content from 120 to 350 g kg−1 and in organic carbon from 10 to 20 g kg−1, were packed into 0.5 m2 plots with 5% slopes and subjected to simulated rainfall applied at 30 mm h−1. The 120 minutes rainfall events were applied to initially field-moist soil, air-dried soil and rewetted soil to investigate the effect of soil moisture content prior to rainfall. Runoff and eroded sediments were collected at 5 minutes intervals. Aggregate stability of the soils was assessed by measuring particle-size distribution after different treatments.All soils formed seals. Runoff rates were between 70 and 90% by the end of the rainfall event for field-moist plots. There were large differences between soil runoff rates for the air-dried and rewetted plots. Interrill erosion was associated with runoff, and sediment concentration in runoff readily reached a steady-state value. Measurements of aggregate stability for various treatments were in good agreement with sealing, runoff and erosion responses to rainfall. Runoff and erosion were lower for air-dried plots than for field-moist plots, and were either intermediate or lowest for rewetted plots, depending on soil characteristics. Soils with a high clay content had the lowest erosion rate when they were rewetted, whereas the soil with a high organic-carbon content had the lowest erosion rate in air-dry conditions. The results indicate the complexity of the effect of initial moisture content, and the interactions between soil properties and climate.  相似文献   

11.
黑土坡耕地不同水土保持措施的土壤水蚀特征研究   总被引:2,自引:1,他引:1  
针对北方干旱地区坡耕地严重的水土流失问题,采取垄向区田、深松、横坡种植、免耕播种等水土保持耕作措施,于2010年,以黑龙江省齐齐哈尔市东兴村5°坡耕地径流场为研究对象,研究了不同耕作措施对地表径流、土壤侵蚀和降雨入渗的影响。结果表明,这几种水土保持耕作措施均有不同程度的减流减沙作用,其中横坡种植效果最为明显,地表径流量和土壤流失量较常规耕作分别减少了92%和90%,稳定入渗率较常规耕作提高了41.2%。不同耕作措施的径流系数过程线的变化、径流含沙率变化以及产流量、产沙量的变化均符合横坡免耕>横坡种植>深松+区田>垄向区田>少耕深松>免耕>常规耕作>裸地这一变化规律。  相似文献   

12.
This study evaluates surface runoff generation and soil erosion rates for a small watershed (the Keleta Watershed) in the Awash River basin of Ethiopia by using the Soil and Water Assessment Tool (SWAT) model. Calibration and validation of the model was performed on monthly basis, and it could simulate surface runoff and soil erosion to a good level of accuracy. The simulated surface runoff closely matched with observed data (derived by hydrograph separation). Surface runoff generation was generally high in parts of the watershed characterized by heavy clay soils with low infiltration capacity, agricultural land use and slope gradients of over 25 per cent. The estimated soil loss rates were also realistic compared to what can be observed in the field and results from previous studies. The long‐term average soil loss was estimated at 4·3 t ha−1 y−1; most of the area of the watershed (∼80 per cent) was predicted to suffer from a low or moderate erosion risk (<8 t ha−1 y−1), and only in ∼1·2 per cent of the watershed was soil erosion estimated to exceed 12 t ha−1 y−1. Expectedly, estimated soil loss was significantly correlated with measured rainfall and simulated surface runoff. Based on the estimated soil loss rates, the watershed was divided into four priority categories for conservation intervention. The study demonstrates that the SWAT model provides a useful tool for soil erosion assessment from watersheds and facilitates planning for a sustainable land management in Ethiopia. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Playas are common in many arid regions and recognized as a major source of hypersaline particles. A better understanding of wind erosion on crusted playas has significant implications for land management and pollution control practices. We hypothesized that wind erosion rates of crusted playas were complicated and controlled by the interactions between playa crust and wind-induced saltation conditions. However, comparisons regarding the effects of different playa crusts on wind erosion under no saltation (NS) and with saltation (WS) conditions were lacking. In this study, laboratory wind tunnel experiments were carried out to simulate both NS and WS conditions, to investigate the erosion rates of different crust types (Salt, Takyr, and Puffic crust) at different wind speeds. Results showed that: 1) Salt crust had greater crust strengths than did Takyr crust and Puffic crust; 2) wind erosion rates under the WS condition were up to 60 times greater than those under the NS condition, suggesting that sand bombardment was the dominant mechanism responsible for removal of fine material from crusted playa surfaces; 3) both sand bombardment rate and wind erosion rate of the playa crusts increased with increasing wind speed under the WS conditions; 4) Puffic crust exhibited a greater rate of wind erosion compared to both the Takyr and Salt crusts under the NS condition, yet tended to have a lower rate of wind erosion compared to both the Takyr and Salt crusts under the WS condition. This difference can be attributed to the fact that soft Puffic crusts are pliable and can dissipate the force of impacting grains under the WS conditions. Our results indicated that wind erosion processes on crusted playas are complicated and are affected by wind-induced saltation and crust type, specifically crust strength and elasticity of the surface.  相似文献   

14.
坡面径流侵蚀产沙机理试验研究   总被引:12,自引:6,他引:6  
利用野外模拟降雨试验,分析不同植被条件覆盖下坡面降雨入渗产流和侵蚀产沙过程特征及其互作关系,阐明不同植被类型对坡面降雨侵蚀产沙过程的调控机理及其差异。结果表明:荒地、草地和坡耕地坡面产流产沙过程线均较林地的强烈,呈现出多峰多谷的特点,产沙过程较产流过程波动更为剧烈;坡面累计产沙量随累计径流量增加呈幂函数显著递增趋势,坡面侵蚀产沙过程表现为发育期、活跃期和稳定期3个阶段。在水沙调控方式上,林地主要通过植被根系削减侵蚀动力、增加入渗、削减径流及减缓流速等途径实现水沙调控,具有蓄水减沙的水土保持功效;草地植被主要通过地表植被冠层拦截实现水沙调控,具有直接拦沙的水土保持功效;植被空间结构对水沙调控作用有明显差异,其中植被根系的存在对发挥植被水土保持作用至关重要。  相似文献   

15.
Considerable attention has been paid recently to the influence of surface rock fragments on hydrological and erosional processes, although much of this research has been done on disturbed soils under laboratory conditions. I have studied the effects of rock fragments on soil infiltration, runoff and erosion under field conditions using simulated rainfall on bare areas of natural soils within typical Mediterranean scrubland characterized by patchily distributed vegetation. Sample areas were chosen where rock fragments cover more than half the surface within unvegetated patches. Twenty experiments were carried out by applying rain at an intensity of 55 mm h?1 for 60 minutes. This approach shows that rock fragments (i) retard ponding and surface runoff, and (ii) give greater steady‐state infiltration rates and smaller interrill runoff discharges, sediment concentrations and interrill erosion rates. A second set of six experiments was carried out by applying rainfall at an intensity of 55 mm h?1 for two runs of 60 minutes. The second run was initiated 10 minutes after the first. During this interval, surface rock fragments were removed in order to measure their effects on infiltration, interrill runoff and erosion rates. In this way, I showed that water and soil losses are reduced by the rock fragments. After the removal of rock fragments the steady‐state infiltration rate diminished from 44.5 to 27.5 mm h?1 and the runoff coefficient, sediment concentration and erosion rates were, respectively, 3, 33 and 39 times greater than they were before the rock fragments were removed.  相似文献   

16.
As most mountains in tropical and subtropical zones, the Western Sierra Madre suffers active present erosion, which may create some constraints to the social and economic development in the area.The objectives of this study of soil degradation in the Western Sierra Madre, are to determine the respective roles of gully and sheet erosion. This research is based on field observations, field measurements of runoff and, soil losses at the plot, as well as the watershed scales as an analysis of an exhaustive census of the few gullies located in an experimental area.Measured soil losses in the Western Sierra Madre are high although there are few gullies. Most of the sediment yield seems to originate in widespread degraded areas where stoniness is the main evidence of a previous stage of erosion. Previously overgrazing and deforestation were determined as the factors of the appearance of new soil surface characteristics which explain the high runoff and sediment productions. The soil compacted by cattle trampling reduces infiltration. The decrease of the vegetation cover triggers a rise in the splash effect and thus, a soil sealing.These processes induce an increase in runoff and soil losses. The main erosion type has been described as sheet erosion: it is characterised by the removal of fine soil particles and the remains of gravels, pebbles and blocks, which constitute a pavement on the soil. Gullies generally appear on the bottom of wide valleys and depressions, where soils are thick. It is shown that sheet erosion is two orders of magnitude higher than gully erosion at the hillslope scale.Due to the spatial distribution of land use and the geological context such as the heavily degraded areas close to the main rivers, the reduction of runoff and soil loss rates within the extension of a considered area, commonly observed in hydrology, only applies up to the elementary catchments scale (1 to 50 km2). Above this area, runoff coefficient and soil loss rates increase.  相似文献   

17.
Interrill soil erosion as affected by tillage and residue cover   总被引:3,自引:0,他引:3  
No-till cropping systems are effective in reducing soil erosion. The objective of this study was to determine whether high infiltration rates and low runoff and soil loss under long-term, no-till conditions in loessial regions of the Midwest US result from both the well-structured, porous condition of the soil and the protective cover of crop residue or primarily from residue cover. Soil loss, runoff, and infiltration were measured using a rainfall simulator on interrill erosion plots with and without residue cover on a conventional and two no-till systems in central Illinois. For both conventional till and no-till conditions, removing surface residue significantly decreased infiltration rates and increased soil loss. Tilling the no-till surface while maintaining an equal surface cover as with the no-till system slightly increased interrill erosion. Removing residue on a no-till system, however, increased soil loss significantly. A no-till soil condition without adequate residue cover will seal, crust, and erode with extremely high soil losses following surface drying.  相似文献   

18.
Infiltration rates into two tropical-forest soils of western Nigeria under bush fallow (natural regrowth) were found to be high, equilibrium rates about 20–25 cm/h, even after precautions were taken to ensure only vertical flow from the double-ring infiltrometer system. Horizontal flow was difficult to restrain apparently due to the presence of horizontally oriented micro-fauna channels.Ploughing and tillage operations destroyed the micro-fauna channels in the plough layer and greatly reduced the tendency for horizontal flow from a normal double-ring infiltrometer system during arable cropping. Micro-fauna activity also declined in the cultivated soils and had little effect on infiltration.When the land was shifted to arable cropping, the weak granular aggregation of the surface soil deteriorated, and by the end of the first cropping year crusts began to decrease the infiltration capacity. Crusting became more severe during the second cropping year with a further reduction in the infiltration capacity and caused the development of rather serious soil erosion. The soil body beneath the crust remained hydraulically stable for a longer period but it also began to deteriorate during the second cropping year in the Oba soil probably due to its susceptability to tillage compaction and plough pan formation.  相似文献   

19.
Field investigations on loamy sands in east Shropshire show that compaction by agricultural machinery increases soil bulk density and soil erodibility, and decreases infiltration rates. Structural and hydrological changes, in combination with runoff concentration in cultivation lines, can contribute to serious erosion of arable soils. Compacted soils are also more responsive to rainfall and evidence is presented that intensities as low as approximately 1 mm h?1 can be erosive. Evidence suggests that compacted subsoils impede infiltration and so contribute to surface runoff and serious topsoil erosion.  相似文献   

20.
茵陈蒿群落垂直结构对坡面产流产沙过程的影响   总被引:2,自引:2,他引:0  
为探究茵陈蒿群落不同垂直结构对产流、产沙过程的影响,利用人工模拟降雨试验的方法,研究了不同垂直结构的茵陈蒿群落坡面侵蚀过程。结果表明:在植被盖度相同条件下,茵陈蒿多层群落结构(茵陈蒿+狗尾草+生物结皮)和双层群落结构(茵陈蒿+生物结皮)的减流、减沙效果显著优于单层群落结构,二者的减流效益分别为40.5%和22.6%,减沙效益分别为86.6%和73.5%。不同垂直结构的茵陈蒿群落累积产沙量均可表示为累积产流量的幂函数(R~20.98),表现为累积产沙量随累积产流量的增加而增加,且随群落结构层数的增加,3种垂直结构群落的累积产沙量增幅减小。植物根系可以改善土壤结构,增加降水入渗,减少地表径流,是影响产流、产沙过程的关键因素。因此,群落垂直层次多、组分复杂、整体预防水土流失的能力也相应较强。对易于形成植被空层的草地群落,应当重视其低层植被建设,加强草地群落垂直结构及其水土保持功能的相关研究,以期为黄土高原草地植被恢复和结构配置优化提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号