首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper we use a combination of fallout nuclides and geochemistry to determine the contributions of sediment and sediment bound phosphorus (sed-P) from the major diffuse sources in the Bundella Creek catchment (8700 ha), NSW, Australia. Sources include surface erosion from cultivated, pasture and steep forested land as well as subsoil erosion from channels and gullies. We determine these contributions to the <10 μm fraction of deposited sediments. Concentrations of P were higher in the surface soils of each landuse than the underlying subsoils, and erosion from these contributed more to offsite sediment-P (60%) than did subsoil erosion at the individual landuse scale. At the catchment outlet, the amount of surface sediment eroded from cultivated lands was a factor of 84 higher than from pastures; the steep forested lands contributed 9 times more than pastures. Sed-P eroded from cultivated land was 42 times higher than from pasturelands; the forests were 8 times greater than from pastures. At the catchment outlet the largest contribution of sediment (70%) and sed-P (62%) was from subsoil erosion of gullies and channels within and between the different landuse areas. There was little contribution of sediment or sed-P at the catchment scale from surface erosion of pastures. Concentrations of P were highest in ‘storm event’ suspended sediment samples taken from the pasture and cultivated areas without gullies. In a suite of samples selected for their high P contents, fertiliser P was detected in two storm event suspended sediment samples and one deposited sediment sample, using the ratio of Nd/P. This suggests fertiliser P may be transported-off landsurfaces with sediments and contribute to offsite sediment-P concentrations in some situations. However, the fertiliser contributions were episodic and variable; and probably influenced by particle size selectivity as well as timing of fertiliser application with respect to size and occurrence of subsequent rainfall.  相似文献   

2.
H.G. Smith  D. Dragovich 《CATENA》2008,73(3):274-285
This paper examines post-fire erosion response in a sub-alpine environment in south-eastern Australia for a period of 2.2 years. Few studies have examined fire impacts on sediment transfer in this environment. Erosion pins were used in grids located at upper, mid and lower slope positions on adjacent burnt and unburnt hillslopes to assess fire effects on the extent of surface level change. The results indicated that there was a significant difference between the surface level change regimes on the burnt and unburnt hillslopes. Estimated erosion rates for the burnt slope over the study period ranged from 2.7 to 94.3 t ha− 1, which could be considered low given the high slope angles, high precipitation and moderate fire severity. Slope position was critical in modifying post-fire erosion response, as it controlled slope angle and the rate of surface cover regrowth. Analysis of lower slope sites, for which more detailed data was available, indicated a second delayed erosion peak after the initial elevated post-fire response during the following spring snowmelt period. Surface recovery on the lower burnt site was slow, with vegetation cover still comparatively low 2.3 years after the fire. Evidence of post-fire sediment supply limitation was found on this site, with a declining rate of increase in the magnitude of total surface level change, despite limited regrowth and an increasing number of precipitation events > 20 mm for measurement intervals since the fire. Modification of the hillslope surface by fire leads to changing hillslope erosion process dominance in this environment. The post-fire hillslope undergoes erosion by direct rain-drop impact and overland flow, whereas the unburnt slope rarely experiences overland flow due to the thick ground cover. As a result surface level change on the unburnt slope was largely influenced by wetting–drying effects rather than sediment transfer by surface flow. Downslope biotransfer appears to be the dominant sediment movement process in the unburnt sub-alpine forest environment.  相似文献   

3.
The determination of relative contributions of potential sediment sources is an important step in the development of management strategies to combat soil erosion. In a 1.2 km2 gullied catchment in southeastern New South Wales, multi-parameter fingerprinting of sediment deposited in successive downstream pools has identified gully walls as the dominant sediment source when the grazed pasture surface was the only other potential source. The median fractional contributions remained relatively steady in the successive downstream pools, with the gully walls responsible for between 90% and 98% of the pool sediment. This result was achieved despite the ratio of the source areas varying considerably between successive nested subareas. Reliability bounds on the predictions, accounting for limited sampling of sources, were well constrained and varied between 5.4% and 13.8%. Downstream of an unsealed road crossing, sediment from the road source dominated the pool sediments such that contributions from the pasture surface and gully sources could not be determined.  相似文献   

4.
Development of improved soil erosion and sediment yield prediction technology is required to provide catchment stakeholders with the tools they need to evaluate the impact of various management strategies on soil loss and sediment yield in order to plan for the optimal use of the land. In this paper, a newly developed approach is presented to predict the sources of sediment reaching the stream network within Masinga, a large‐scale rural catchment in Kenya. The study applies the revised universal soil loss equation (RUSLE) and a developed hillslope sediment delivery distributed (HSDD) model embedded in a geographical information system (GIS). The HSDD model estimates the sediment delivery ratio (SDR) on a cell‐by‐cell basis using the concept of runoff travel time as a function of catchment characteristics. The model performance was verified by comparing predicted and measured plot runoff and sediment yield. The results show a fairly good relationship between predicted and measured sediment yield (R2=0·82). The predicted results show that the developed modelling approach can be used as a major tool to estimate spatial soil erosion and sediment yield at a catchment scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Temporal variability and spatial heterogeneity of surface runoff generation triggers the dynamics of source areas of sediment and sediment-associated nutrient transport. Reliable modelling of hydrological special situations i.e. snowmelt is of high importance for the quality of erosion and sediment yield modelling. Data from the research catchment Schäfertal demonstrate the individuality of snowmelt events in terms of runoff coefficient and delivery ratio. This 1.44 km2 low mountain catchment is characterised by a high portion of arable land with a winter grain/winter rape crop rotation. The integrated winter erosion and nutrient load model (IWAN) considers these dynamic aspects by coupling a hydrological model with a sediment load model. Cell size of this raster-based approach is 10 × 10 m2. Additionally, snowmelt rill erosion is simulated with a newly developed physically based model that is firstly applied on a catchment scale. A sensitivity analysis of this model system component demonstrates the plausibility of the model approach and the overall robustness of the model system IWAN. The results of the long-term hydrological modelling from 1991 to 2003 are reliable and form the basis for the simulation of six snowmelt events which were observed in the Schäfertal catchment. The estimated total runoff volumes for these events match the observations well. The modelled overland runoff coefficients vary from 0.001 to 0.72. The mean values of cell erosion, which were modelled with one set of parameters for all six events range from 0.0006 to 0.96 t ha− 1. The total modelled erosion for the events with unfrozen soil and low amount of surface runoff is of a factor 50 below those with partly frozen soil. In addition to these distinctions, the major differences are caused by flow accumulation in shallow depressions in variable parts of the catchment. However, the validation of these results on the single event scale is restricted due to limited spatial data. Total simulated sediment yield at the catchment outlet was as high as 13.84 t which underestimates the observed values, with the exception of one event. Oversimplification of the modelled channel processes may be a reason. The temporal variability and spatial heterogeneity of the surface roughness parameter, which was identified to be sensitive, also causes uncertainty in the parameter estimation. Despite these findings, the model system IWAN was applied successfully on the catchment scale and the simulated results are reliable.  相似文献   

6.
The spatial variation of soil erosion and deposition rates was studied in a small catchment cultivated by rainfed agriculture, in the Mouriki area, Viotia Greece, using the 137Cs technique. A 25 m grid was established parallel to the slope and the 137Cs inventories were defined for the grid points. After establishing the local reference inventory, the soil erosion and deposition rates were estimated using the 137Cs residuals for individual points on the grid in conjunction with the four conversion (calibration) models described by Walling and He (2001) [Models for converting 137Cs measurements to estimates of soils redistribution rates on cultivated and uncultivated soils]. The conversion models were validated by means of sensitivity analysis and using local experimental data. The resulting estimates of soil redistribution rates were interpolated by means of kriging, using Surfer Golden software. The magnitude of the soil erosion rates depend on many factors, including the location of the sampling point, the local slope, and the soil properties. The mass balance model 2 (MBM2) and mass balance model incorporating soil movement by tillage (MBM3) conversion models predict soil redistribution rates of the same order of magnitude as the experimental data and are able to take account of Chernobyl fallout. Predicted soil erosion rates for catchment grid varied from 6.71 to 85.55 t ha−1 per year using MBM2 and from 3.54 to 95.78 t ha−1 per year using MBM3. Deposition rates varied from 1.23 to 168.19 t ha−1 per year using MBM2 and from 3.24 to 189.18 t ha−1 per year using MBM3. High correlation was apparent between erosion/deposition rates (MBM2) and soil P (P<0.001), soil K (P<0.001), soil organic matter % (P<0.05), point slope (P<0.05), clay % (P=0.053) and altitude (P=0.057). The total soil losses from the catchment have been estimated at 18.34 t ha−1 per year using MBM2 and 22.12 t ha−1 per year using MBM3.  相似文献   

7.
In southern African countries soil erosion and the related problems, such as water quality issues or decreasing soil productivity, are the main topics affecting the inhabitants of both rural and urban areas. Therefore, the attention has been recently placed on those problems related to soil erosion. This can also be documented by an increasing number of studies carried out on erosion and by the development and application of erosion models. Nevertheless, gully erosion phenomena have been widely neglected in erosion modelling. This is because the development of erosion models was focused on those regions with an intense agriculture typical of developed countries on the one hand, and because of the spatial and temporal heterogeneity of gully erosion processes on the other hand. This study regards the identification of gully erosion forms and processes in the Mbuluzi River catchment (Kingdom of Swaziland) by using the Erosion Response Units (ERU) concept. The following modelling of gully erosion was done through the stable gully model [Catena 37 (1999) 401]. The input data were obtained through the application of remote sensing techniques (API method) and GIS-analyses. The example from Swaziland shows that the applied methods are able to identify areas affected by gully erosion. Furthermore, it is possible to estimate the amount of soil loss due to gully erosion, which, for example, is not taken into consideration by the USLE-type models.  相似文献   

8.
Abstract

The strategy to mitigate phosphorus (P) losses in areas of arable cropping in Norway has focused on measures to reduce erosion. Risk assessment of erosion has formed the basis for implementation of the measures. The soil P content has increased during recent decades, motivating an evaluation of its effect on P transfer in the landscape. The present study describes the spatial variability of runoff P concentrations from an agricultural dominated catchment (4.5 km2), representative for agriculture in south-eastern Norway. The concentrations of suspended sediments (SS), total P (TP) and dissolved reactive P (DRP) in runoff from 22 subcatchments (0.3–263 ha) during one year (monthly and during runoff-events) were evaluated. Contributions from point sources were 38 kg TP yr?1 compared to a total P loss of 685 kg yr?1 from the whole catchment. During low flow, mean diffuse TP concentration in runoff from subcatchments varied from 28 to 382 µg l?1. The mean low flow TP concentration was 39 µg l?1 from the housing area (only diffuse runoff) and 33 µg l?1 from the forested area. During high flow the highest diffuse TP concentration was measured in an area with high erosion risk and high soil P status. At the subcatchment level the transfer of SS varied from 25 to 175% of the whole catchment SS transfer. Correspondingly for TP, the transfer varied from 50 to 260% of the whole catchment TP transfer. For each of five agricultural subcatchments the slope of the relationship between TP and SS concentrations reflected the mean soil P status of the subcatchment. Erosion risk estimates were closely related to the SS concentration (R2=0.83). The study illustrates that soil P status in addition to soil erosion is an important factor for P transfer.  相似文献   

9.
Sediment transport from agricultural land into rivers and reservoirs is a problem within the Czech Republic. This problem was highly accelerated almost 50 years ago during the communist period. At that time strong collectivization was undertaken leading to destruction of traditional landscape patterns, surface outflow, erosion processes intensification and surface water quality deterioration. Thirteen years after political changes erosion problems remain.At the Department of Irrigation, Drainage and Landscape Engineering at the CTU Prague there has been continuous research undertaken in the field of erosion and sediment transport assessment. There are several modelling tools available for this purpose. One of them—USLE (Universal Soil Loss Equation) is commonly used in the Czech Republic for many years at a plot-scale but modern GIS (geographical information systems) tools in computer science allow using it at larger scales. Very important is the validation of this model for two-dimensional topography and GIS routines. Moreover USLE produces only local erosion amount values and has to be completed by another tool to get sediment amounts. For this purpose SDR (sediment delivery ratio) is usually used, applying a lumped approach—total erosion of every watershed is reduced by SDR and by pond’s trapping efficiency. Another available approach is using the Watem/SEDEM model that puts together RUSLE (Revised USLE) and a distributive approach to sediment transport modelling. This has already been used for estimating sediment amount in several catchments of the Czech Republic, but has to be validated as well.At the Dept. of Drainage, Irrigation and Landscape Engineering there are datasets of sediment amount from different reservoirs available and other reservoirs are to be measured soon. As the dataset of various watersheds is expanded, a methodology for sediment amount measurements is needed. The main objective of this paper is to propose a simple methodology to measure the sediment amount within reservoirs as well as to present a review of available methods. The application of the methodology at Vrchlice Catchments (97 km2) case study is presented. Total sediment amounts between 125 000140 000 m3 were measured in Vrchlice reservoir and values of 110 976 m3 (using USLE), resp. 105833 m3 (using Watem/SEDEM) were predicted by the erosion models. For catchments of this scale it is a sufficient validation.  相似文献   

10.
C.M. Wilson  P.L. Smart 《CATENA》1984,11(1):145-158
The results of observations on the spatial localisation, origin and function of soil pipes in an upland catchment are discussed. The pipes occur in distinct zones in the brown earth soils of the lower slopes, and form a hydrological link conducting water between an upslope zone of highly permeable skeletal soils and the stream channel. It is proposed that in this catchment, pipes develop from an initial network of mole burrows, modified by hydraulic activity to produce an efficient downslope transmission network. A conceptual model for the pipe slope segment is proposed which recognises the importance of this transmission role. Slope discharge controls switching between saturated throughflow, pipe flow and overland flow, each of which has a specific threshold value for operation. Attempts to investigate the significance of pipe flow at the catchment scale met with limited success, but it appears to be important in increasing both contributing area and duration of storm flow.  相似文献   

11.
Jie Ding  Keith Richards   《CATENA》2009,79(3):277
This paper outlines an analysis of the spatial distribution of sediment production, delivery and yield in the Xihanshui River basin, South Gansu, China, using the modelling tools of SedNet (Prosser et al., 2001). This model can assess the delivery efficiency to downstream locations, as well as identifying locations with high rates of sediment production. Preliminary model experiments assist understanding of the spatial dynamics of these sediment processes and evaluation of the effectiveness of soil conservation practices since the mid-1980s. Three scenario years (dry, average and wet) from the 1983–2005 record are identified and modelled, and land use and management are represented in the model to reflect known changes since the 1980s. Results show hillslope erosion to be a dominant source of sediment supply, causing the latter to decrease ten-fold between 1984 and 1997/2000. Estimated bank erosion and floodplain deposition rates are sensitive to parameter values, but bank erosion appears less sensitive than hillslope supply to rainfall. The model can be used to assess net changes in floodplain storage; for default parameters, floodplain deposition rates are 25–200 times the rates of bank erosion depending on the climate scenario. Comparing simulation results with measured sediment yields at the three gauging stations indicates encouraging agreement in 2000. In 1984 (the wet year), the model under-predicts, suggesting that additional unmodelled sediment production processes, especially mass movement and gully erosion, may be important in wet years. Mass movement inventory data could close the gap between the high yields measured in the wet scenario year and the estimated yield due to hillslope erosion alone. In 1997 (the dry year), the model over-predicts; this suggests that the land use change parameters required to reflect the effects of conservation may not have been sufficient, implying that conservation has been generally effective, and that evidence of declining sediment yield is not simply a reflection of drier conditions.  相似文献   

12.
This paper examines the nature, extent and severity of soil erosion in upland Scotland, an area subject to land management pressures typical of temperate maritime uplands. Erosion features were classified and their area measured from aerial photographs. Some 12 per cent of the upland area sampled was subject to some form of erosion, which is very similar to the percentage for Europe as a whole. The most significant erosion category was peat erosion, with 6 per cent of the area being affected; a figure which increased to 20 per cent in one sub-region. Peat erosion varied in severity, with the most severe erosion being in areas of eastern Scotland with the greatest land management pressures. Gully erosion of slopes on mineral soils was found in almost 5 per cent of the area sampled, particularly in sub-regions with large amplitude of relief. Debris flow/cone features and screes were less extensive and largely found at higher altitudes. Footpath erosion was mapped in popular mountain areas, but overall the mean length of eroded footpaths was less than that of large gullies. There was little evidence of spatial linkages between erosion of mineral soils and land management at the scale of the survey. Separating the roles of upland management and extreme rainfall events in the inception of erosion remains a key issue in the study of accelerated erosion in temperate maritime upland areas. Some guidance for management is presented.  相似文献   

13.
In the Eastern Rif of N Morocco, soil conservation is seriously threatened by water erosion. Large areas of soil have reached an irreversible state of degradation. In this study, the 137Cs technique was used to quantify erosion rates and identify the main factors involved in the erosion process based on a representative catchment of the Eastern Rif. To estimate erosion rates in terms of the main factors affecting soil losses, samples were collected taking into account the lithology, slope and land use along six selected transects within the Boussouab catchment. The transects were representative of the main land uses and physiographic characteristics of that Rif sector. The reference inventory for the area was established at a stable, well preserved, matorral site (value of 4250 Bq m− 2). All the sampling sites were eroded and 137Cs inventories varied widely (between 245 and 3670 Bq m− 2). The effective soil losses were also highly variable (between 5.1 and 48.8 t ha− 1 yr− 1). Soil losses varied with land use. The lowest average values were on matorral and fallow land (10.5 and 15.2 t ha− 1 yr− 1, respectively) but much higher with alfa vegetation or cereal crops (31.6 and 27.3, respectively). The highest erosion rate was on a badland transect at the more eroded part of the catchment, with rates exceeding 40 t ha− 1 yr− 1 and reaching a maximum of 48.8 t ha− 1 yr− 1.The average soil losses increased by more than 100% when the slope increased from 10° (17.7 t ha− 1 yr− 1) to 25° (40. 8 t ha− 1 yr− 1). Similar results were obtained when comparing erosion rates in soils that were covered by matorral with respect to those under cultivation. Lithology was also a key factor affecting soil loss. Soils on marls were more erodible and the average erosion rates reached 29.36 t ha− 1 yr− 1, which was twice as high as soils on the glacis and old fluvial terraces (average rates of 14.98 t ha− 1 yr− 1). The radiometric approach was very useful to quantify erosion rates and to examine the pattern of soil movement. The analysis of main erosion factors can help to promote rational soil use and establish conservation strategies in the study area.  相似文献   

14.
Annual soil losses in southern Italy can exceed 100–150 t ha− 1 year− 1. Where erosion on agricultural land is particularly severe, land use change and afforestation are frequently seen as the most appropriate means of reducing erosion risk. However, the overall effectiveness of afforestation in reducing soil erosion remains uncertain, due to the poor development of the forest cover in some areas, leading to significant areas with sparse tree cover, and the erosional impact of forest harvesting, which commonly involves clearcutting. The study reported here addresses this uncertainty and focuses on two small catchments (W2 and W3) located in Calabria, southern Italy, for which measurements of suspended sediment yield are available. Both the catchments originally supported a rangeland vegetation cover and they were planted with eucalyptus trees in 1968. Currently, only catchment W3 supports a continuous forest cover. In catchment W2 the forest cover is discontinuous and there is a significant area of the catchment (ca. 20%) where the tree cover is sparse and the vegetation cover is dominated by natural grasses. Two additional erosion plots were established within catchment W2 in 1991, in order to explore the effect of the density of the tree cover on soil erosion. Information on the sediment yields from the two catchments and the plots for 10 storm events that occurred during the period December 2005–December 2006 and associated information on the 137Cs and excess 210Pb of the sediment, have been used to investigate the effectiveness of afforestation in reducing sediment mobilisation and net soil loss from the catchments involved. The results demonstrate that the areas of greatest soil loss are associated with the slopes where the tree cover is discontinuous, and that forest harvesting by clearcutting causes significant short-term increases in sediment mobilisation and sediment yield. These findings, which are consistent with previous work undertaken within the same area, emphasize the importance of vegetation cover density in influencing rates of soil loss in the study catchments. The study also provided a useful demonstration of the potential for using measurements of the 137Cs and 210Pbex content of sediment, in combination with more traditional sediment monitoring, to investigate sediment sources and to compare the sediment dynamics of catchments subjected to different land management practices.  相似文献   

15.
In association with a major initiative aimed at identifying policy packages for inclusion in the Programmes of Measures (POM's) comprising EU Water Framework Directive (WFD) River Basin Management Plans (RBMP's), recent work has evaluated the gap between current and compliant suspended sediment losses due to farming across England and Wales. The work required national scale sediment source apportionment to assess the current contributions of diffuse agricultural and urban sector losses, channel bank erosion and point source discharges to the total suspended sediment loads delivered to all rivers. Results suggested that the agricultural sector dominates present day (year 2000) sediment inputs to rivers (1929 kt = 76%) compared to eroding channel banks (394 kt = 15%), diffuse urban sources (147 kt = 6%) and point source discharges (76 kt = 3%). Projected change in farming by 2015, represented by the Business as Usual forecast of structural developments and predicted uptake of sediment mitigation methods, suggested an overall 9% reduction in sediment loss from the agricultural sector across England and Wales. The projected reduction is unlikely to deliver sediment compliance in all catchments. Key limitations of the integrated modelling approach are discussed.  相似文献   

16.
The revised universal soil loss equation (RUSLE), the sediment delivery distributed (SEDD) model, and ArcView GIS were used to estimate the impacts of no-till practice on soil erosion and sediment yield in Pataha Creek Watershed, a typical dryland agricultural watershed in southeastern Washington. The results showed that the average cell soil loss decreased from 11.09 to 3.10 t/ha yr for the whole watershed and from 17.67 to 3.89 t/ha yr for the croplands under the no-till scenario. Likewise, the average cell sediment yield decreased from 4.71 to 1.49 t/ha yr for the entire watershed and from 7.11 to 1.55 t/ha yr for the croplands under no-till practices. The major reason why no-till practice can significantly reduce the soil erosion and sediment yield is that it prevents rill generation which through rill erosion ultimately contributes up to 90% of the soil erosion in the Inland Pacific Northwest region.  相似文献   

17.
Land degradation in the middle and upper Yangtze has caused loss of cultivable land, sediment deposition in reservoirs and changes in the runoff: sediment yield relationships of major tributaries. The Jialin River and the Dukou-Pingshan sector of the Jingsha River together contribute over 75 per cent of all the sediment carried by the Yangtze at Yichang. As the Jialin catchment has the highest rates of erosion per unit area, high sediment discharges from that river exert a major influence on peak summer sediment discharges on the Yangtze. Even though land degradation is increasing in severity, there is no clear overall pattern or trend in variations in sediment yield since 1950. Some tributaries are affected by major reservoir construction and soil conservation works, others are not.  相似文献   

18.
Fly ash, the particulate matter resulting from high temperature combustion of coal, was historically dispersed into the atmosphere and settled as fly-ash spheres on the surface soil from a variety of boilers, including those of steam locomotives and steam-powered farm machinery. In Central Illinois, fly ash provides a time marker extending back to 1850s, coinciding with the development of railroads and cultivation. Two railroads, the primary sources of fly ash, were constructed just south of the Cahokia study site in 1852 and 1854. The objectives of this study were to determine: (1) the distribution, depth of occurrence and the total amount of fly ash present in soil profiles on stable, cultivated and uncultivated summit sites with little or no soil erosion; (2) the effects of elevation, aspect, slope gradient, landscape position, distance from source, past vegetation and time on the amount and depth of fly ash; (3) the effects of erosion on sloping sideslopes; and (4) the amount of deposition of fly-ash rich sediment on footslopes and toeslopes. Total fly-ash content of soil was similar for stable, cultivated and uncultivated summits. Two mound sideslopes maintained a high amount of fly ash because of a lack of cultivation and erosion for the past 80 or more years. Erosion reduced the depth of occurrence and the amount of fly ash present on cultivated sideslopes. It appeared that fly-ash content was initially deposited uniformly within the local landscape even though there were slight variations in the aspect, elevation, slope gradient, and distance from the source. The erosion phases of the soils on all landscape positions were determined based on the amount of fly ash remaining in soil surface layers. Accelerated erosion of cultivated sideslopes resulted in the deposition of fly-ash rich sediment on the adjacent footslopes or toeslopes. The proposed fly-ash method provides a tool to assess the extent of soil translocation from a cultivated landscape and subsequent deposition.  相似文献   

19.
The use of draglines to remove overburden in Queensland opencut mines, results in landscapes that consist of long parallel tertiary overburden spoil-piles that are generally highly saline, dispersive, and highly erodible. The height of these spoil-piles may exceed 50–60 m above the original landscapes and the slopes are at the angle of repose of around 75% or 37°. Legislation and public opinion require that these highly disturbed open-cut post-mining landscapes should be satisfactorily rehabilitated into an approved post-mining land use with acceptable erosion rates. Therefore, these slopes must be reduced before the landscape can be rehabilitated. The most expensive component of the rehabilitation process is the re-shaping and preparation of the overburden to create a suitable landscape for vegetation growth. As soils and overburden varies greatly in their erodibilities, the extent and cost of earthworks can be minimized, and rehabilitation failures avoided, if soil erosion from designed landscapes can be predicted using laboratory-based parameters prior to construction of these landscapes. This paper describes the development of a model for that purpose.A catchment or landscape erosion model MINErosion 4 was developed by upscaling the existing hillslope model MINErosion 3 (So, et al., 2018) and integrate it with both ESRI ArcGIS 10.3 or QGIS 3.16 (freeware), to predict event based and mean annual erosion rate from a postmining catchment or landscape. MINErosion 3 is a model that can be used to predict event and annual erosion rates from field scale hillslopes using laboratory measured erodibility parameters or routinely measured soil physical and chemical properties, and to derive suitable landscape design parameters (slope gradient, slope length and vegetation cover) that will result in acceptable erosion rates. But it cannot be used to predict the sediment delivery from catchments or landscapes. MINErosion 4 was validated against data collected on three instrumented catchments (up to 0.91 ha in size) on the Curragh mine site in Central Queensland. The agreement between predicted (Y) and measured (X) values were very good with the regression equation of Y = 0.92X and an R2 value of 0.81 for individual storm events, and Y = 1.47X and an R2 value of 0.73 for the average annual soil loss. This is probably the first time that a catchment scale erosion is successfully predicted from laboratory measured erodibility parameters.  相似文献   

20.
Soil and water conservation practices are used widely to prevent soil erosion and protect soil and water resources, which is significant for ecological restoration and food security. However, rill evolution processes, erosion and deposition characteristics and critical hydrodynamic parameters need more research. In order to investigate the effect of soil and water conservation practices on soil erosion dynamics, simulated rainfall experiments were undertaken in a laboratory on 15° loess slopes with engineering measures (fish-scale pits, FSPs), tillage measures (artificial digging, AD; contour ploughing, CP) and bare slope (CK). The results showed that: (1) during rill erosion, hillslopes with FSPs, CP and AD were more likely to develop wide and shallow rills, while a bare slope (CK) was more likely to develop narrow and deep rills. At the end of the experiment (cumulative rainfall was about 150 mm), headward retreat erosion dominated the AD slope (maximum rill length: 3.27 m), side-wall expansion erosion dominated the CP slope (maximum rill width: 0.522 m) and bed incision erosion dominated the CK (maximum rill depth: 0.09 m); (2) soil and water conservation practices reduced surface erosion and sediment transport and runoff velocity. However, the positive effects disappeared when rainfall amounts exceeded 82.5, 105 and 127.5 mm for FSPs, CP and AD, respectively; (3) for runoff kinetic energy and runoff shear strength of 3 J and 1.5 N/m2, respectively, soil and water conservation measures had greater anti-erosion abilities than CK; (4) as rainfall duration increased, surface roughness, runoff rate and sediment concentration increased on the CK and FSP treatments, but decreased on the CP and AD treatments. This study has important implications for managing different soil and water conservation measures based on rainfall conditions and offers a deeper understanding of soil erosion processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号